JP2005249614A - Load reduction system and model used for the same - Google Patents
Load reduction system and model used for the same Download PDFInfo
- Publication number
- JP2005249614A JP2005249614A JP2004061374A JP2004061374A JP2005249614A JP 2005249614 A JP2005249614 A JP 2005249614A JP 2004061374 A JP2004061374 A JP 2004061374A JP 2004061374 A JP2004061374 A JP 2004061374A JP 2005249614 A JP2005249614 A JP 2005249614A
- Authority
- JP
- Japan
- Prior art keywords
- model
- wind tunnel
- magnetic
- force
- test
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)
Abstract
Description
本発明は構造物模型に作用する外力による負荷荷重を軽減する技術、特に風洞試験の模型に加わる空力荷重による模型変形を軽減するのに適した技術であって、模型破損を防ぐ装置とそれに用いる模型に関する。 The present invention is a technique for reducing a load applied by an external force acting on a structural model, particularly a technique suitable for reducing a model deformation caused by an aerodynamic load applied to a model in a wind tunnel test, and a device for preventing a model breakage and its use Regarding the model.
従来、物体の空力的な特性を模型で得るために風洞設備の測定部において模型を支持部材で支持することが一般的に行われてきたが、支持部材自体が模型表面における空気流れに影響を及ぼすので、試験結果をそのまま模型の空力特性として採用することができず、その分の補正を施さなければならない。そこで、風洞試験において、模型を非構造的手段である磁力で支持することが提案されている。模型を磁力支持することによって機械的支持部材が不要となるので、支持部材が存在することに起因した模型への空力的な影響を排除することができる。この模型を磁力支持する手段である磁力支持天秤装置は、風洞試験において模型の周りを流れる気流が模型に作用する揚力、抗力、ピッチング(縦揺れ)モーメント等の静的又は動的な空力特性を、模型の内部に設けられる磁石と相互作用する磁気力を生じさせるために風洞側に設けられているコイルに流す電流の大きさに置き換えて測定する装置である。(特許文献1、非特許文献2参照)すなわち、支持メカニズムは気流の変化に対して模型が初期設定された位置・姿勢から変化したことを検出して初期状態を維持すべくコイルに流す電流を制御して磁気力をバランスさせる所謂零位法による測定である。こうした空気力とコイル電流の大きさとの関係を調べて予めマップ、関数、表等の対応関係をデータとして準備しておくことにより、コイル電流を測定することで模型に作用する空力特性を知ることができる。
Conventionally, in order to obtain the aerodynamic characteristics of an object with a model, it has been generally performed to support the model with a support member in the measurement section of the wind tunnel equipment, but the support member itself has an influence on the air flow on the model surface. As a result, the test results cannot be directly adopted as the aerodynamic characteristics of the model, and corrections accordingly must be made. Therefore, it has been proposed to support the model with a magnetic force which is a non-structural means in the wind tunnel test. Since the mechanical support member is not required by magnetically supporting the model, the aerodynamic influence on the model due to the presence of the support member can be eliminated. The magnetic support balance device, which is a means of magnetically supporting this model, has static or dynamic aerodynamic characteristics such as lift, drag, pitching (pitch) moment, etc. that the airflow flowing around the model acts on the model in the wind tunnel test. In order to generate a magnetic force that interacts with the magnet provided inside the model, it is a device that measures by replacing the magnitude of the current that flows through the coil provided on the wind tunnel side. (Refer to
図4及び図5を参照して、磁力支持型風洞及び磁力支持天秤装置の概要を説明する。図4は磁力支持型風洞と磁力支持天秤装置の基本構成を示す斜視図であり、図5は磁力支持型風洞と磁力支持天秤装置に用いられる電源系と計測系を示す概念図である。図4に示す磁力支持天秤装置20は、風洞模型1を磁気の力で気流中に支持する装置であり、支持干渉のない風洞試験を実現することができる。風洞模型1には磁化された物質、超伝導コイルのような電流を流し続けているコイル、或いは永久磁石等から成る強力な磁石体が搭載される。風洞模型1の磁石体1aには、風洞の測定部の周りに配置したコイル23乃至32に通電することにより生じた外部磁場との相互磁気作用によって磁気力を受け、風洞模型1を磁気的に浮上支持させることができる。外部磁場は、磁気支持コイルとしてのコイル23〜26とコイル27〜30とから成る風洞内軸方向に所定距離間隔を持った二つの磁気回路21,22、及びその外側に配置され前記二つの磁気回路21,22と直交した同じく磁気支持コイルとしての空芯コイル31,32によって発生される。風洞内気流方向をx軸にとり重力の作用する鉛直方向をz軸、前記x軸とz軸に直交する方向にy軸をとるようにしたとき、磁気回路21はz軸方向磁場を発生させる1対のコイル23,25とy軸方向に磁場を発生させる1対のコイル24,26とから構成され、磁気回路22はZ方向磁場を発生させる1対のコイル27,29とY方向に磁場を発生させる1対のコイル28,30とから構成される。磁気回路21,22の各コイルに流れる電流を調節することにより、磁気回路21,22内のy−z面内での磁場の強さと方向及びそれらのx軸方向の変化率を連続的に変化させることができる。また、空芯コイル31,32に流れる電流を調節することによりx軸方向磁場の強さのx軸方向で見た変化率を制御でき、都合5軸の制御が可能である。即ち、磁気回路21,22のコイル23〜30は、風洞模型1に働く揚力と縦揺れモーメントとに対抗する磁気力を与える揚力用コイルとして機能し、空芯コイル31,32は風洞模型1に働く抗力に対抗する磁気力を与える抗力対抗用コイルとして機能している。
With reference to FIG.4 and FIG.5, the outline | summary of a magnetic support type wind tunnel and a magnetic support balance apparatus is demonstrated. FIG. 4 is a perspective view showing the basic configuration of the magnetic force support type wind tunnel and the magnetic force support balance device, and FIG. 5 is a conceptual diagram showing a power supply system and a measurement system used in the magnetic force support type wind tunnel and the magnetic force support balance device. The magnetic
風洞には、風洞模型1とコイル23〜32の他に、各コイルを駆動する電源系、風洞模型1の位置と姿勢とを計測する計測系、及び風洞模型1の位置と姿勢とを制御する制御系が組み込まれている。図5に示すように、計測系において例えばカメラ33等の検出した風洞模型1の位置・姿勢に関する計測データは、パソコン等の演算制御手段34に送信され、該演算制御手段34では初期の位置・姿勢を維持するために必要である各コイルに流す電流値を、蓄積された空気力とコイル電流の大きさとの関係データを基に演算する。その演算結果を電流供給手段35にて増幅した後、各コイル23〜32に制御された駆動電流を供給している。
In the wind tunnel, in addition to the
磁力支持型の風洞装置においては、図6に示すように、模型1を磁気力で支持するために模型1の内部に設けられる磁石体として、通常、真っ直ぐな棒状の強力な永久磁石40をその長手方向軸線が模型の中心軸に沿うように配置することが多い。永久磁石40を鉛直上方へ持ち上げる力は、永久磁石40が保持している磁気モーメントと、磁気回路21,22が生じさせる磁場の永久磁石周りにおける鉛直上方に向かう磁気強さ成分の磁石軸方向との積で表される。即ち、xを永久磁石40の長手方向軸(通常は、模型中心軸に一致する)とし、Mxを永久磁石40が保持している磁気モーメントとし、Hzを鉛直上方に向かう磁気強さとすると、永久磁石40を持ち上げようとする鉛直上方の磁気力Fzは、次の式で表される。この磁気力Fzが模型1に働く重力mgと釣り合うことで模型1を風洞内の気流中に浮揚させることができる。力の方程式は次式で表される。
Fz=Mx×(∂Hz/∂x)=mg
In a magnetic support type wind tunnel device, as shown in FIG. 6, a straight rod-like strong
Fz = Mx × (∂Hz / ∂x) = mg
さて、このような磁力支持型風洞及び磁力支持天秤装置を用いて、航空機模型等を対象とした試験を行う際に、風洞試験で高いレイノルズ数を得ることが求められる場合がある。それに対応する1つの方法として風洞内圧を上げるという方法がある。風洞内圧を上げると、模型に掛かる空気力が内圧に比例して増加し、模型を変形または破損させる危険性が有るため、その風洞内圧には上限が設けられている。遷音速風洞では5bar が限界とされ、測定部壁間に2次元翼模型を張った試験では12bar 程度で模型破損の危険性が高まる。風洞内圧を更に高めて、高いレイノルズ数の試験を実施するためには、この模型にかかる空力荷重を軽減させる方法を開発することが必要となる。高いレイノルズ数を得るもう一つの方法には模型を大きくするという方法もあるが、模型を大きくするということはその模型に対応した大型風洞設備を必要とすることとなり、風洞設備の建設費やメンテナンス費用が膨大なものとなってしまう。したがって、この方法は実施が難しくどうしても前者の方法で対応することが必要であり、そのためには前述したように空力荷重を軽減させる何らかの方法を開発することが強く求められているところである。
本発明が解決しようとする課題は、風洞と模型を大型化することなく、風洞内圧を高くすることで高レイノルズ数状態の試験を可能とし、その際に模型が受ける空気力によって模型に無理な負荷がかからないようにする技術を提示することにある。 The problem to be solved by the present invention is that it is possible to test a high Reynolds number state by increasing the internal pressure of the wind tunnel without increasing the size of the wind tunnel and the model. The purpose is to present a technique for preventing the load.
本発明の荷重軽減メカニズムは、風洞内等の試験領域に所望の磁場を発生できる手段を備え、外力によって負荷がかかり変形しやすい模型部分に、それと釣合わせる方向に磁気力が作用するように予め模型内に磁気モーメントを分布させるという手法を採用した。
航空機模型においては翼部について磁気モーメントを分布させ、測定部壁間に模型を張った試験(2次元試験)や、風洞壁に模型を設置した試験では、風洞試験模型の空気力で変形しやすい部分に、それと釣合わせる方向に磁気力が作用するように予め模型内に磁気モーメントを分布させるようにした。
本発明の空力荷重軽減装置は、風洞内の模型設置領域に磁場を発生させるコイルと、模型の歪み検出信号を受けそれを打ち消すために必要な磁気力を発生させる電流値を演算して出力する演算制御手段と、演算値を増幅して磁気発生用コイルに電流を供給する手段とを備えるようにした。
また、本発明の空力荷重軽減装置は、模型を支持する手段として磁力支持天秤装置を用い、本来の模型支持用の磁気力に加え模型への過負荷を解消するための磁気力とを重畳して作用させるようにした。
さらに、本発明は構造物の応力試験に応用し、その装置と模型に上記荷重軽減メカニズムを広く適用した。
The load reducing mechanism of the present invention is provided with means capable of generating a desired magnetic field in a test region such as in a wind tunnel, so that a magnetic force acts in advance in a direction that balances with a model portion that is easily loaded and deformed by an external force. The technique of distributing the magnetic moment in the model was adopted.
In aircraft models, magnetic moments are distributed over the wings, and in models where the model is stretched between the measurement walls (two-dimensional test) or in models where the model is installed on the wind tunnel wall, the wind tunnel test model is easily deformed by the aerodynamic force. The magnetic moment is distributed in advance in the model so that the magnetic force acts on the portion in the direction in which it is balanced.
The aerodynamic load reducing device according to the present invention calculates and outputs a coil that generates a magnetic field in a model installation region in a wind tunnel and a current value that generates a magnetic force necessary to cancel the distortion detection signal of the model. Calculation control means and means for amplifying the calculation value and supplying current to the magnetism generating coil are provided.
The aerodynamic load reducing device of the present invention uses a magnetic support balance device as a means for supporting the model, and superimposes the magnetic force for eliminating the overload on the model in addition to the original magnetic force for supporting the model. To act.
Furthermore, the present invention was applied to a stress test of a structure, and the load reducing mechanism was widely applied to the apparatus and model.
本発明の荷重軽減装置は、風洞試験において空気力によって負荷がかかり変形しやすい模型の部分に、それと釣合わせる方向に磁気力が作用するように予め模型内に磁気モーメントを分布させるという手法を採用したものであるから、風洞内圧を高い状態とした高レイノルズ数の風洞試験において強い空気力を受け、模型の変形、破損し易い部分に過負荷がかからないように逆方向の力でバランスをとることで模型の変形や破損を防止できる。したがって、高圧状態での風洞試験に耐えることができるようになり、風洞設備や模型を大型化することなく高レイノルズ数の風洞試験を可能にすることができた。 The load reducing device of the present invention employs a technique in which a magnetic moment is distributed in advance in a model so that a magnetic force acts in a direction that balances with a portion of a model that is easily deformed by aerodynamic force in a wind tunnel test. As a result, a strong aerodynamic force was applied in a wind tunnel test with a high Reynolds number in which the wind tunnel internal pressure was high, and balance was applied with a reverse force so that overload would not be applied to parts that are easily deformed or damaged. Can prevent deformation and breakage of the model. Therefore, it was able to withstand the wind tunnel test under high pressure, and it was possible to perform a wind tunnel test with a high Reynolds number without increasing the size of the wind tunnel equipment or model.
また、本発明の空力荷重軽減装置は、上記模型を風洞試験した時に、模型の歪又は応力を検知する手段と、それを抑える方向に磁気力を発生させる手段とを備えたものであるから、空力荷重による負荷をキャンセルするように適切に磁気力を印加できるので、模型の変形や破損を防止することができる。
更に、模型を支持する手段として磁力支持天秤装置を用い、その磁気力と模型への過負荷を解消するための磁気力とを重畳して作用させる構成を採用する本発明の空力荷重軽減装置は、新たな風洞設備を準備しなくても磁場を発生させるコイルへの電流値を模型の支持と過負荷を解消させるように制御すれば足り、従来の磁力支持型風洞をそのまま用いることができる。
Moreover, since the aerodynamic load reducing device of the present invention comprises a means for detecting distortion or stress of the model and a means for generating a magnetic force in a direction to suppress it when the model is subjected to a wind tunnel test. Since the magnetic force can be appropriately applied so as to cancel the load caused by the aerodynamic load, the model can be prevented from being deformed or damaged.
Furthermore, the aerodynamic load reducing device of the present invention adopting a configuration in which a magnetic support balance device is used as means for supporting the model and the magnetic force and the magnetic force for eliminating the overload on the model are applied in an overlapping manner. Even if a new wind tunnel facility is not prepared, it is sufficient to control the current value to the coil for generating the magnetic field so as to eliminate the overload and support of the model, and the conventional magnetic support type wind tunnel can be used as it is.
本発明の荷重軽減メカニズムは風洞試験に限定されず、広く構造物の応力試験に適用することが出来るものであるから、高揚力装置を取り付けた翼型、橋梁、塔のような構造物模型に適用した場合、従来の負荷試験では模型が負荷に耐久できる破壊時点までの応力測定しか出来なかったが、外力を磁気力でバランスさせることにより応力測定範囲を大幅に更新することが出来る。 The load reduction mechanism of the present invention is not limited to the wind tunnel test, and can be widely applied to the stress test of structures. Therefore, it can be applied to structure models such as airfoils, bridges, and towers equipped with high lift devices. When applied, the conventional load test could only measure the stress up to the point of failure when the model can withstand the load, but the stress measurement range can be greatly updated by balancing the external force with the magnetic force.
本発明者等は従来から磁力支持型風洞の研究を手がけてきたのであるが、風洞内圧を高圧として高レイノルズ数の試験を行う際に、この技術を利用して、模型胴体部分ではなく、空気力を受けて最も変形し易い部分に磁気力が作用するように、磁気モーメントを分布させ、模型を支える磁気力をその付近で発生させ、模型の変形を抑えるようにすれば模型の変形や破損を防止できるはずとの考えに想到した。同時に、航空機のような空中に浮遊する風洞試験模型ばかりでなく、高揚力装置を取り付けた翼型、橋梁、塔のような変形し易い模型に対しても、構造物を対象とした過負荷試験に本手法が広く利用できることにも想到した。この場合は、高価な模型位置姿勢センサは必要でなく、測定部外側に設けた模型歪等を測定するセンサーからの信号により、周りの磁場を制御することで、空力荷重による模型変形を抑えることができることにも気付いた。この場合の磁場制御装置は磁力支持天秤装置の制御装置に比べると大幅に簡素化できる。 The inventors of the present invention have been working on a magnetically supported wind tunnel, but when conducting a test with a high Reynolds number with a high pressure inside the wind tunnel, this technique is used to create an air rather than a model body part. If the magnetic moment is distributed so that the magnetic force acts on the most deformable part under the force, the magnetic force that supports the model is generated in the vicinity to suppress the deformation of the model, the model will be deformed or damaged. I came up with the idea that we should be able to prevent this. At the same time, not only wind tunnel test models floating in the air, such as aircraft, but also overload tests for structures such as wing types, bridges, towers and other easily deformable models equipped with high lift devices. In addition, the inventors have come up with the idea that this method can be widely used. In this case, an expensive model position / orientation sensor is not required, and the deformation of the model due to aerodynamic load can be suppressed by controlling the surrounding magnetic field using a signal from a sensor that measures model distortion, etc., provided outside the measurement unit. I also realized that I can do it. The magnetic field control device in this case can be greatly simplified as compared with the control device of the magnetic force support balance device.
図1に本発明の空力荷重軽減装置の基本構成を示す。2は磁場制御用のコイル若しくは磁石で試験用模型1を設置する領域に磁場を生じさせるものであり、図6に示されたものと同様のものである。模型1の翼内には磁力線がx軸方向に向き、且つ形状は翼長手方向に細長い磁石1aが配置されている。4は模型1の要所に取り付けられた歪みセンサで外力(空力)によって模型1が受けた歪みを検出する。この歪みセンサ4の検出信号は演算制御手段34に送られ、この演算制御手段34では磁場制御用のコイル若しくは磁石2に模型1が受けた歪みを打ち消すだけの磁力を発生させる電流値を割り出す機能を備えると共にその演算値信号を電流供給手段35に送る。該電流供給手段35は受信した演算値信号を増幅して制御電流を磁場制御用のコイル若しくは磁石2に供給する。電流供給手段35から制御電流が磁場制御用のコイル若しくは磁石2に供給されると、試験用模型1を設置する領域に新たな磁場が形成され、模型1中に配置されている磁石1aがそれぞれに磁気モーメントを受け、模型の翼1wが受けた外力(空気力)とバランスするように作用して翼1wの歪みを軽減させる。
FIG. 1 shows a basic configuration of an aerodynamic load reducing device of the present invention. Reference numeral 2 denotes a magnetic field control coil or magnet for generating a magnetic field in the region where the
図2のAに示すような胴体1bに翼1wが付いた航空機の模型1を風洞内にスティング支持して配置し、高レイノルズ数状態での試験を行なった場合、スティング付け根に発生する最大応力は次の(1)式で表される。
σmax ∝[λb2/d3A]・f(M)・P0・CL ……(1)
ここで、λは揚力Lの代表力点位置とスティング付け根間の距離、Aは模型アスペクト比、bは翼スパン、dはスティングの厚み寸法、P0 は風洞総圧、CL は揚力係数である。高レイノルズ数状態での試験を行うと、構造的に弱い翼1w部分が図2のBに示すように大きく撓む。この翼付け根部分に掛かる最大応力は上記の(1)式と同様に表すことができる。ただしその場合、dは翼の厚み寸法、λは翼部における揚力の代表力点位置と翼付け根位置間の距離となりほぼb/4となる。風洞作動気体圧力を上げ密度を上げればレイノルズ数を上げられるが、密度に比例して模型にかかる空気力が増大し、風洞圧力が5barを超えると模型翼が折れ曲がる危険性がある。そこで本発明では翼部分に磁石を配置した航空機模型と、図3に示すようなx軸方向に所定間隔で配置されたz軸方向の磁場を発生させる23,25と27,29の2組コイルまたは磁石からなる空力荷重軽減装置を用い、翼1wの要所に取り付けられた歪みセンサ4で模型1が受けた空力歪みを検出し、この翼の歪み量に対応した電流を上記空力荷重軽減装置に供給して磁気力を変化させ、図2のCに示すように模型に加わる空気力と磁気力を釣合わせるようにした。その際の起磁力nJは次のようになる。
Ix・V・nJ/H2 ∝q・b2・CL/A
nJ∝[b2H/AIxV]・f(M)・H・P0・CL ……(2)
ここで、Ixは気流方向の磁化の強さ、Vは模型内の磁石体積、Hは測定部高さ、qは動圧、nはコイル巻き数、Jはそのコイル電流で、その積nJが起磁力となる。起磁力nJは空気力に抗して模型1を支持できる磁力支持天秤装置20の能力を指すので、この値が測定部高さHと風洞総圧P0の積に比例している。
When a
σ max ∝ [λb 2 / d 3 A] · f (M) · P 0 · C L (1)
Where λ is the distance between the representative force point position of the lift L and the sting root, A is the model aspect ratio, b is the blade span, d is the thickness dimension of the sting, P 0 is the wind tunnel total pressure, and C L is the lift coefficient. . When the test in the high Reynolds number state is performed, the structurally
I x · V · nJ / H 2 ∝ q · b 2 · C L / A
nJ∝ [b 2 H / AI x V] · f (M) · H · P 0 · C L (2)
Here, I x is the strength of magnetization in the air flow direction, V is the magnet volume in the model, H is the height of the measurement part, q is the dynamic pressure, n is the number of coil turns, J is the coil current, and the product nJ Becomes the magnetomotive force. Since the magnetomotive force nJ refers to the ability of the magnetic
一方、レイノルズ数Re は以下の式で表される。
Re =g(M)・T0 −1.4・P0・H ……(3)
ここで、T0は風洞温度である。注目すべき点はマッハ数と温度が一定ならば、Re と起磁力は共にP0・Hに比例していることである。この結果、
nJ=h(M)・Re・T0 1.4 ……(4)
となり、「風洞のマッハ数と温度とレイノルズ数が一定ならば、磁力支持に必要な起磁力も一定である」という結論に達する。一方、(1)式から、
σmax ∝F(M)・Re・T0 1.4/H ……(5)
となる。従来のスティング支持の場合はレイノルズ数を一定に保ち、寸法を小さくすると不利であるが、磁力支持天秤装置の場合必要起磁力は一定であり、レイノルズ数を増加させる場合有利である。磁力支持の場合は翼部分に磁気力を空気力と同様に分布させて翼根の応力を抑えることができ、模型強度による風洞内圧の制限を大幅に軽減できる。
なお、この技術は上記した航空機小型模型を磁力支持した高レイノルズ数風洞実験に限らず、両端を風洞壁部に固定した二次元翼試験にもそのまま適用して内圧制限の軽減を測ることが出来ることは当然である。
On the other hand, the Reynolds number Re is expressed by the following equation.
Re = g (M) · T 0 −1.4 · P 0 · H (3)
Here, T 0 is the wind tunnel temperature. It should be noted that if the Mach number and temperature are constant, both Re and magnetomotive force are proportional to P 0 · H. As a result,
nJ = h (M) · Re · T 0 1.4 (4)
The conclusion is reached that "if the wind tunnel Mach number, temperature, and Reynolds number are constant, the magnetomotive force necessary to support the magnetic force is also constant." On the other hand, from equation (1)
σ max ∝F (M) · Re · T 0 1.4 / H (5)
It becomes. In the case of the conventional sting support, it is disadvantageous to keep the Reynolds number constant and reduce the size, but in the case of a magnetic support balance device, the required magnetomotive force is constant, which is advantageous in increasing the Reynolds number. In the case of magnetic support, the magnetic force can be distributed to the blade portion in the same manner as the aerodynamic force to suppress the stress of the blade root, and the restriction of the wind tunnel pressure due to the model strength can be greatly reduced.
Note that this technique can be applied not only to the above-described high Reynolds number wind tunnel test that magnetically supports a small aircraft model, but also to a two-dimensional wing test in which both ends are fixed to the wind tunnel wall, and the reduction of the internal pressure limit can be measured. It is natural.
本発明の1実施例を示す。本発明では模型1の翼内には磁力線がx軸方向に向き、且つ形状は翼長手方向に細長い磁石1aを配置するのであるが、小型模型において翼の付け根から先端部にわたり磁石を配置することは難しく先端部分には配置できない部分が残る。また、実際の航空機においては揚力は翼部だけで生じるものであるから、翼部に配置した磁石だけで模型1を浮揚支持できれば理想的であるが、上記のような問題があるため模型浮揚支持の不足部分は胴体配置の磁石で補うこととする。ここに示す実施例は翼部と胴部の磁気モーメント量が比を1:1である航空機模型である。この模型を用い、高レイノルズ数の試験の可能性を評価したところ、風洞制限内圧を従来の2倍まで上げられることが判った。翼部のみの模型浮揚ではないこと、翼部先端までの翼部全長にわたる磁石配置ではないという条件下で、完璧な空気力バランスが実現できたわけではなく軽減しただけではあるが、それでも風洞制限内圧を従来の2倍まで上げられることは小型風洞設備での高レイノルズ数の実験における限界を更新した大きな進歩であるといえる。
1 shows an embodiment of the present invention. In the present invention, the magnetic lines of force are oriented in the x-axis direction and the shape of the magnet 1a is long in the longitudinal direction of the blade in the
以上の本明細書記載では本発明を本来の目的課題の高レイノルズ数風洞環境で実施する技術について述べてきたが、本発明はこれに限らず高揚力装置を取り付けた翼型、橋梁、塔のような変形し易い模型に対しても、構造物を対象とした過負荷試験に本手法が広く利用できるものである。すなわち、要所々々に複数の磁石と歪みセンサを配置した構造物模型を磁力支持天秤装置と同様な磁場発生装置内に配置して負荷試験を実施する。この歪みセンサの検出信号は演算制御手段に送られ、この演算制御手段では磁場制御用のコイル若しくは磁石に模型が受けた歪みを打ち消すだけの磁力を発生させる電流値を割り出し、電流供給手段を介してして制御電流を磁場制御用のコイル若しくは磁石に供給する。この電流によって試験用模型を設置する領域に新たな磁場が形成され、模型1中に配置されている磁石がそれぞれに磁気モーメントを受け、模型が受けた外力とバランスするように作用して模型の歪みを軽減させる。これによって模型の破壊は防止され、過大な負荷試験にも対応することができるようになる。
In the above description of the present specification, the technology for implementing the present invention in the high Reynolds number wind tunnel environment, which is the original object, has been described. However, the present invention is not limited to this, and the airfoil, bridge, tower mounted with a high lift device is not limited thereto. Even for such easily deformable models, this method can be widely used for overload tests on structures. That is, a load test is performed by placing a structure model in which a plurality of magnets and strain sensors are arranged at important points in a magnetic field generator similar to a magnetic force support balance device. The detection signal of this strain sensor is sent to the calculation control means, and the calculation control means determines a current value that generates a magnetic force sufficient to cancel the distortion received by the model in the magnetic field control coil or magnet, and passes through the current supply means. Thus, the control current is supplied to the magnetic field control coil or magnet. This current creates a new magnetic field in the area where the test model is placed, and the magnets arranged in the
1 風洞模型 1a 磁石(模型内蔵)
1b 胴体 1w 翼
2,21〜32 磁場制御用のコイル若しくは磁石 4 歪センサ
20 磁力支持天秤装置 34 演算制御手段
35 電流供給手段
1 Wind tunnel model 1a Magnet (built-in model)
20
35 Current supply means
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004061374A JP3855065B2 (en) | 2004-03-04 | 2004-03-04 | Load reducing device and model used for it |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004061374A JP3855065B2 (en) | 2004-03-04 | 2004-03-04 | Load reducing device and model used for it |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005249614A true JP2005249614A (en) | 2005-09-15 |
JP3855065B2 JP3855065B2 (en) | 2006-12-06 |
Family
ID=35030218
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004061374A Expired - Fee Related JP3855065B2 (en) | 2004-03-04 | 2004-03-04 | Load reducing device and model used for it |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3855065B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107860552A (en) * | 2017-12-26 | 2018-03-30 | 中国空气动力研究与发展中心高速空气动力研究所 | A kind of measurement apparatus of fanjet nacelle spillage drag |
CN108414188A (en) * | 2018-03-22 | 2018-08-17 | 中国航空工业集团公司沈阳空气动力研究所 | It is a kind of to be used for and hang together the six component strain balance of double struts for playing CTS experiments |
CN109241688A (en) * | 2018-11-09 | 2019-01-18 | 石家庄铁道大学 | A kind of determination method, system and the terminal device of suspension cable aerodynamic drag |
CN109974962A (en) * | 2019-04-25 | 2019-07-05 | 中国空气动力研究与发展中心低速空气动力研究所 | A kind of scaling method of the effective forced area of labyrinth seal |
CN116399552A (en) * | 2023-06-08 | 2023-07-07 | 中国空气动力研究与发展中心低速空气动力研究所 | Low-Reynolds number wind tunnel test method and system |
CN117433739A (en) * | 2023-12-20 | 2024-01-23 | 中国空气动力研究与发展中心超高速空气动力研究所 | Annular continuous magnetic levitation track simulation wind tunnel and test method thereof |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109946036B (en) * | 2019-04-01 | 2021-02-26 | 中国空气动力研究与发展中心高速空气动力研究所 | Force and pressure measurement integrated test method for high-speed wind tunnel |
-
2004
- 2004-03-04 JP JP2004061374A patent/JP3855065B2/en not_active Expired - Fee Related
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107860552A (en) * | 2017-12-26 | 2018-03-30 | 中国空气动力研究与发展中心高速空气动力研究所 | A kind of measurement apparatus of fanjet nacelle spillage drag |
CN107860552B (en) * | 2017-12-26 | 2023-10-24 | 中国空气动力研究与发展中心高速空气动力研究所 | Measuring device for overflow resistance of turbofan engine nacelle |
CN108414188A (en) * | 2018-03-22 | 2018-08-17 | 中国航空工业集团公司沈阳空气动力研究所 | It is a kind of to be used for and hang together the six component strain balance of double struts for playing CTS experiments |
CN109241688A (en) * | 2018-11-09 | 2019-01-18 | 石家庄铁道大学 | A kind of determination method, system and the terminal device of suspension cable aerodynamic drag |
CN109974962A (en) * | 2019-04-25 | 2019-07-05 | 中国空气动力研究与发展中心低速空气动力研究所 | A kind of scaling method of the effective forced area of labyrinth seal |
CN109974962B (en) * | 2019-04-25 | 2023-10-13 | 中国空气动力研究与发展中心低速空气动力研究所 | Calibration method for effective stress area of labyrinth seal |
CN116399552A (en) * | 2023-06-08 | 2023-07-07 | 中国空气动力研究与发展中心低速空气动力研究所 | Low-Reynolds number wind tunnel test method and system |
CN116399552B (en) * | 2023-06-08 | 2023-08-18 | 中国空气动力研究与发展中心低速空气动力研究所 | Low-Reynolds number wind tunnel test method and system |
CN117433739A (en) * | 2023-12-20 | 2024-01-23 | 中国空气动力研究与发展中心超高速空气动力研究所 | Annular continuous magnetic levitation track simulation wind tunnel and test method thereof |
CN117433739B (en) * | 2023-12-20 | 2024-02-20 | 中国空气动力研究与发展中心超高速空气动力研究所 | Annular continuous magnetic levitation track simulation wind tunnel and test method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP3855065B2 (en) | 2006-12-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yangwen et al. | Model aerodynamic tests with a wire-driven parallel suspension system in low-speed wind tunnel | |
US6196514B1 (en) | Large airborne stabilization/vibration isolation system | |
US9606019B2 (en) | Wind tunnel balance and system with wing model and wind tunnel balance | |
JP2009506305A (en) | Test stand and method for aerodynamic measurement of objects | |
CN106197981B (en) | A kind of engine auxiliary installation section structure slow test loading device and method | |
JP3855065B2 (en) | Load reducing device and model used for it | |
CN108132133A (en) | A kind of combined type multi -components flapping wing aircraft high-lift systems test method | |
CN109141946A (en) | A kind of single module suspension control system experiment detection platform | |
Amoskov et al. | Modelling EMS maglev systems to develop control algorithms | |
Sarkar et al. | A novel elastic suspension system for wind tunnel section model studies | |
JP2007315924A (en) | Non contact measurement of impact and impulse using magnetic force supported balance device | |
JP4135954B2 (en) | Magnetically supported balance device for automobiles | |
Lee et al. | Dynamic calibration of magnetic suspension and balance system for sting-free measurement in wind tunnel tests | |
Schoenenberger et al. | Preliminary Aerodynamic Measurements from a Magnetic Suspension and Balance System in a Low-Speed Wind Tunnel | |
Hémon et al. | Experimental evidence of transient growth of energy before airfoil flutter | |
JP3760181B2 (en) | Drag calibration method in magnetic support balance device | |
Boyden et al. | Status of wind tunnel magnetic suspension research | |
Sawada et al. | NAL 60cm magnetic suspension and balance system | |
JP3702341B2 (en) | Wind tunnel model magnetic support balance device | |
CN208282919U (en) | A kind of container bare weight case testing agency being installed on lifting spreader | |
JP4265771B2 (en) | Magnetic support device for feedback control of magnetic field | |
Hufnagel | Wind Tunnel Balances | |
US12072320B2 (en) | Non-contact system for monitoring a metallic magnetic structure under dynamic load | |
JP4340794B2 (en) | Magnetic support balance device without air-core coil and control method using the same | |
Tashiro et al. | Aerodynamic Hysteresis and Reynolds Number Effect of Slanted Cylinder Afterbody in Magnetic Suspension and Balance System |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Effective date: 20050602 Free format text: JAPANESE INTERMEDIATE CODE: A621 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060626 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060725 |
|
A61 | First payment of annual fees (during grant procedure) |
Effective date: 20060817 Free format text: JAPANESE INTERMEDIATE CODE: A61 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120922 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 6 Free format text: PAYMENT UNTIL: 20120922 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130922 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |