JP2005249696A - Measuring method and measuring instrument for measuring physical property of measured object by depositing measured object onto tip of optical fiber - Google Patents

Measuring method and measuring instrument for measuring physical property of measured object by depositing measured object onto tip of optical fiber Download PDF

Info

Publication number
JP2005249696A
JP2005249696A JP2004063372A JP2004063372A JP2005249696A JP 2005249696 A JP2005249696 A JP 2005249696A JP 2004063372 A JP2004063372 A JP 2004063372A JP 2004063372 A JP2004063372 A JP 2004063372A JP 2005249696 A JP2005249696 A JP 2005249696A
Authority
JP
Japan
Prior art keywords
optical fiber
tip
measuring
measured
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004063372A
Other languages
Japanese (ja)
Other versions
JP4352144B2 (en
Inventor
Takahisa Mitsui
隆久 三井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keio University
Original Assignee
Keio University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keio University filed Critical Keio University
Priority to JP2004063372A priority Critical patent/JP4352144B2/en
Publication of JP2005249696A publication Critical patent/JP2005249696A/en
Application granted granted Critical
Publication of JP4352144B2 publication Critical patent/JP4352144B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a measuring method and instrument capable of measuring various kinds of physical properties of a measured object, without being limited to surface tension, viscosity and density, and variation thereof, by depositing the measured object onto a tip of an optical fiber. <P>SOLUTION: This measuring instrument for measuring the physical properties of the measured object S is provided with a light source 1, a Michelson interferometer, the optical fiber 20 arranged in a signal arm of the Michelson interferometer, interference signal detecting means 15, 16, 17 for detecting interference signals by the Michelson interferometer, and an interference signal analytical means 18 for finding a vibration condition of a surface of the measured object S deposited onto the tip of the optical fiber, and an amplitude thereof or a deformation amount thereof, based on the detected interference signals. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、光ファイバー先端に被測定物を付着させて被測定物の物性を測定する計測方法及び計測装置に関し、特に、微少量の液体試料でリプロンを利用した表面張力、粘性、密度等の物性が測定可能な計測方法及び計測装置に関するものである。   The present invention relates to a measurement method and a measurement apparatus for measuring a physical property of a measurement object by attaching the measurement object to the tip of an optical fiber, and in particular, physical properties such as surface tension, viscosity, density, etc. using a repron with a small amount of liquid sample. The present invention relates to a measurement method and a measurement apparatus that can measure the above.

液体表面のリプロン(ripplon )と呼ばれる熱振動は、液体の表面に熱励起によって生じる振幅が数Åのさざ波である。液体の持つ表面張力と密度によってリプロンの分散関係(振動数と波長の関係)が決まり、粘性は振幅やコヒーレンス(波の位相が揃ったまま伝搬する距離、一度生じた波がどのくらいの時間で消滅するか)に影響を与える。そのため、リプロンを調べることにより、液体の表面張力、密度、粘性が求まる(非特許文献1)。   Thermal vibration called ripplon on the surface of the liquid is a ripple having an amplitude of several millimeters caused by thermal excitation on the surface of the liquid. The surface tension and density of the liquid determine the dispersion relationship of the reprons (relationship between the frequency and the wavelength), and the viscosity is the amplitude and coherence (the distance to propagate with the phase of the waves aligned, how long the wave once generated will disappear. Affect). Therefore, the surface tension, density, and viscosity of the liquid can be determined by examining the lipron (Non-Patent Document 1).

液体表面に熱励起に起源を持つ波が作られる可能性があることは非特許文献2で最初に予想され、非特許文献3で実験的に観察された。現在では、リプロンを進行回折格子として利用した光散乱法により観測されている。リプロンによる回折光は伝搬方向のみでなく振動数も変化し、リプロンの分散関係を求めるとができる。   It was first predicted in Non-Patent Document 2 that a wave originating from thermal excitation may be generated on the liquid surface, and was experimentally observed in Non-Patent Document 3. At present, it is observed by the light scattering method using lipron as a traveling diffraction grating. Diffracted light from the repron changes not only in the propagation direction but also in the frequency, and the dispersion relationship of the repron can be obtained.

この光散乱法には、液体表面にレーザー光を照射して反射光を分析する方法(非特許文献4、5)と、屈折光を分析する方法(非特許文献6)とがある。反射光を分析する方法は、感度が高いけれど、重力の向きや測定環境の振動に影響されやすいという欠点がある。また、屈折光を分析する方法は、感度は低下するが、測定環境の振動に影響され難くなる。   This light scattering method includes a method of analyzing reflected light by irradiating a liquid surface with laser light (Non Patent Literatures 4 and 5) and a method of analyzing refracted light (Non Patent Literature 6). Although the method of analyzing the reflected light is highly sensitive, it has a drawback that it is easily affected by the direction of gravity and the vibration of the measurement environment. The method of analyzing refracted light is less sensitive to vibrations in the measurement environment, although the sensitivity is reduced.

これに対して、マイケルソン干渉計を用いる方法は高感度であるが、リプロンの観測には用いられない。マイケルソン干渉計は、液体表面上の一点の変位を計測するのみなので、リプロンの空間伝搬に関する情報を取得できない。このため、分散関係を求めるとができない。
「表面科学」Vol.21,No.10,pp.623-629,2000 Ann.Physik 25,225(1908) Ann.Physik 41,609(1913) Phys.Rev.Lett.19,64(1967) Rev.Sci.Instrum.55(1984)716 Rev.Sci.Instrum.62(1991)1192
On the other hand, the method using the Michelson interferometer is highly sensitive but not used for observing the reprons. Since the Michelson interferometer only measures the displacement of a point on the liquid surface, it cannot acquire information about the spatial propagation of the reprons. For this reason, the dispersion relation cannot be obtained.
"Surface Science" Vol.21, No.10, pp.623-629,2000 Ann.Physik 25,225 (1908) Ann.Physik 41,609 (1913) Phys. Rev. Lett. 19, 64 (1967) Rev. Sci. Instrum. 55 (1984) 716 Rev. Sci. Instrum. 62 (1991) 1192

本発明は従来技術のこのような状況に鑑みてなさたものであり、その目的は、光ファイバー先端に液体の被測定物を微量付着させて、被測定物の表面張力、粘性、密度に限らず種々の物性、その変化を測定することが可能な計測方法と装置を提供することである。   The present invention has been made in view of such a situation in the prior art, and the purpose thereof is not limited to the surface tension, viscosity, and density of the object to be measured by attaching a small amount of the object to be measured to the tip of the optical fiber. An object is to provide a measuring method and apparatus capable of measuring various physical properties and changes thereof.

上記目的を達成する本発明の光ファイバー先端に被測定物を付着させて被測定物の物性を測定する計測方法は、マイケルソン干渉計等の光干渉計の信号アームの光路中に配置された光ファイバーの先端に液体試料を付着させ、その液体試料の表面から反射された信号光と参照光を干渉させて得られた干渉信号から、液体試料の表面の振動状態とその振幅、又は、変形量を求めることにより、液体試料の物性を測定することを特徴とする方法である。   A measuring method for measuring the physical properties of an object to be measured by attaching the object to be measured to the optical fiber tip of the present invention that achieves the above object is an optical fiber arranged in the optical path of a signal arm of an optical interferometer such as a Michelson interferometer. The vibration state of the surface of the liquid sample and its amplitude or deformation amount are determined from the interference signal obtained by attaching the liquid sample to the tip of the liquid and interfering the signal light reflected from the surface of the liquid sample with the reference light. The method is characterized in that the physical property of the liquid sample is measured by obtaining.

ここで、液体試料には、ゲル状の試料、ゴム状の試料も含むものである。   Here, the liquid sample includes a gel sample and a rubber sample.

この場合、液体試料の表面の振動は液体の表面の熱励起による熱振動であってもよい。   In this case, the vibration of the surface of the liquid sample may be thermal vibration due to thermal excitation of the surface of the liquid.

また、液体試料の表面の振動又は変形が外部から加えた力に基づくものであってもよい。   Further, vibration or deformation of the surface of the liquid sample may be based on an external force applied.

その場合の外部から加えた力は、信号アームの光路途中から信号アームの光路中に導入した励起光に基づくものであってもよく、あるいは、磁場、電場又は重力による力であってもよい。   The force applied from the outside in that case may be based on excitation light introduced into the optical path of the signal arm from the middle of the optical path of the signal arm, or may be a force caused by a magnetic field, an electric field, or gravity.

また、光干渉計の干渉信号はは差動検出により求めることが望ましい。   Further, it is desirable to obtain the interference signal of the optical interferometer by differential detection.

本発明の光ファイバー先端に被測定物を付着させて被測定物の物性を測定する計測装置は、光源と、光干渉計と、その光干渉計の信号アーム中に配置された光ファイバーと、光干渉計による干渉信号を検出する干渉信号検出手段と、検出された干渉信号から光ファイバーの先端に付着した液体試料の表面の振動状態とその振幅、又は、変形量を求める干渉信号解析手段とを備えてなることを特徴とするものである。   A measuring apparatus for measuring a physical property of a measurement object by attaching the measurement object to the tip of the optical fiber according to the present invention includes a light source, an optical interferometer, an optical fiber disposed in a signal arm of the optical interferometer, and an optical interference. An interference signal detection means for detecting an interference signal by a meter, and an interference signal analysis means for obtaining the vibration state and amplitude or deformation amount of the surface of the liquid sample adhering to the tip of the optical fiber from the detected interference signal. It is characterized by.

その場合に、信号アームの光路途中に液体試料を励起する光を導入する光導入手段を配置するようにしてもよい。   In that case, a light introducing means for introducing light for exciting the liquid sample may be arranged in the optical path of the signal arm.

また、少なくとも、光源から光干渉計の参照アーム先端の参照鏡に至る光路と、光源から光干渉計の信号アーム中の光ファイバーに至る光路とが光ファイバーにより接続されてなるものであってもよい。   Further, at least the optical path from the light source to the reference mirror at the tip of the reference arm of the optical interferometer and the optical path from the light source to the optical fiber in the signal arm of the optical interferometer may be connected by an optical fiber.

本発明の光ファイバー先端に被測定物を付着させて被測定物の物性を測定する計測方法及び計測装置によると、マイケルソン干渉計等の光干渉計の信号アームの光路中に配置された光ファイバーの先端に液体試料を付着させ、その液体試料の表面から反射された信号光と参照光を干渉させて得られた干渉信号から、液体試料の表面の振動状態とその振幅、又は、変形量を求めることにより、液体試料の物性を測定するので、少量の試料でその物性を測定することができる。また、液体試料は分子間力で強く光ファイバー先端に付着するので、計測環境の振動や重力に影響されず、いかなる場所でも安定に測定が可能である。また、切断した光ファイバー先端へ液体試料を付着させるだけなので、価格も安く簡単に測定可能である。   According to the measuring method and measuring apparatus for measuring the physical properties of a measured object by attaching the measured object to the tip of the optical fiber of the present invention, the optical fiber arranged in the optical path of the signal arm of the optical interferometer such as a Michelson interferometer From the interference signal obtained by attaching the liquid sample to the tip and causing the signal light reflected from the surface of the liquid sample to interfere with the reference light, the vibration state and amplitude or deformation amount of the surface of the liquid sample are obtained. Thus, since the physical property of the liquid sample is measured, the physical property can be measured with a small amount of sample. In addition, since the liquid sample is strongly attached to the tip of the optical fiber by intermolecular force, it can be stably measured at any location without being affected by vibration of the measurement environment and gravity. Moreover, since the liquid sample is simply attached to the tip of the cut optical fiber, the price can be easily measured at a low price.

本発明の光ファイバー先端に被測定物を付着させて被測定物の物性を測定する計測方法及び計測装置の基本原理は、光ファイバー先端に液体試料の液滴を付着させ、マイケルソン干渉計を用いてその液滴表面の変位、振動を直接観測することにより、液体試料の表面張力、粘性、密度、分光特性、磁気電気的特性等の物性及びその変化を測定することを可能とするものである。   The basic principle of the measuring method and measuring apparatus for measuring the physical properties of the object to be measured by attaching the object to be measured to the tip of the optical fiber of the present invention is to use a Michelson interferometer to attach a liquid sample droplet to the tip of the optical fiber. By directly observing the displacement and vibration of the droplet surface, it is possible to measure the physical properties of the liquid sample such as surface tension, viscosity, density, spectral characteristics, magnetoelectric characteristics, and changes thereof.

まず、光ファイバー先端に付着させた液体試料のリプロンのリプロンスペクトルを求める実施例から説明する。図1はそのための計測装置の概略図である。この装置において、光源1からの単波長光は、アイソレータ2、偏光ビームスプリッター(PBS)3、ファラデー旋光器4、2分の1波長板5を順に経て、マイケルソン干渉計の無偏光ビームスプリッター(NPBS)6に達し、参照アームに入力する反射光成分と信号アームへの透過光成分とに2分される。NPBS6で反射された参照光は参照鏡8に入射して反転して再びNPBS6に戻る。この参照鏡8の裏面には圧電素子のPZT(piezoelectric transducer)9が配置され、それへの印加電圧を調節することで、参照アームの長さが調節できるようになっている。NPBS6を透過した光は2分の1波長板10を経てその偏光面が調整され、レンズ11で集光されて、偏光面保存光ファイバーからなる光ファイバー20の後端21からその中に入射し、その先端22に達する。光ファイバー20の先端22は例えば軸に垂直な平面にカットされていて液体試料Sに親和的になっており、液体試料Sが表面張力により略半球状に付着している。光ファイバー20の先端22から液体試料S中に達した光はその表面で反射されて光ファイバー20中を戻り、レンズ11、2分の1波長板10を経て再びNPBS6に戻る。なお、光ファイバー20の後端21は、不要な干渉を防ぐために軸に対して斜めにカットされている。   First, an example in which the repron spectrum of the reprons of the liquid sample attached to the tip of the optical fiber is obtained will be described. FIG. 1 is a schematic view of a measuring apparatus for that purpose. In this apparatus, single wavelength light from a light source 1 passes through an isolator 2, a polarizing beam splitter (PBS) 3, a Faraday rotator 4, a half-wave plate 5 in this order, and then a non-polarizing beam splitter ( NPBS) 6, and is divided into a reflected light component input to the reference arm and a transmitted light component to the signal arm. The reference light reflected by the NPBS 6 enters the reference mirror 8, is inverted, and returns to the NPBS 6 again. A piezoelectric element PZT (piezoelectric transducer) 9 is disposed on the back surface of the reference mirror 8, and the length of the reference arm can be adjusted by adjusting the voltage applied thereto. The light transmitted through the NPBS 6 is adjusted in its polarization plane through the half-wave plate 10, is condensed by the lens 11, and enters the optical fiber 20 from the rear end 21 of the polarization plane-preserving optical fiber. The tip 22 is reached. The tip 22 of the optical fiber 20 is cut, for example, in a plane perpendicular to the axis and is affinity to the liquid sample S, and the liquid sample S adheres in a substantially hemispherical shape due to surface tension. The light that has reached the liquid sample S from the tip 22 of the optical fiber 20 is reflected by the surface thereof, returns through the optical fiber 20, returns to the NPBS 6 again through the lenses 11, 12 and the half-wave plate 10. The rear end 21 of the optical fiber 20 is cut obliquely with respect to the axis in order to prevent unnecessary interference.

NPBS6を2分の1波長板5側へ透過した信号光とNPBS6で反射した信号光との間には180°の位相差があり、2分の1波長板5側へ戻る信号光と参照光は、2分の1波長板5とファラデー旋光器4を逆に進行してPBS3で今度は反射されて光検出器15に入射し、第1の干渉信号が得られる。NPBS6で反射した信号光と参照光は、別の光検出器16に入射して第2の干渉信号が得られる。第1の干渉信号と第2の干渉信号は相互に位相が反転した信号となっており、差動検出器17で両信号の差動検出をすることにより、信号強度を2倍にすると共に、光源1からの光の振幅雑音を相殺している。差動検出器17の出力は、図示しないアナログ・デジタル変換器を経て、コンピュータ18に取り込み、そこでフーリエ変換をして、スペクトラムを求める。   There is a phase difference of 180 ° between the signal light transmitted through the NPBS 6 to the half-wave plate 5 side and the signal light reflected by the NPBS 6, and the signal light and the reference light returning to the half-wave plate 5 side. , Reversely travels through the half-wave plate 5 and the Faraday rotator 4 and is then reflected by the PBS 3 and enters the photodetector 15 to obtain a first interference signal. The signal light and the reference light reflected by the NPBS 6 are incident on another photodetector 16 to obtain a second interference signal. The first interference signal and the second interference signal are signals whose phases are inverted with each other, and by differential detection of both signals by the differential detector 17, the signal intensity is doubled, The amplitude noise of the light from the light source 1 is canceled out. The output of the differential detector 17 passes through an analog / digital converter (not shown) and is taken into a computer 18 where it is subjected to Fourier transform to obtain a spectrum.

このような構成において、具体的に求めたリプロンスペクトルを図2と図3に示す。測定条件は、光源1として波長780nm、出力26mWの安定化ダイオードレーザを用い、PZT9への印加電圧は1秒の時間定数の負帰還によりゆっくりと制御され、マイケルソン干渉計は常に最大感度の状態にされた。光ファイバー20は、直径が80μm(図2)及び125μm(図3)のものであり、長さは150mmであった。アナログ・デジタル変換器は16bit 2Msample/sであった。また、1回の計測時間は2秒であった。図2と図3のスペクトラムの強度は、マイケルソン干渉計の1フリンジが1/2波長であること、計測している信号(リプロン)はランダムなノイズであるので、解像バンド幅のルートに比例することを用いて、pm/√Hz単位で表してある。光ファイバー20の先端22に付着させる液体試料Sとして、エタノール(Ethanol)、メタノール(Methanol)、水(Water)を用い、温度は室温(18℃)であった。光ファイバー20の先端22から十分な量の反射光を得るためには、液体を均一に付着させる必要がある。エタノール、メタノールでは、特別な注意を払わなくても均一に付着した。水を付着させる前に、光ファイバー20を純水中で超音波洗浄し、汚れを取り除いた。このようにしないと、光ファイバー20が水を部分的にはじくため、液滴表面が歪み、反射光がほとんどなくなる。また、光ファイバー先端22からの液体試料Sの蒸発を防ぐため、密閉容器中で測定した。光ファイバー端面22を重力に対して、垂直及び水平で測定したが、検知できるような違いはなかった。   FIG. 2 and FIG. 3 show the repron spectrum specifically obtained in such a configuration. The measurement conditions are a stabilized diode laser with a wavelength of 780 nm and an output of 26 mW as the light source 1, and the voltage applied to the PZT 9 is slowly controlled by negative feedback with a time constant of 1 second, and the Michelson interferometer is always in the state of maximum sensitivity. It was made. The optical fibers 20 had diameters of 80 μm (FIG. 2) and 125 μm (FIG. 3), and a length of 150 mm. The analog-to-digital converter was 16 bit 2 Msample / s. One measurement time was 2 seconds. The spectrum intensities shown in FIGS. 2 and 3 indicate that one fringe of the Michelson interferometer is ½ wavelength, and the signal (repron) being measured is random noise. Using proportionality, it is expressed in pm / √Hz. As the liquid sample S to be attached to the tip 22 of the optical fiber 20, ethanol (ethanol), methanol (water), and water (water) were used, and the temperature was room temperature (18 ° C.). In order to obtain a sufficient amount of reflected light from the tip 22 of the optical fiber 20, the liquid needs to be uniformly attached. Ethanol and methanol adhered evenly without special care. Before adhering water, the optical fiber 20 was ultrasonically cleaned in pure water to remove dirt. Otherwise, the optical fiber 20 partially repels water, so that the surface of the droplet is distorted and there is almost no reflected light. Further, in order to prevent the liquid sample S from evaporating from the optical fiber tip 22, the measurement was performed in a sealed container. The optical fiber end face 22 was measured vertically and horizontally with respect to gravity, but there was no difference that could be detected.

それぞれのグラフの第1ピーク値は、液体試料Sの略半球状の表面にできる光ファイバー20の直径程度の波長の定在波(半球の表面の弧の長さはその直径の約1.5倍であり、観測されるリプロンの振動はその弧上で1.5×波長のものである。)によるものである。   The first peak value in each graph is a standing wave having a wavelength of about the diameter of the optical fiber 20 formed on the substantially hemispherical surface of the liquid sample S (the arc length of the hemispherical surface is about 1.5 times the diameter). And the observed vibration of the reprons is 1.5 × wavelength on the arc.)

リプロンにおいて、その液体の密度をρ、粘性をη、表面張力をσとし、リプロンの周波数をf、波長をλ、減衰係数をΓとすると、以下の関係にあることが知られている。   In the repron, it is known that the density of the liquid is ρ, the viscosity is η, the surface tension is σ, the frequency of the repron is f, the wavelength is λ, and the attenuation coefficient is Γ.

η=Γρλ2 /(8π2 ) ・・・(1)
σ=ρf2 λ3 /(2π) ・・・(2)
ここで、Γは図2、図3の定在波のピークの半値幅に比例する値であり、fはその周波数、λは光ファイバー20の直径としてよく、液体試料Sの密度ρが分かれば、その粘性η、表面張力σを求めることができる。
η = Γρλ 2 / (8π 2 ) ··· (1)
σ = ρf 2 λ 3 / (2π) (2)
Here, Γ is a value proportional to the half-value width of the standing wave peak in FIGS. 2 and 3, f may be the frequency thereof, λ may be the diameter of the optical fiber 20, and if the density ρ of the liquid sample S is known, The viscosity η and surface tension σ can be obtained.

図2、図3の結果を用いて実際に求めたエタノール、メタノール、水の粘性ηと表面張力σは実際の値と非常に良い一致をみており、本発明により、極めて微量(10-7cm3 )の液体で計測が可能であり、かつ、分子間力で液体が強く光ファイバーに付着しているため、計測環境の振動にほとんど影響されない計測が可能であることが分かる。 The viscosity η and surface tension σ of ethanol, methanol, and water actually obtained using the results of FIGS. 2 and 3 are in good agreement with the actual values. According to the present invention, a very small amount (10 −7 cm It can be seen that measurement is possible with the liquid of 3 ), and because the liquid is strongly attached to the optical fiber by intermolecular force, measurement can be made almost unaffected by vibration in the measurement environment.

図1は、熱振動によって液体試料Sの表面に生じるリプロンの周波数と振幅を測定することにより、液体試料Sの表面張力、粘性、密度の中の2つの物性を求めるものであったが、熱振動によらず外部からの強制振動によってもこれらの物性を求めることができる。その場合の計測装置の概略を図4に示す。この装置は、図1の装置に対して、NPBS6と2分の1波長板10の間の信号アーム中に、偏光ビームスプリッター(PBS)27を挿入して、測定光光路外から周期電源26により一定周期でパルス発振する励起用レーザ25から出た繰り返しレーザ光をPBS27で反射させて測定光と合成させ、その合成光を2分の1波長板10とレンズ11を経て光ファイバー20の後端21から導入し、励起用レーザ25からの繰り返しレーザ光の熱や光の圧力により強制的に光ファイバー20の先端22に付着されている液体試料Sの表面を振動させるようにしたものである。   In FIG. 1, two physical properties of the surface tension, viscosity, and density of the liquid sample S are obtained by measuring the frequency and amplitude of the reprons generated on the surface of the liquid sample S by thermal vibration. These physical properties can be obtained not only by vibration but also by external forced vibration. An outline of the measuring device in that case is shown in FIG. In this apparatus, a polarization beam splitter (PBS) 27 is inserted into the signal arm between the NPBS 6 and the half-wave plate 10 with respect to the apparatus of FIG. The repetitive laser light emitted from the excitation laser 25 pulsating at a constant period is reflected by the PBS 27 and combined with the measurement light, and the combined light passes through the half-wave plate 10 and the lens 11 and the rear end 21 of the optical fiber 20. The surface of the liquid sample S attached to the tip 22 of the optical fiber 20 is forcibly vibrated by the heat of the repeated laser light from the excitation laser 25 and the pressure of the light.

なお、励起用レーザ25からのレーザ光は、周期的なパルス発振でなくてもよい。例えば疑似ランダム系列によって発振強度を変調してもよい。   Note that the laser beam from the excitation laser 25 may not be a periodic pulse oscillation. For example, the oscillation intensity may be modulated by a pseudo random sequence.

この場合に、この液体試料Sの表面の振幅や位相、さらに、励起光を遮断した後の液体表面の振動の様子を計測することにより、液体試料Sの持つ表面張力、粘性、密度等を測定することができる。   In this case, the surface tension, viscosity, density, etc. of the liquid sample S are measured by measuring the amplitude and phase of the surface of the liquid sample S and the state of vibration of the liquid surface after blocking the excitation light. can do.

さらには、図4の励起用レーザ25として、レーザ光の波長を連続的に変えることのできる波長可変レーザを用いて液体試料Sを照射するようにすると、液体試料Sの吸収率に応じて液体試料Sが変形するので、この変形を差動検出器17からの出力信号により検出することにより、液体試料Sの分光吸収率を計測することができる。従来の光音響分光法(photo-acoustic spectroscopy )では、試料にレーザー光を照射し、試料がレーザー光を吸収することで急激に熱膨張し、生じた弾性波をマイクロフォンやマイケルソン干渉計で検出していたが、本発明のこの方法によると、微少量の液体の表面振動を検出するので、弾性エネルギーの損失が少なく、高感度計測が可能となる。   Furthermore, when the liquid sample S is irradiated using a wavelength variable laser capable of continuously changing the wavelength of the laser light as the excitation laser 25 in FIG. Since the sample S is deformed, the spectral absorptance of the liquid sample S can be measured by detecting this deformation from the output signal from the differential detector 17. In conventional photo-acoustic spectroscopy, a sample is irradiated with laser light, the sample absorbs the laser beam, and then rapidly expands. The generated elastic wave is detected by a microphone or Michelson interferometer. However, according to this method of the present invention, since surface vibrations of a small amount of liquid are detected, loss of elastic energy is small, and highly sensitive measurement is possible.

ところで、以上の本発明の計測装置は、液体試料Sを付着させる部分のみに光ファイバーを用いていたが、全ての光路を光ファイバー化して振動や熱等の測定環境の影響を受けないように構成することができる。その例を図5と図6に示す。   By the way, the above-described measuring apparatus of the present invention uses the optical fiber only for the portion to which the liquid sample S is attached. However, all the optical paths are made into optical fibers so as not to be affected by the measurement environment such as vibration and heat. be able to. Examples thereof are shown in FIGS.

図5は、図1、図4のような差動検出を行わない構成であり、レーザからなる光源1からの単波長光は、光ファイバー31によりアイソレータ2へ接続され、アイソレータ2を通った光は光ファイバー33を経て光ファイバーカプラ34に接続される。光ファイバーカプラ34は、2本の並列した光ファイバー同士のコアを融合させたような構成からなり、4つのポートの中1つのポートから入力された光を対向する2つのポートへ均等に別けて出力し、反対に対向する2つのポートから入力された光をそれらに対向する2つのポートへ均等に別けて出力するものであり、光ファイバー33を経て光ファイバーカプラ34に入力した光は対向する光ファイバー35と37に均等に分割される。光ファイバー35は参照アームを構成していて、その出力端に反射コート36が施されており、光ファイバー35に入力した参照光は反射コート36で反射されて光ファイバー35を反対に経て再び光ファイバーカプラ34に戻る。一方、光ファイバー37は信号アームを構成していて、そのその出力端は、図1、図4と同様に例えば軸に垂直な平面にカットされていて、液体試料Sに親和的になっており、液体試料Sが表面張力により略半球状に付着している。光ファイバー37から液体試料S中に達した光はその表面で反射されて光ファイバー37を反対に経て再び光ファイバーカプラ34に戻る。光ファイバーカプラ34に戻った信号光と参照光は、光ファイバーカプラ34のさらに別のポートを構成する光ファイバー38に入り、その出力端に接続された光検出器16に入射して干渉信号を出力する。したがって、図1、図4と同様にして、リプロンスペクトルを求めることができる。   FIG. 5 shows a configuration in which differential detection is not performed as shown in FIGS. 1 and 4. Single wavelength light from a light source 1 made of a laser is connected to an isolator 2 by an optical fiber 31, and light passing through the isolator 2 is The optical fiber 33 is connected to the optical fiber coupler 34 via the optical fiber 33. The optical fiber coupler 34 is configured such that the cores of two parallel optical fibers are fused, and the light input from one of the four ports is equally divided and output to two opposing ports. On the other hand, the light input from the two ports facing each other is output equally to the two ports facing each other, and the light input to the optical fiber coupler 34 via the optical fiber 33 is opposed to the optical fibers 35 and 37 facing each other. Divided evenly. The optical fiber 35 constitutes a reference arm, and a reflection coat 36 is applied to the output end thereof. The reference light input to the optical fiber 35 is reflected by the reflection coat 36, passes through the optical fiber 35 in the opposite direction, and returns to the optical fiber coupler 34 again. Return. On the other hand, the optical fiber 37 constitutes a signal arm, and its output end is cut into a plane perpendicular to the axis, for example, as in FIGS. 1 and 4, and is compatible with the liquid sample S. The liquid sample S is attached in a substantially hemispherical shape due to surface tension. The light that has reached the liquid sample S from the optical fiber 37 is reflected on the surface thereof, passes through the optical fiber 37 in the opposite direction, and returns to the optical fiber coupler 34 again. The signal light and the reference light that have returned to the optical fiber coupler 34 enter the optical fiber 38 that constitutes yet another port of the optical fiber coupler 34, enter the photodetector 16 connected to the output end thereof, and output an interference signal. Accordingly, the repron spectrum can be obtained in the same manner as in FIGS.

図6は、図1、図4と同様の差動検出を行う構成であり、レーザからなる光源1からの単波長光は、光ファイバー31によりアイソレータ2へ接続され、アイソレータ2を通った光は光ファイバー39を経て方向性結合器32に接続される。方向性結合器32は、図1、図4の場合と同様に、PBS3とファラデー旋光器4と2分の1波長板5とでなるものでもよいが、より固体化、一体化するには、光導波路型あるいは光ファイバー型の方向性結合器を用いることが好ましい。方向性結合器32を経た光は、図5と同様に、光ファイバー33を経て光ファイバーカプラ34に接続され、その光ファイバーカプラ34で対向する光ファイバー35と37に均等に分割される。参照アームの光ファイバー35に入力した参照光はその出力端の反射コート36で反射されて光ファイバー35を反対に経て再び光ファイバーカプラ34に戻る。一方、信号アームの光ファイバー37から液体試料S中に達した光はその表面で反射されて光ファイバー37を反対に経て再び光ファイバーカプラ34に戻る。光ファイバーカプラ34に戻った信号光と参照光は、光ファイバーカプラ34の対向する2つのポートを構成する光ファイバー33と38に均等に分けられ、光ファイバー38を経た信号光と参照光はその出力端に接続された光検出器16に入射して第2の干渉信号を出力する。また、光ファイバー33を経た信号光と参照光は方向性結合器32を経て別のポートを構成する光ファイバー40に入り、その出力端に接続された光検出器15に入射して第1の干渉信号を出力する。第1の干渉信号と第2の干渉信号は相互に位相が反転した信号となっており、差動検出器17で両信号の差動検出をすることにより、信号強度を2倍にすると共に、光源1からの光の振幅雑音を相殺している。差動検出器17の出力は、図示しないアナログ・デジタル変換器を経て、コンピュータ18に取り込まれ、そこでフーリエ変換されてスペクトラムが求められる。   FIG. 6 shows a configuration for performing differential detection similar to FIGS. 1 and 4. Single wavelength light from a light source 1 made of a laser is connected to an isolator 2 by an optical fiber 31, and light passing through the isolator 2 is optical fiber. It is connected to the directional coupler 32 via 39. The directional coupler 32 may be composed of the PBS 3, the Faraday rotator 4 and the half-wave plate 5 as in the case of FIGS. 1 and 4. It is preferable to use an optical waveguide type or optical fiber type directional coupler. The light that has passed through the directional coupler 32 is connected to the optical fiber coupler 34 via the optical fiber 33, as in FIG. 5, and is equally divided into the optical fibers 35 and 37 facing each other by the optical fiber coupler 34. The reference light input to the optical fiber 35 of the reference arm is reflected by the reflection coating 36 at the output end, returns to the optical fiber coupler 34 through the optical fiber 35 in the opposite direction. On the other hand, the light reaching the liquid sample S from the optical fiber 37 of the signal arm is reflected on the surface thereof, returns to the optical fiber coupler 34 through the optical fiber 37 in the opposite direction. The signal light and reference light that have returned to the optical fiber coupler 34 are equally divided into optical fibers 33 and 38 that constitute two opposing ports of the optical fiber coupler 34, and the signal light and reference light that have passed through the optical fiber 38 are connected to their output ends. The light is incident on the detected photodetector 16 and a second interference signal is output. Further, the signal light and the reference light that have passed through the optical fiber 33 enter the optical fiber 40 constituting another port via the directional coupler 32, enter the optical detector 15 connected to the output end thereof, and enter the first interference signal. Is output. The first interference signal and the second interference signal are signals whose phases are inverted with each other, and by differential detection of both signals by the differential detector 17, the signal intensity is doubled, The amplitude noise of the light from the light source 1 is canceled out. The output of the differential detector 17 passes through an analog / digital converter (not shown) and is taken into the computer 18 where it is Fourier transformed to obtain a spectrum.

なお、図5、図6の構成においても、光ファイバー37の途中から励起レーザ光を測定光と合成するようにして、光ファイバー37の先端に付着した液体試料Sの表面を強制的に振動させるようにして、その表面張力、粘性、密度等を測定したり、液体試料Sの分光吸収率を測定するようにすることができる。   5 and 6 also, the excitation laser light is combined with the measurement light from the middle of the optical fiber 37 so that the surface of the liquid sample S attached to the tip of the optical fiber 37 is forcibly vibrated. Thus, the surface tension, viscosity, density, and the like can be measured, and the spectral absorptance of the liquid sample S can be measured.

ところで、図1、図4〜図6のような構成において、光ファイバー20、37の先端に付着させた液体試料Sに酵素や抗体等を加える前後の物性を測定して、あるいは、その反対に光ファイバー20、37の先端に酵素や抗体等を付着させてから未知の溶液に浸すことにより、様々な分子やタンパク質、抗原のみを選択的に検出することができる。   By the way, in the configuration as shown in FIGS. 1 and 4 to 6, the physical properties before and after adding an enzyme or an antibody to the liquid sample S attached to the tips of the optical fibers 20 and 37 are measured, or vice versa. It is possible to selectively detect only various molecules, proteins, and antigens by attaching an enzyme, an antibody, or the like to the tips of 20 and 37 and then immersing them in an unknown solution.

さらに、光ファイバー20、37の先端に付着させた液体試料Sに磁場、電場あるいは重力を加えた場合の変形を測定することにより、液体試料Sの磁気的特性、電気的特性あるいは密度を測定することもできる。   Further, by measuring the deformation of the liquid sample S attached to the tips of the optical fibers 20 and 37 when a magnetic field, electric field or gravity is applied, the magnetic characteristics, electrical characteristics or density of the liquid sample S is measured. You can also.

さらに、リプロンスペクトルの微細な変化を検出することで、化学反応の有無や液体試料に作用した力等を検出することができる。   Further, by detecting minute changes in the lipron spectrum, it is possible to detect the presence or absence of a chemical reaction, the force acting on the liquid sample, and the like.

また、光ファイバー先端を特殊な形状に加工することで、様々な測定が可能になる。光ファイバー先端に凹みや穴を開ければ、垂直に切断しただけでは十分に付着しない試料を付着させることができる。また、光ファイバー先端を斜めに切断すれば、ファイバー端面からの不要な反射を抑えてさらなる高精度計測が可能になる。   In addition, various measurements can be performed by processing the tip of the optical fiber into a special shape. If a dent or a hole is made at the tip of the optical fiber, a sample that does not adhere sufficiently by being cut vertically can be attached. Further, if the optical fiber tip is cut obliquely, unnecessary reflection from the fiber end surface can be suppressed and further high-precision measurement can be performed.

さらに、光ファイバー先端を特殊な状態に加工することで、様々な測定が可能になる。例えば、光ファイバー先端を親水性に加工すれば、水性の物質のみを選択的に付着させることができる。同様に親油性に加工すれば、油性の物質のみ選択的に付着させることができる。   Furthermore, various measurements are possible by processing the tip of the optical fiber into a special state. For example, if the tip of the optical fiber is processed to be hydrophilic, only an aqueous substance can be selectively attached. Similarly, if it is processed to be oleophilic, only oily substances can be selectively attached.

また、従来の分光器は、研磨した石英ガラスセルへ試料を入れていたが、本発明においては、切断した光ファイバー先端へ試料を付着させるだけなので、価格も安く簡単である。また、光ファイバーの先端が汚れたり劣化したら、その先端を切断して新しい面を出すだけでよいので、経済的である。   Further, in the conventional spectroscope, the sample is put in the polished quartz glass cell. However, in the present invention, the sample is only attached to the tip of the cut optical fiber, so that the price is low and simple. Also, if the tip of the optical fiber becomes dirty or deteriorates, it is economical because it is only necessary to cut the tip and expose a new surface.

なお、本発明において用いる光干渉計としては、マイケルソン干渉計に限定されず、信号光光路と参照光光路を分離合成する光干渉計であれば、他のタイプの干渉計も用いることができる。   The optical interferometer used in the present invention is not limited to the Michelson interferometer, and any other type of interferometer can be used as long as it is an optical interferometer that separates and combines the signal light optical path and the reference light optical path. .

本発明に基づく光ファイバー先端に被測定物を付着させて被測定物の物性を測定する計測装置の1実施例の概略図である。It is the schematic of one Example of the measuring device which attaches a to-be-measured object to the front-end | tip of an optical fiber based on this invention, and measures the physical property of a to-be-measured object. 図1の計測装置を用いて具体的に求めたリプロンスペクトルの1例を示す図である。It is a figure which shows one example of the repron spectrum calculated | required specifically using the measuring apparatus of FIG. 図1の計測装置を用いて具体的に求めたリプロンスペクトルの別の例を示す図である。It is a figure which shows another example of the repron spectrum calculated | required specifically using the measuring apparatus of FIG. 本発明に基づく光ファイバー先端に被測定物を付着させて被測定物の物性を測定する計測装置の別の実施例の概略図である。It is the schematic of another Example of the measuring device which attaches a to-be-measured object to the front-end | tip of an optical fiber based on this invention, and measures the physical property of a to-be-measured object. 全ての光路を光ファイバー化した1つの実施例の概略図である。It is the schematic of one Example which made all the optical paths into optical fiber. 全ての光路を光ファイバー化した別の実施例の概略図である。It is the schematic of another Example which made all the optical paths into optical fiber.

符号の説明Explanation of symbols

S…液体試料
1…光源
2…アイソレータ
3…偏光ビームスプリッター(PBS)
4…ファラデー旋光器
5…2分の1波長板
6…無偏光ビームスプリッター(NPBS)
8…参照鏡
9…PZT
10…2分の1波長板
11…レンズ
15…光検出器
16…光検出器
17…差動検出器
18…コンピュータ
20…光ファイバー
21…光ファイバーの後端
22…光ファイバーの先端
25…励起用レーザ
26…周期電源
27…偏光ビームスプリッター(PBS)
31、33、35、37、38、39、40…光ファイバー
32…方向性結合器
34…光ファイバーカプラ
36…反射コート
S ... Liquid sample 1 ... Light source 2 ... Isolator 3 ... Polarizing beam splitter (PBS)
4 ... Faraday rotator 5 ... Half-wave plate 6 ... Non-polarizing beam splitter (NPBS)
8 ... Reference mirror 9 ... PZT
DESCRIPTION OF SYMBOLS 10 ... Half wavelength plate 11 ... Lens 15 ... Photo detector 16 ... Photo detector 17 ... Differential detector 18 ... Computer 20 ... Optical fiber 21 ... Optical fiber rear end 22 ... Optical fiber front end 25 ... Excitation laser 26 ... periodic power supply 27 ... polarization beam splitter (PBS)
31, 33, 35, 37, 38, 39, 40 ... optical fiber 32 ... directional coupler 34 ... optical fiber coupler 36 ... reflective coating

Claims (9)

光干渉計の信号アームの光路中に配置された光ファイバーの先端に液体試料を付着させ、その液体試料の表面から反射された信号光と参照光を干渉させて得られた干渉信号から、液体試料の表面の振動状態とその振幅、又は、変形量を求めることにより、液体試料の物性を測定することを特徴とする光ファイバー先端に被測定物を付着させて被測定物の物性を測定する計測方法。 From the interference signal obtained by attaching the liquid sample to the tip of the optical fiber arranged in the optical path of the signal arm of the optical interferometer and interfering the signal light reflected from the surface of the liquid sample with the reference light, the liquid sample Measuring method for measuring physical properties of measured object by attaching measured object to optical fiber tip, measuring physical property of liquid sample by determining vibration state and amplitude or deformation amount . 液体試料の表面の振動が液体の表面の熱励起による熱振動であることを特徴とする請求項1記載の光ファイバー先端に被測定物を付着させて被測定物の物性を測定する計測方法。 2. The measuring method for measuring physical properties of a measured object by attaching the measured object to the tip of an optical fiber according to claim 1, wherein the vibration of the surface of the liquid sample is thermal vibration caused by thermal excitation of the surface of the liquid. 液体試料の表面の振動又は変形が外部から加えた力に基づくものであることを特徴とする請求項1記載の光ファイバー先端に被測定物を付着させて被測定物の物性を測定する計測方法。 2. The measuring method for measuring physical properties of a measurement object by attaching the measurement object to the tip of an optical fiber according to claim 1, wherein the vibration or deformation of the surface of the liquid sample is based on an externally applied force. 外部から加えた力が、信号アームの光路途中から信号アームの光路中に導入した励起光に基づくものであることを特徴とする請求項3記載の光ファイバー先端に被測定物を付着させて被測定物の物性を測定する計測方法。 4. The measurement object according to claim 3, wherein the force applied from the outside is based on excitation light introduced into the optical path of the signal arm from the middle of the optical path of the signal arm. A measurement method that measures the physical properties of materials. 外部から加えた力が、磁場、電場又は重力による力であることを特徴とする請求項3記載の光ファイバー先端に被測定物を付着させて被測定物の物性を測定する計測方法。 4. The measuring method for measuring physical properties of an object to be measured by attaching the object to be measured on an optical fiber tip according to claim 3, wherein the force applied from the outside is a force caused by a magnetic field, an electric field or gravity. 光干渉計の干渉信号を差動検出により求めることを特徴とする請求項1から5の何れか1項記載の光ファイバー先端に被測定物を付着させて被測定物の物性を測定する計測方法。 6. The measuring method for measuring physical properties of a measured object by attaching the measured object to the tip of an optical fiber according to claim 1, wherein an interference signal of the optical interferometer is obtained by differential detection. 光源と、光干渉計と、その光干渉計の信号アーム中に配置された光ファイバーと、光干渉計による干渉信号を検出する干渉信号検出手段と、検出された干渉信号から光ファイバーの先端に付着した液体試料の表面の振動状態とその振幅、又は、変形量を求める干渉信号解析手段とを備えてなることを特徴とする光ファイバー先端に被測定物を付着させて被測定物の物性を測定する計測装置。 A light source, an optical interferometer, an optical fiber arranged in a signal arm of the optical interferometer, an interference signal detecting means for detecting an interference signal by the optical interferometer, and the detected interference signal attached to the tip of the optical fiber Measurement for measuring physical properties of a measurement object by attaching the measurement object to the tip of an optical fiber, characterized by comprising an interference signal analysis means for obtaining a vibration state of the surface of a liquid sample and its amplitude or deformation amount apparatus. 信号アームの光路途中に前記液体試料を励起する光を導入する光導入手段が配置されていることを特徴とする請求項7記載の光ファイバー先端に被測定物を付着させて被測定物の物性を測定する計測装置。 8. A light introducing means for introducing light for exciting the liquid sample is disposed in the optical path of the signal arm, wherein the object to be measured is attached to the tip of the optical fiber to thereby improve the physical properties of the object to be measured. Measuring device to measure. 少なくとも、光源から光干渉計の参照アーム先端の参照鏡に至る光路と、光源から光干渉計の信号アーム中の光ファイバーに至る光路とが光ファイバーにより接続されてなることを特徴とする請求項7又は8記載の光ファイバー先端に被測定物を付着させて被測定物の物性を測定する計測装置。 The optical path from at least the light source to the reference mirror at the tip of the reference arm of the optical interferometer and the optical path from the light source to the optical fiber in the signal arm of the optical interferometer are connected by an optical fiber. 8. A measuring apparatus for measuring physical properties of an object to be measured by attaching the object to be measured to an optical fiber tip according to 8.
JP2004063372A 2004-03-08 2004-03-08 Measuring method and measuring apparatus for measuring physical properties of measured object by attaching measured object to optical fiber tip Expired - Fee Related JP4352144B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004063372A JP4352144B2 (en) 2004-03-08 2004-03-08 Measuring method and measuring apparatus for measuring physical properties of measured object by attaching measured object to optical fiber tip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004063372A JP4352144B2 (en) 2004-03-08 2004-03-08 Measuring method and measuring apparatus for measuring physical properties of measured object by attaching measured object to optical fiber tip

Publications (2)

Publication Number Publication Date
JP2005249696A true JP2005249696A (en) 2005-09-15
JP4352144B2 JP4352144B2 (en) 2009-10-28

Family

ID=35030290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004063372A Expired - Fee Related JP4352144B2 (en) 2004-03-08 2004-03-08 Measuring method and measuring apparatus for measuring physical properties of measured object by attaching measured object to optical fiber tip

Country Status (1)

Country Link
JP (1) JP4352144B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009004839A1 (en) 2007-06-29 2009-01-08 National University Corporation Shizuoka University Interface property measuring device and method
JP2016114519A (en) * 2014-12-16 2016-06-23 国立大学法人静岡大学 Method for improving sn ratio in modulation light detection
WO2018132022A1 (en) * 2017-01-14 2018-07-19 Sds Optic Sp. Z O.O. Device for detecting and/or determining the concentration of an analyte present in a tissue and a method and use of this device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009004839A1 (en) 2007-06-29 2009-01-08 National University Corporation Shizuoka University Interface property measuring device and method
US8390815B2 (en) 2007-06-29 2013-03-05 National University Corporation Shizuoka University Surface tension measuring device and method
JP2016114519A (en) * 2014-12-16 2016-06-23 国立大学法人静岡大学 Method for improving sn ratio in modulation light detection
WO2018132022A1 (en) * 2017-01-14 2018-07-19 Sds Optic Sp. Z O.O. Device for detecting and/or determining the concentration of an analyte present in a tissue and a method and use of this device
US11536651B2 (en) 2017-01-14 2022-12-27 Sds Optic S.A. Device for detecting and/or determining the concentration of an analyte present in a tissue and a method and use of this device

Also Published As

Publication number Publication date
JP4352144B2 (en) 2009-10-28

Similar Documents

Publication Publication Date Title
JP3288672B2 (en) Equipment for measuring physical properties of samples
US10048200B2 (en) Optical sensor based with multilayered plasmonic structure comprising a nanoporous metallic layer
US8850867B2 (en) Photoacoustic sensor and method for the production and use thereof
US6665456B2 (en) Method and apparatus for differential phase optical coherence tomography
US7177491B2 (en) Fiber-based optical low coherence tomography
EP2449363B1 (en) Optical sensing device and method for detecting samples
JP7304081B2 (en) Sensor provided with waveguide having optical resonator, and sensing method
JP3288671B2 (en) Equipment for measuring physical properties of samples
JP4352144B2 (en) Measuring method and measuring apparatus for measuring physical properties of measured object by attaching measured object to optical fiber tip
JP5156291B2 (en) Apparatus for measuring optical properties of samples flowing in a flow cell
JP3288670B2 (en) Equipment for measuring physical properties of samples
Kano et al. Grating-coupled surface plasmon for measuring the refractive index of a liquid sample
JP2003106979A (en) Dynamic light scattering measuring device using low coherence interferometry
JPH0949851A (en) Method for drawing physical characteristic of workpiece
JPH0949849A (en) Device suitable for measuring near field of work piece
US11340162B2 (en) Method and apparatus for comparing optical properties of two liquids
US8670122B2 (en) Surface plasmon resonance measuring device
US10466096B2 (en) Fiber optic hydrophone sensors and uses thereof
Obaton et al. Development of a new optical reference technique in the field of biology
Mitsui Observation of ripplon on the liquid droplet adhered to the tip of an optical fiber
EP1300675A1 (en) Optical sensor for detecting at least one chemical substance and optical probes comprising these optical sensors
JP3844688B2 (en) Sensor using total reflection attenuation
JP3910498B2 (en) measuring device
McKee Scanning angle total internal reflection Raman spectroscopy and plasmon enhancement techniques as a tool for interfacial analysis
Ho et al. Direct and indirect dual-probe interferometers for accurate surface wave measurements

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090610

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090708

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130807

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees