JP2005249108A - Rolling bearing - Google Patents

Rolling bearing Download PDF

Info

Publication number
JP2005249108A
JP2005249108A JP2004061886A JP2004061886A JP2005249108A JP 2005249108 A JP2005249108 A JP 2005249108A JP 2004061886 A JP2004061886 A JP 2004061886A JP 2004061886 A JP2004061886 A JP 2004061886A JP 2005249108 A JP2005249108 A JP 2005249108A
Authority
JP
Japan
Prior art keywords
cage
rolling
rolling bearing
bearing
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004061886A
Other languages
Japanese (ja)
Inventor
Hiromichi Takemura
浩道 武村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2004061886A priority Critical patent/JP2005249108A/en
Publication of JP2005249108A publication Critical patent/JP2005249108A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/38Ball cages
    • F16C33/42Ball cages made from wire or sheet metal strips
    • F16C33/422Ball cages made from wire or sheet metal strips made from sheet metal
    • F16C33/427Ball cages made from wire or sheet metal strips made from sheet metal from two parts, e.g. ribbon cages with two corrugated annular parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/38Ball cages
    • F16C33/44Selection of substances
    • F16C33/445Coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/04Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
    • F16C19/06Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with a single row or balls

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rolling bearing capable of reducing a frictional coefficient of a rolling element and a retainer, and preventing the breakage of the retainer by improving the durability of the rolling bearing, and having superior transmitting efficiency and bearing service life. <P>SOLUTION: This rolling bearing 1 comprises an outer ring 2, an inner ring 3, a plurality of rolling elements 5 rotatably mounted between the outer ring 2 and the inner ring 3, and the metallic retainer 4 provided with a plurality of pockets 4a rotatably holding the rolling elements 5. The metallic retainer 4 has a nitride layer 6b having a thickness of 1-9% of a plate thickness of the metallic retainer 4, on inner faces of the pockets 4a kept into contact with the rolling elements 5. The surface roughness of the rolling element 5 is 0.003-0.01 μmRa. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、自動車のトランスミッション用軸受、ベルト式CVT(無段変速機:Continuously Variable Transmission)用軸受等に用いられる転がり軸受に関する。   The present invention relates to a rolling bearing used for a transmission bearing of an automobile, a belt type CVT (Continuously Variable Transmission) bearing, and the like.

従来、転がり軸受の寿命に関する指標として、潤滑の良否に大きく影響する油膜形成の程度を表した油膜パラメータΛが用いられている(例えば、非特許文献1参照。)。油膜パラメータΛは、式(1)により求められる。尚、式(1)において、hminは最小油膜厚さ、hr1,hr2は内側または外側軌道輪と転動体との転がり接触面の自乗平均粗さ、σ12は軌道輪の中心線平均粗さ(h≒1.12R)、σは転動体の中心線平均粗さ(h≒1.12R)である。 Conventionally, an oil film parameter Λ representing the degree of oil film formation that greatly affects the quality of lubrication has been used as an index relating to the life of a rolling bearing (see, for example, Non-Patent Document 1). The oil film parameter Λ is obtained by the equation (1). In Equation (1), hmin is the minimum oil film thickness, hr1 and hr2 are the mean square roughness of the rolling contact surface between the inner or outer race and the rolling element, and σ 12 is the centerline average roughness ( h≈1.12R), σ c is the center line average roughness (h≈1.12R) of the rolling elements.

Figure 2005249108
Figure 2005249108

油膜パラメータΛに関して、その値が大きい程、厚い油膜が形成されて転がり軸受の寿命が長くなることが知られている。そして、Λ≦3の範囲では、いわゆる境界潤滑状態となり、転がり軸受の寿命に悪影響を及ぼす虞がある。そこで、従来は、軌道輪と転動体との転がり接触面をできるだけ平滑な面に加工し、油膜を十分に形成するようにしていた。尚、油膜を形成する能力は固定輪に比較して回転輪の方が低く、回転輪において油膜を形成することが困難であったので、回転輪の表面粗さをより小さくすることが望ましいとされていた。   It is known that the larger the value of the oil film parameter Λ, the thicker the oil film is formed and the longer the life of the rolling bearing. In the range of Λ ≦ 3, a so-called boundary lubrication state occurs, which may adversely affect the life of the rolling bearing. Therefore, conventionally, the rolling contact surface between the race and the rolling element has been processed to be as smooth as possible to sufficiently form an oil film. It should be noted that the ability to form an oil film is lower for a rotating wheel than a fixed wheel, and it was difficult to form an oil film on the rotating wheel, so it is desirable to reduce the surface roughness of the rotating wheel. It had been.

また、転がり軸受の長寿命化に関し、鋼球(転動体)の表面粗さと転走面(軌道面)の表面粗さとの関係を、0.05μmRa<鋼球の表面粗さ<転走面の表面粗さ、とし、且つ鋼球の表面粗さを転走面の表面粗さに近づけ、鋼球の表面と内外輪の転走面との間に油膜を形成して潤滑性を向上させることにより、鋼球の温度上昇を抑え、鋼球の表面剥離を防止して長寿命化を図ったものが知られている(例えば、特許文献1参照。)。   Regarding the life extension of rolling bearings, the relationship between the surface roughness of the steel ball (rolling element) and the surface roughness of the rolling surface (track surface) is expressed as follows: 0.05 μm Ra <surface roughness of the steel ball <rolling surface The surface roughness of the steel ball is made close to the surface roughness of the rolling surface, and an oil film is formed between the surface of the steel ball and the rolling surface of the inner and outer rings to improve lubricity. Thus, it is known that the temperature increase of the steel ball is suppressed, the surface peeling of the steel ball is prevented, and the life is extended (for example, refer to Patent Document 1).

更に、外輪、内輪の各軌道面および転動体の表面のうち、少なくとも外輪軌道面を、深さ0.0005mm以上且つ0.008mm以下の多数の溝状凹部と、該溝状凹部で仕切られ、且つ溝状凹部を取り除いた粗さを0.08μmRa以下とされた平滑部と、で形成することにより、外輪軌道面に適度な摩擦係数を持たせて転動体のすべり運動を抑制すると共に、溝状凹部の油溜まり機能も副次的に作用させ、平滑部での金属凝着を防止し、軸受の焼付きを防止するようにしたものも知られている(例えば、特許文献2参照。)。   Further, among the raceways of the outer ring and the inner race and the surface of the rolling element, at least the outer raceway surface is partitioned by a number of groove-like recesses having a depth of 0.0005 mm or more and 0.008 mm or less, and the groove-like recesses. In addition, by forming with a smooth portion having a roughness of 0.08 μm Ra or less after removing the groove-like recess, the outer ring raceway surface has an appropriate coefficient of friction to suppress the sliding motion of the rolling element, and the groove An oil reservoir function of the concave portion is also acted as a secondary function to prevent metal adhesion at the smooth portion and prevent seizure of the bearing (see, for example, Patent Document 2). .

一方、転がり軸受用の保持器は、SPCCやSPCEなどの冷間圧延鋼板に純窒化(NHガス窒化)、ガス軟窒化、タフトライド、イオン窒化、などの軟窒化処理を施したプレス保持器(金属製波形保持器)を用いることにより、厳しい潤滑条件下での耐久性を向上させたものがある。窒化処理を施すと母材よりも硬化させることができ、表面硬度Hv350〜600程度の表面層が形成されて優れた耐久性が得られる。通常、窒化層の厚さは100μm程度とされている。
転がり軸受工学編集委員会編「転がり軸受工学」、養賢堂出版、昭和50年7月10日第一版、p178 特公平5−32602号公報(第3−5頁、第1図) 特許公報第2508178号公報(第3−5頁、第1図)
On the other hand, a cage for a rolling bearing is a press cage obtained by subjecting a cold rolled steel sheet such as SPCC or SPCE to soft nitriding treatment such as pure nitriding (NH 3 gas nitriding), gas soft nitriding, tuftride, ion nitriding, etc. Some have improved durability under severe lubrication conditions by using a metal corrugated cage. When the nitriding treatment is performed, it can be hardened more than the base material, and a surface layer having a surface hardness of about Hv 350 to 600 is formed and excellent durability is obtained. Usually, the thickness of the nitride layer is about 100 μm.
Rolling Bearing Engineering Editorial Committee, “Rolling Bearing Engineering”, Yokendo Publishing, July 10, 1975, first edition, p178 Japanese Examined Patent Publication No. 5-32602 (page 3-5, FIG. 1) Japanese Patent Publication No. 2508178 (page 3-5, FIG. 1)

近年、自動車においても省エネルギー化が強く求められており、自動車のトランスミッションの潤滑において、例えば20cc/min以下まで給油量を低減し、または、低粘度の潤滑油を用い、油膜の粘性抵抗を少なくするなどの方法によって燃費向上を図る試みがなされている。そして、ベルト式CVTにおいては、伝達効率を確保すると共に、運転時に発生する騒音を防止し、駆動側・従動側のプーリおよび無端ベルトの摩耗を抑制することを目的として、CVTフルードに低粘度のものを用いる傾向がある。   In recent years, there has been a strong demand for energy saving in automobiles, and in lubrication of automobile transmissions, for example, the amount of oil supply is reduced to 20 cc / min or less, or the viscosity resistance of an oil film is reduced by using a low-viscosity lubricating oil. Attempts have been made to improve fuel efficiency by such methods. In the belt type CVT, the CVT fluid has a low viscosity for the purpose of ensuring transmission efficiency, preventing noise generated during operation, and suppressing wear of the driving and driven pulleys and the endless belt. There is a tendency to use things.

CVTには標準的な軸受材料(例えば、軸受鋼2種)からなる転がり軸受が一般に使用されており、該軸受の潤滑もCVTフルードを用いて行われているが、低粘度のCVTフルードの使用や給油量の低減と、ベルト変動に伴うアキシャル方向振動との複合作用によって、軸受の軌道輪と転動体との間ですべり運動が発生し、また、転動体と保持器との間で摩耗が発生し、転動体の表面粗さが悪化して、振動や、異物混入による圧混起点型剥離とは異なる早期剥離・摩耗が発生する場合があった。このような使用条件下においては、特許文献1および特許文献2で開示されている転動体と軌道面との間の油膜形成性に着目した表面損傷防止技術では上記の問題に十分に対処することができず、さらなる対策が望まれている。   Rolling bearings made of standard bearing materials (for example, two types of bearing steel) are generally used for CVT, and lubrication of the bearings is also performed using CVT fluid. As a result of the combined action of the reduction in the amount of oil and the amount of lubrication and the axial vibration caused by belt fluctuation, sliding motion occurs between the bearing ring of the bearing and the rolling element, and wear occurs between the rolling element and the cage. Occurred and the surface roughness of the rolling element deteriorated, and there were cases where early peeling / wearing different from vibration and pressure mixing point type peeling due to contamination by foreign matters occurred. Under such use conditions, the surface damage prevention technology focusing on the oil film formation between the rolling elements and the raceway surface disclosed in Patent Document 1 and Patent Document 2 should sufficiently deal with the above problem. However, further measures are desired.

また、従来の保持器の窒化処理のように、窒化層の厚さを100μm(例えば、保持器の板厚が1mmの場合は窒化層10%)とした場合、保持器の総合的な強度は向上するが、逆に靱性が低下して変形し難くなるため、金属疲労により保持器が割れる事例が確認されている。   Further, when the thickness of the nitride layer is set to 100 μm (for example, 10% of the nitride layer when the plate thickness of the cage is 1 mm) as in the conventional nitriding treatment of the cage, the overall strength of the cage is Although improved, conversely, the toughness is lowered and it becomes difficult to deform, so that it has been confirmed that the cage breaks due to metal fatigue.

本発明は、前述した課題に鑑みてなされたものであり、その目的は、転動体と保持器との摩擦係数を低減すると共に、転がり軸受の耐久性を向上させて保持器の破損(疲労破損、衝撃破損)を防止し、優れた伝達効率と軸受寿命とを有した転がり軸受を提供することにある。   The present invention has been made in view of the above-described problems, and its purpose is to reduce the coefficient of friction between the rolling elements and the cage, and to improve the durability of the rolling bearing to break the cage (fatigue failure). It is an object of the present invention to provide a rolling bearing having excellent transmission efficiency and bearing life.

前述した目的を達成するために、本発明に係る転がり軸受は、下記の(1)〜(2)を特徴としている。   In order to achieve the above-described object, the rolling bearing according to the present invention is characterized by the following (1) to (2).

(1) 外輪と、内輪と、前記外輪および前記内輪間に回動自在に配置された複数の転動体と、前記転動体を転動自在に保持する複数のポケットが形成された金属製保持器と、を具備する転がり軸受であって、
前記金属製保持器が、少なくとも前記転動体と接触する前記ポケットの内面に、当該金属製保持器の板厚の1%以上且つ9%以下の厚さの窒化層を有していること。
(1) A metal cage in which an outer ring, an inner ring, a plurality of rolling elements rotatably disposed between the outer ring and the inner ring, and a plurality of pockets for holding the rolling elements in a freely rotatable manner are formed. A rolling bearing comprising:
The metal cage has a nitride layer having a thickness of 1% or more and 9% or less of the plate thickness of the metal cage on at least the inner surface of the pocket that contacts the rolling element.

(2) (1)に記載の転がり軸受において、前記転動体の表面の面粗さは、0.003μmRa以上且つ0.01μmRa以下としたこと。   (2) In the rolling bearing according to (1), the surface roughness of the surface of the rolling element is 0.003 μmRa or more and 0.01 μmRa or less.

前記構成による転がり軸受によれば、金属製保持器は、転動体と接触するポケットの内面に、金属製保持器の板厚の1%以上且つ9%以下、好ましくは1%以上且つ5%以下の厚さを有する窒化層を形成されており、これにより、保持器の強度を向上させて保持器の破損(疲労破損、衝撃破損)を防止することができ、また、転動体と保持器との間の摩擦係数を低下させることができる。よって、前述した使用条件下においても、転動体と保持器との間の摩擦によるポケット内面の摩耗を抑制し、玉の表面粗さの悪化を防止することができ、更に、保持器の摩耗粉が外輪軌道輪面または内輪軌道面と玉との間に入り込むことにより発生する表面ピーリング損傷を抑制することができる。   According to the rolling bearing having the above-described configuration, the metal cage is formed on the inner surface of the pocket that contacts the rolling element, and the thickness of the metal cage is 1% or more and 9% or less, preferably 1% or more and 5% or less. A nitride layer having a thickness of 5 mm is formed, whereby the strength of the cage can be improved to prevent the cage from being damaged (fatigue failure, impact failure), and the rolling element and cage The friction coefficient between the two can be reduced. Therefore, even under the use conditions described above, it is possible to suppress wear on the pocket inner surface due to friction between the rolling elements and the cage, and to prevent deterioration of the surface roughness of the balls. Can prevent surface peeling damage caused by the outer ring raceway surface or the inner ring raceway surface and the ball entering between the balls.

尚、一般に軸受の寸法に応じて保持器の板厚も規定され且つ負荷される荷重も異なり、負荷荷重によって保持器と転動体とに作用する摩擦力も変動する。そして、摩擦力に応じて窒化層の厚みも規定されるものであるので、ポケットの内面に形成される窒化層の厚みを、絶対的な数値(例えば、従来のように100μm)ではなく保持器の板厚に対する割合で規定することにより、寸法の異なる転がり軸受(即ち、板厚の異なる保持器)に対応した最適な窒化層の厚さを規定することができる。   In general, the plate thickness of the cage is also determined according to the size of the bearing, and the load to be applied is different, and the frictional force acting on the cage and the rolling element varies depending on the load. Since the thickness of the nitride layer is also defined according to the frictional force, the thickness of the nitride layer formed on the inner surface of the pocket is not an absolute value (for example, 100 μm as in the prior art) but a cage. By defining the ratio with respect to the plate thickness, the optimum nitride layer thickness corresponding to rolling bearings having different dimensions (that is, cages having different plate thicknesses) can be defined.

また、転動体の表面の面粗さを0.003μmRa以上且つ0.01μmRa以下とすることにより、転動体と保持器との間の摩擦抵抗を低減させることができ、前述した使用条件下において局所的にメタルコンタクトが発生するような場合でも、保持器の摩耗や表面疲労の進行を抑制すると共に、転動体の表面粗さの悪化を防止することができる。   Further, by setting the surface roughness of the rolling element to 0.003 μmRa or more and 0.01 μmRa or less, the frictional resistance between the rolling element and the cage can be reduced. Even when metal contact is generated, it is possible to suppress the progress of wear and surface fatigue of the cage and to prevent the surface roughness of the rolling element from deteriorating.

本発明の転がり軸受によれば、転動体と保持器との摩擦係数を低減すると共に保持器の破損(疲労破損、衝撃破損)を防止して、転がり軸受の耐久性を向上させることができ、転がり軸受の伝達効率と寿命とを向上させることができる。   According to the rolling bearing of the present invention, it is possible to improve the durability of the rolling bearing by reducing the friction coefficient between the rolling elements and the cage and preventing the cage from being damaged (fatigue failure, impact failure). The transmission efficiency and life of the rolling bearing can be improved.

以下、本発明に係る好適な実施形態を図面に基づいて詳細に説明する。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of the invention will be described in detail with reference to the drawings.

図1は本発明の一実施形態である転がり軸受の部分破断斜視図、図2は図1における保持器に転動体である玉が保持された状態を示す要部拡大断面図である。   FIG. 1 is a partially broken perspective view of a rolling bearing according to an embodiment of the present invention, and FIG. 2 is an enlarged cross-sectional view of a main part showing a state in which balls as rolling elements are held in a cage in FIG.

図1及び図2に示されるように、本発明の一実施形態である転がり軸受1は、外輪2と、内輪3と、保持器4と、保持器4のポケット4aに転動自在に保持された転動体である複数の玉5と、を備えている。そして、複数の玉5は、保持器4のポケット4aに転動自在に保持されて外輪2の外輪軌道面2aと内輪3の内輪軌道面3aとの間に回動自在に配置されている。尚、外輪2、内輪3および玉5は、例えば軸受鋼である軸受鋼2種により形成されている。   As shown in FIGS. 1 and 2, a rolling bearing 1 according to an embodiment of the present invention is rotatably held in an outer ring 2, an inner ring 3, a cage 4, and a pocket 4 a of the cage 4. And a plurality of balls 5 which are rolling elements. The plurality of balls 5 are rotatably held in the pocket 4 a of the cage 4 and are rotatably disposed between the outer ring raceway surface 2 a of the outer ring 2 and the inner ring raceway surface 3 a of the inner ring 3. In addition, the outer ring | wheel 2, the inner ring | wheel 3, and the ball | bowl 5 are formed, for example by 2 types of bearing steel which is bearing steel.

保持器4は、例えば、板厚t=1mmの冷間圧延鋼板(SPCC、SPCE)をプレス加工して半球状凹部6aが形成された一対の波形板6を、半球状凹部6a同士を対向配置して付き合わせ、リベット8で一体に固定して形成されている。即ち、対向配置された一対の半球状凹部6a,6aによって画成された球状空間をポケット4aとした、いわゆる金属製波形保持器である。保持器4は、純窒化(NHガス窒化)、ガス軟窒化、タフトライド、イオン窒化、などの適宜の処理方法によって軟窒化処理が施されており、玉5と接触する半球状凹部(ポケット内面)6aには、少なくともその内面側(即ち、玉5との接触面側)から冷間圧延鋼板の板厚tの1%以上且つ9%以下、好ましくは1%以上且つ5%以下の厚さを有する窒化層6bが形成されている。また、転動体である玉5の表面は研削加工されており、その面粗さは0.003μmRa以上且つ0.01μmRa以下とされている。 The cage 4 is, for example, a pair of corrugated plates 6 in which hemispherical recesses 6a are formed by pressing cold-rolled steel sheets (SPCC, SPCE) having a thickness t = 1 mm, and the hemispherical recesses 6a are arranged to face each other. Thus, the rivets 8 are integrally fixed. That is, it is a so-called metal corrugated cage in which a spherical space defined by a pair of opposed hemispherical recesses 6a, 6a is a pocket 4a. The cage 4 is soft-nitrided by an appropriate processing method such as pure nitriding (NH 3 gas nitriding), gas soft nitriding, tuftride, ion nitriding, etc. ) 6a includes a thickness of 1% to 9%, preferably 1% to 5% of the thickness t of the cold-rolled steel sheet from at least the inner surface side (that is, the contact surface side with the ball 5). A nitride layer 6b having the structure is formed. Further, the surface of the ball 5 which is a rolling element is ground, and the surface roughness is set to 0.003 μmRa or more and 0.01 μmRa or less.

本実施形態の転がり軸受1によれば、金属製保持器4は、転動体5と接触するポケット4aの内面に、金属製保持器4の板厚tの1%以上且つ9%以下、好ましくは1%以上且つ5%以下の厚さを有する窒化層6bを形成されており、保持器4の強度を向上させて保持器4の破損(疲労破損、衝撃破損)を防止することができ、また、転動体5と保持器4との間の摩擦係数を低下させることができる。これにより、120℃を越える高温環境、低粘度のトランスミッション用潤滑油の使用、などの過酷な使用条件下においても、転動体5と保持器4との間のすべり摩擦によるポケット4aの内面の摩耗を抑制し、玉5の表面粗さの劣化を防止することができる。更に、保持器4の摩耗粉が外輪軌道輪面2aまたは内輪軌道面3aと玉5との間に入り込むことにより発生する表面ピーリング損傷を抑制することができる。また、本実施形態の転がり軸受1によれば、転動体5の表面の面粗さを0.003μmRa以上且つ0.01μmRa以下としたので、転動体5と保持器4との間の摩擦抵抗を低減させることができ、前述した過酷な使用条件下において局所的にメタルコンタクトが発生するような場合でも、金属製保持器4の摩耗、表面疲労の進行を抑制すると共に、玉5の表面粗さの劣化を防止することができる。これにより、転がり軸受1の寿命を長期化することができる。   According to the rolling bearing 1 of the present embodiment, the metal cage 4 is formed on the inner surface of the pocket 4a in contact with the rolling element 5 at 1% or more and 9% or less of the plate thickness t of the metal cage 4, preferably A nitride layer 6b having a thickness of 1% or more and 5% or less is formed, and the strength of the cage 4 can be improved to prevent the cage 4 from being damaged (fatigue failure, impact failure). The coefficient of friction between the rolling element 5 and the cage 4 can be reduced. Thus, the wear on the inner surface of the pocket 4a due to the sliding friction between the rolling element 5 and the cage 4 even under severe use conditions such as a high temperature environment exceeding 120 ° C. and the use of a low viscosity transmission lubricant. And the deterioration of the surface roughness of the balls 5 can be prevented. Furthermore, it is possible to suppress surface peeling damage caused by wear powder of the cage 4 entering between the outer ring raceway surface 2a or the inner ring raceway surface 3a and the ball 5. Further, according to the rolling bearing 1 of the present embodiment, since the surface roughness of the rolling element 5 is set to 0.003 μmRa to 0.01 μmRa, the friction resistance between the rolling element 5 and the cage 4 is reduced. Even when the metal contact is locally generated under the severe use conditions described above, the wear of the metal cage 4 and the progress of surface fatigue are suppressed, and the surface roughness of the ball 5 is reduced. Can be prevented. Thereby, the lifetime of the rolling bearing 1 can be prolonged.

そして、本実施形態の転がり軸受1をベルト式CVTに用いた場合には、低粘度のCVTフルードの使用が可能となり、優れた伝達効率と十分な耐久性とを有し、且つ低燃費のトランスミッションユニットを安価に提供することができる。   When the rolling bearing 1 of this embodiment is used in a belt type CVT, it is possible to use a low-viscosity CVT fluid, an excellent transmission efficiency, sufficient durability, and a low fuel consumption transmission. Units can be provided at low cost.

本発明の効果を確認するため、本発明の転がり軸受に係る実施例、および該実施例と比較するための比較例を用いて行った寿命試験について説明する。   In order to confirm the effect of the present invention, a life test conducted using an example according to the rolling bearing of the present invention and a comparative example for comparison with the example will be described.

寿命試験に用いた転がり軸受は、実施例及び比較例ともに、JIS呼び番号6206(内径30mm,外径62mm,幅16mm)であり、カタログ許容回転数は13000rpmである。また、転がり軸受は軸受鋼2種により形成し、内輪および外輪の表面硬度はHRC58〜66、残留オーステナイト量は0.05〜15%、転動体の表面硬度はHRC62〜67、内輪および外輪の表面粗さσ12は0.03〜0.05μmRa、転動体の表面粗さσは表1に示すものを用いた。初期の油膜パラメータΛは、Λ=2程度である。 The rolling bearing used for the life test is JIS nominal number 6206 (inner diameter 30 mm, outer diameter 62 mm, width 16 mm) in both the examples and the comparative examples, and the catalog allowable rotation speed is 13000 rpm. Rolling bearings are made of two types of bearing steel. The surface hardness of the inner and outer rings is HRC 58 to 66, the amount of retained austenite is 0.05 to 15%, the surface hardness of the rolling elements is HRC 62 to 67, and the surfaces of the inner and outer rings. The roughness σ 12 used was 0.03 to 0.05 μm Ra, and the rolling element surface roughness σ c shown in Table 1 was used. The initial oil film parameter Λ is about Λ = 2.

また、保持器は、板厚t=1mmの鋼板をプレス加工して形成した金属製波形保持器であり、実施例および比較例に用いた保持器のポケット内面には、本出願人の出願である特開2001−90734号公報に開示されている手法を応用して、560℃のN(20%)+NH(80%)雰囲気ガス中で純窒化処理を施し、緻密な窒化層をそれぞれ形成した。尚、各実施例および比較例の窒化層厚さは、表1に示す通りの板厚tに対する割合においてそれぞれ形成されている。 The cage is a metal corrugated cage formed by pressing a steel plate having a thickness t = 1 mm. The pocket inner surface of the cage used in the examples and comparative examples is applied by the applicant of the present application. Applying the method disclosed in a Japanese Patent Application Laid-Open No. 2001-90734, pure nitriding treatment is performed in N 2 (20%) + NH 3 (80%) atmosphere gas at 560 ° C. to form dense nitride layers, respectively. Formed. The nitride layer thickness of each example and comparative example is formed in a ratio to the plate thickness t as shown in Table 1.

寿命試験の試験内容を以下に示す。   The details of the life test are shown below.

(試験条件)
試験条件は、実施例、比較例共に下記の通りである。
荷重 :P(負荷荷重)/Cr(新動定格荷重)=0.20
内輪回転数 :15000〜5000rpmの範囲を2秒間で変速
傾き :2/1000rad
潤滑油 :CVTフルード(粘度:40℃において35cSt、100℃において7cSt)
軸受温度 :130℃(一定)
試験時間 :250時間
供試軸受個数 :各実施例および比較例について5個
(Test conditions)
The test conditions are as follows for both Examples and Comparative Examples.
Load: P (load load) / Cr (new dynamic load rating) = 0.20
Inner ring rotation speed: 15000-5000rpm range in 2 seconds, shifting slope: 2 / 1000rad
Lubricating oil: CVT fluid (viscosity: 35 cSt at 40 ° C, 7 cSt at 100 ° C)
Bearing temperature: 130 ° C (constant)
Test time: 250 hours Number of test bearings: 5 for each example and comparative example

(評価方法)
試験開始から250時間経過した場合に、または振動値が初期振動値の5倍以上に達した場合に試験を終了し、転がり軸受を分解して剥離および摩耗の有無を目視で確認することにより評価した。なお、試験に供した転がり軸受の計算寿命(基本定格寿命L10)は、208時間である。
(Evaluation methods)
The test is completed when 250 hours have elapsed from the start of the test, or when the vibration value reaches 5 times or more of the initial vibration value, and the rolling bearing is disassembled and evaluated by visually confirming whether there is any peeling or wear. did. The calculated life (basic rating life L 10 ) of the rolling bearing subjected to the test is 208 hours.

(試験結果)
結果を表1に示す。
(Test results)
The results are shown in Table 1.

Figure 2005249108
Figure 2005249108

表1に示されるように、実施例1,2,3は、ポケット内面に形成された窒化層の厚さが板厚の1%以上且つ5%以下とされており、250時間の試験時間経過後にも、それぞれ5個の供試軸受の全てに剥離やピーリング損傷は認められず、良好な状態を維持していた。また、玉の表面粗さは、試験後においても試験前と同レベルであり、0.01μmRa以下と良好であった。ポケット内面の形状を測定した結果、摩耗の痕跡はなく初期異常の発生もないものと認定される。   As shown in Table 1, in Examples 1, 2, and 3, the thickness of the nitride layer formed on the pocket inner surface is 1% or more and 5% or less of the plate thickness, and a test time of 250 hours elapses. Later, no peeling or peeling damage was observed in all of the five test bearings, and the good condition was maintained. Further, the surface roughness of the balls was the same level as before the test even after the test, and was as good as 0.01 μmRa or less. As a result of measuring the shape of the inner surface of the pocket, it is recognized that there is no trace of wear and no initial abnormality occurs.

実施例4は、250時間経過した時点で、1個の供試軸受の保持器に亀裂が認められたものの、5個の転がり軸受の全てにピーリング損傷は認められなかった。保持器に亀裂が生じたことについては、実施例4の保持器は、板厚tに対して9%の厚みで深い窒化層を形成されているために比較的硬くなっており、傾き2/1000radでの加減速によって無理な力が作用して疲労亀裂に至ったものと考えられる。   In Example 4, although cracks were observed in the cage of one test bearing when 250 hours had elapsed, no peeling damage was observed in all of the five rolling bearings. Regarding the occurrence of cracks in the cage, the cage of Example 4 is relatively hard because a deep nitrided layer is formed with a thickness of 9% with respect to the plate thickness t. It is considered that an unreasonable force was exerted by acceleration / deceleration at 1000 rad, resulting in a fatigue crack.

一方、比較例1,2は、それぞれL10(信頼度90%)寿命で65時間,53時間経過した時点で初期振動値の5倍以上の振動値に達し、それぞれ5個の供試軸受の全てにおいて玉または内輪にピーリング損傷が認められた。上記の各試験時間は計算寿命の1/3以下である。比較例1については、試験前の玉表面粗さは0.005μmRaと良好であるが、保持器に窒化層が形成されておらず、ポケット内面の摩耗により生じた摩耗粉が玉と軌道面との間に侵入し、玉にピーリング損傷が発生したものである。比較例2についても、保持器に窒化層が形成されておらず、ポケット内面の摩耗により生じた摩耗粉が玉と軌道面との間に侵入し、内輪にピーリング損傷が発生したものである。尚、比較例2は試験前の玉表面粗さを0.02μmRaと軌道面の表面粗さと同程度に粗くされているが、粗さの差によってピーリング発生箇所が決まるわけではなく、玉が反負荷圏に移動したとき、玉の自転軸が様々に変化して玉の表面全体で負荷を受けることにより玉表面の疲労が緩和されるため、回転輪である内輪にピーリングが発生したものである。 On the other hand, in Comparative Examples 1 and 2, when the L 10 (reliability 90%) life reached 65 hours and 53 hours, the vibration value reached 5 times the initial vibration value, and each of the five test bearings. In all cases, peeling damage was observed on the balls or inner rings. Each of the above test times is 1/3 or less of the calculated life. For Comparative Example 1, the ball surface roughness before the test is good at 0.005 μmRa, but the nitrided layer is not formed on the cage, and the wear powder generated by the wear on the pocket inner surface is the ball and the raceway surface. Peeling damage occurred on the ball. In Comparative Example 2 as well, no nitride layer was formed on the cage, and wear powder generated by wear on the inner surface of the pocket entered between the balls and the raceway surface, causing peeling damage to the inner ring. In Comparative Example 2, the surface roughness of the ball before the test is 0.02 μmRa, which is about the same as the surface roughness of the raceway surface. When moving to the load zone, the ball's rotation axis changes variously, and the load on the entire surface of the ball reduces the fatigue of the ball surface, so peeling occurs on the inner ring, which is a rotating wheel. .

比較例3は、5個中2個がそれぞれ104時間および130時間経過した時点で初期振動値の5倍以上の振動値に達し、玉にピーリング損傷が認められた。これは、ポケット内面に形成された窒化層の厚さが板厚の0.1%と薄いため、試験後のポケット内面に若干の磨耗が認められ、磨耗粉が玉と軌道面との間に入り込み、玉にピーリング損傷が発生したものである。   In Comparative Example 3, two of the five pieces reached a vibration value of 5 times or more of the initial vibration value when 104 hours and 130 hours had elapsed, respectively, and peeling damage was observed on the balls. This is because the nitride layer formed on the inner surface of the pocket is as thin as 0.1% of the plate thickness, so that a slight amount of wear is observed on the inner surface of the pocket after the test, and the wear powder is between the ball and the raceway surface. Peeling damage occurred on the ball.

比較例4は、5個中1個が99時間経過した時点で初期振動値の5倍以上の振動値に達し、焼付きおよび保持器の断裂が認められた。これは、試験前の玉表面粗さが0.02μmRaと粗いため油膜形成性が低下しており(即ち、油膜パラメータΛが小さく)、また、保持器のポケット内面に形成された窒化層の厚さが板厚の15%と厚いため保持器の靱性が低下しており、このため、メタルコンタクトを生じて焼付きが発生した後、玉がロックして保持器に繰り返し引っ張り応力が作用した結果、保持器の断裂に至ったものである。   In Comparative Example 4, one of the five pieces reached a vibration value of 5 times or more of the initial vibration value when 99 hours had elapsed, and seizure and breakage of the cage were observed. This is because the ball surface roughness before the test is as rough as 0.02 μmRa, so that the oil film formation is reduced (that is, the oil film parameter Λ is small), and the thickness of the nitride layer formed on the inner surface of the pocket of the cage As a result, the toughness of the cage is reduced because the thickness is 15% of the plate thickness. For this reason, after seizure occurs due to metal contact, the ball locks and the tensile stress acts repeatedly on the cage. The cage was torn.

以上の結果から明らかなように、少なくとも保持器のポケット内面に板厚の1%以上且つ9%以下の窒化層を形成し、玉(転動体)の表面粗さを0.003μmRa以上且つ0.01μmRa以下とすることにより、玉と保持器との摩擦係数を低下させ、玉および保持器の磨耗を抑制することができる。好ましくは窒化層の厚さを保持器の板厚の1%以上且つ5%以下とすることにより、より確実に玉および保持器の磨耗を抑制し、また、保持器の強度と靭性を両立させて保持器の破損(疲労破損、衝撃破損)を防止することができる。これにより、過酷な使用条件下(トランスミッション用潤滑油の供給不足、低粘度のトランスミッション用潤滑油の使用、高温環境、等)においても、軸受の早期剥離を防止して軸受寿命を向上させることができる。   As apparent from the above results, a nitride layer having a thickness of 1% or more and 9% or less of the plate thickness is formed at least on the inner surface of the pocket of the cage, and the surface roughness of the balls (rolling elements) is 0.003 μmRa or more and 0. By setting it to 01 μmRa or less, the friction coefficient between the balls and the cage can be reduced, and wear of the balls and the cage can be suppressed. Preferably, the thickness of the nitrided layer is 1% or more and 5% or less of the cage thickness, so that the wear of the balls and the cage can be more reliably suppressed, and the strength and toughness of the cage can be balanced. The cage can be prevented from being damaged (fatigue damage, impact damage). As a result, even under harsh usage conditions (insufficient supply of transmission lubricant, use of low-viscosity transmission lubricant, high temperature environment, etc.), it is possible to prevent the bearing from peeling early and improve the bearing life. it can.

尚、本発明は、前述した実施形態及び実施例に限定されるものではなく、適宜、変形、改良、等が可能である。その他、前述した実施形態及び実施例における各構成要素の材質、形状、寸法、数値、形態、数、配置箇所、等は本発明を達成できるものであれば任意であり、限定されない。   Note that the present invention is not limited to the above-described embodiments and examples, and modifications, improvements, and the like can be made as appropriate. In addition, the material, shape, dimension, numerical value, form, number, arrangement location, and the like of each component in the above-described embodiments and examples are arbitrary and are not limited as long as the present invention can be achieved.

本発明の転がり軸受の部分破断斜視図である。It is a partial fracture perspective view of the rolling bearing of the present invention. 図1における保持器に玉が保持された状態を示す要部拡大断面図である。It is a principal part expanded sectional view which shows the state by which the ball | bowl was hold | maintained at the holder | retainer in FIG.

符号の説明Explanation of symbols

1 転がり軸受
2 外輪
3 内輪
4 金属製保持器
4a ポケット
5 玉(転動体)
6b 窒化層
t 板厚
DESCRIPTION OF SYMBOLS 1 Rolling bearing 2 Outer ring 3 Inner ring 4 Metal cage 4a Pocket 5 Ball (rolling element)
6b Nitride layer
t Thickness

Claims (2)

外輪と、内輪と、前記外輪と前記内輪との間に転動自在に配置された複数の転動体と、前記転動体を転動自在に保持する複数のポケットが形成された金属製保持器と、を具備する転がり軸受であって、
前記金属製保持器が、少なくとも前記転動体と接触する前記ポケットの内面に、当該金属製保持器の板厚の1%以上且つ9%以下の厚さの窒化層を有していることを特徴とする転がり軸受。
An outer ring, an inner ring, a plurality of rolling elements arranged between the outer ring and the inner ring so as to be freely rollable, and a metal cage formed with a plurality of pockets for holding the rolling elements so as to roll freely. A rolling bearing comprising:
The metal cage has a nitride layer having a thickness of 1% or more and 9% or less of the plate thickness of the metal cage on at least the inner surface of the pocket that contacts the rolling element. Rolling bearing.
前記転動体の表面粗さが、0.003μmRa以上且つ0.01μmRa以下であることを特徴とする請求項1記載の転がり軸受。   The rolling bearing according to claim 1, wherein the rolling element has a surface roughness of 0.003 μmRa or more and 0.01 μmRa or less.
JP2004061886A 2004-03-05 2004-03-05 Rolling bearing Pending JP2005249108A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004061886A JP2005249108A (en) 2004-03-05 2004-03-05 Rolling bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004061886A JP2005249108A (en) 2004-03-05 2004-03-05 Rolling bearing

Publications (1)

Publication Number Publication Date
JP2005249108A true JP2005249108A (en) 2005-09-15

Family

ID=35029772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004061886A Pending JP2005249108A (en) 2004-03-05 2004-03-05 Rolling bearing

Country Status (1)

Country Link
JP (1) JP2005249108A (en)

Similar Documents

Publication Publication Date Title
US8210754B2 (en) Radial roller bearing having hollow rollers
US20070269158A1 (en) Tapered roller bearing for automobile transmission
JP2007107588A (en) Rolling bearing
KR101271788B1 (en) Pulley support structure for belt-drive continuously variable transmission and belt-drive continuously variable transmission
JPH11236920A (en) Rolling bearing
US8157452B2 (en) Radial roller bearing for storing shafts in wind turbine transmissions
US20050047694A1 (en) Rolling bearing
JPH102336A (en) Retainer for bearing and manufacture therefor
EP1541883A1 (en) Rolling bearing
JPH10131970A (en) Rolling bearing and its manufacture
JP2000065069A (en) Ball bearing
US11319994B2 (en) Thrust roller bearing
JP2006071022A (en) Rolling bearing
JP2005249108A (en) Rolling bearing
JP2007155021A (en) Roller bearing
JP2004239443A (en) Rolling bearing
JP2004183765A (en) Rolling bearing for belt-type continuously variable transmission
JP2007056940A (en) Thrust needle roller bearing
JP2005076674A (en) Tapered roller bearing for transmission of automobile
JP2005240867A (en) Thrust needle bearing
JP2006112559A (en) Tapered roller bearing
JPH1162990A (en) Multipoint contact ball bearing
JP2007078026A (en) Deep groove ball bearing
JP2009162261A (en) Deep groove ball bearing
JP2008144879A (en) Retainer for rolling bearing and rolling bearing

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070302

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090120

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090526