JP2005248707A - Gas turbine combustion device, and control device and control method for gas turbine combustion device - Google Patents

Gas turbine combustion device, and control device and control method for gas turbine combustion device Download PDF

Info

Publication number
JP2005248707A
JP2005248707A JP2004055797A JP2004055797A JP2005248707A JP 2005248707 A JP2005248707 A JP 2005248707A JP 2004055797 A JP2004055797 A JP 2004055797A JP 2004055797 A JP2004055797 A JP 2004055797A JP 2005248707 A JP2005248707 A JP 2005248707A
Authority
JP
Japan
Prior art keywords
control
stage combustion
combustion
unit
combustor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004055797A
Other languages
Japanese (ja)
Inventor
Junichi Asano
純一 浅野
Takeshi Nasu
健 那須
Akihiro Tanaka
昭弘 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Original Assignee
Kansai Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc filed Critical Kansai Electric Power Co Inc
Priority to JP2004055797A priority Critical patent/JP2005248707A/en
Publication of JP2005248707A publication Critical patent/JP2005248707A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Turbines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent abrupt opening and closing of a flow control valve during switching control of a combustor. <P>SOLUTION: When exhaust gas temperature control is actuated during switching control of a combustor, the control device promptly stops the switching control of a combustor. Thereby, abrupt opening or closing of a flow control valve can be prevented, which leads to prevention of a service life loss and of an unstable control state of a gas turbine combustion device. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は1段目燃焼部と、1段目燃焼部を火種として着火される2段目燃焼部を備えた2段燃焼式のガスタービン燃焼装置およびその制御方法に関するものである。   The present invention relates to a two-stage combustion type gas turbine combustion apparatus including a first-stage combustion section, and a second-stage combustion section that is ignited using the first-stage combustion section as a fire type, and a control method thereof.

ガスタービン1は、図2に示すように、空気圧縮機2と、燃焼器3と、タービン部4を備えている。ガスタービン1は、空気圧縮機2で圧縮した圧縮空気5と燃料6を、燃焼器3へ導き、これを混合して燃焼し、高温高圧の燃焼ガス7としてタービン部4へ噴射し、タービンを廻して(燃焼ガス7に仕事をさせて)エネルギを取り出している。図2中、8は燃料を供給する燃料母管であり、9はガスタービン燃焼装置の制御装置である。   As shown in FIG. 2, the gas turbine 1 includes an air compressor 2, a combustor 3, and a turbine unit 4. The gas turbine 1 introduces the compressed air 5 and fuel 6 compressed by the air compressor 2 to the combustor 3, mixes and burns them, and injects them as high-temperature and high-pressure combustion gas 7 to the turbine section 4. Rotating (working the combustion gas 7) to extract energy. In FIG. 2, 8 is a fuel mother pipe for supplying fuel, and 9 is a control device for the gas turbine combustion apparatus.

また、ガスタービン1は、例えば、図2に示すように、発電機10に接続され、発電装置として利用されている。発電用のガスタービン1の回転数は、発電機10の交流周波数によって決まり、例えば、60Hzでは、3600rpmで回転する。この場合、発電機10の出力はガスタービン1の出力によって決まり、ガスタービンの出力は、燃焼器3へ供給する燃料の流量や空気圧縮機2から燃焼器3に供給する空気量を調整することで調整される。   In addition, the gas turbine 1 is connected to a generator 10 and used as a power generation device, for example, as shown in FIG. The rotation speed of the gas turbine 1 for power generation is determined by the AC frequency of the generator 10 and, for example, rotates at 3600 rpm at 60 Hz. In this case, the output of the generator 10 is determined by the output of the gas turbine 1, and the output of the gas turbine adjusts the flow rate of fuel supplied to the combustor 3 and the amount of air supplied from the air compressor 2 to the combustor 3. It is adjusted with.

ガスタービン1に用いられる一般的な燃焼器3は、最も環境対応(低NOx)型である予混合燃焼方式を採り入れた2段燃焼式燃焼装置が採用されている。図3は、その予混合燃焼方式を採用した燃焼器3(2段燃焼式低NOx燃焼装置)およびその周囲要部を示すものである。   As a general combustor 3 used in the gas turbine 1, a two-stage combustion type combustion apparatus adopting a premixed combustion method which is the most environmentally friendly (low NOx) type is adopted. FIG. 3 shows a combustor 3 (two-stage combustion type low NOx combustion apparatus) adopting the premixed combustion method and its peripheral main part.

この燃焼器3は、図3に示すように、燃焼筒20内の中心部に配設された1段目燃焼部21と、1段目燃焼部21の周りに配設された2段目燃焼部22で構成されている。1段目燃焼部21、2段目燃焼部22が配設された燃焼筒20の先端には、燃焼ガスをタービン部4に送るトラジションピース23が配設されている。   As shown in FIG. 3, the combustor 3 includes a first-stage combustion section 21 disposed at the center of the combustion cylinder 20 and a second-stage combustion disposed around the first-stage combustion section 21. The unit 22 is configured. A transition piece 23 that sends combustion gas to the turbine section 4 is disposed at the tip of the combustion cylinder 20 in which the first-stage combustion section 21 and the second-stage combustion section 22 are disposed.

燃焼器3は、空気圧縮機2とタービン部4に連結された主軸の周りに複数台並設されており、各燃焼器3への燃料供給は、1段目燃焼部21に燃料を供給する第1燃料マニホールド26と、2段目燃焼部22に燃料を供給する第2燃料マニホールド27を介して行なわれている。各燃料マニホールド26、27には燃料母管8から燃料を供給する燃料供給配管28、29に、それぞれ燃料の圧力制御弁30、31と流量制御弁32、33が取り付けられている。   A plurality of combustors 3 are arranged around the main shaft connected to the air compressor 2 and the turbine unit 4, and fuel is supplied to each combustor 3 by supplying fuel to the first stage combustion unit 21. This is performed via a first fuel manifold 26 and a second fuel manifold 27 that supplies fuel to the second stage combustion section 22. Fuel pressure control valves 30 and 31 and flow rate control valves 32 and 33 are attached to fuel supply lines 28 and 29 for supplying fuel from the fuel mother pipe 8 to the fuel manifolds 26 and 27, respectively.

空気圧縮機2から燃焼器3内に供給された圧縮空気5は、燃焼筒20とトラジションピース23の外側に設けた流路34を流通させて、流通中に燃焼ガスとの熱交換により加熱され、各燃焼部21、22のノズル24、25から供給される燃料とともに燃焼される。なお、空気圧縮機2から燃焼器3に圧縮空気5を送る供給配管41には空気量を調整する空気量調整弁42が設けられている。   The compressed air 5 supplied from the air compressor 2 into the combustor 3 is circulated through the flow path 34 provided outside the combustion cylinder 20 and the transition piece 23, and is heated by heat exchange with the combustion gas during the circulation. Then, the fuel is burned together with the fuel supplied from the nozzles 24 and 25 of the combustion sections 21 and 22. An air amount adjusting valve 42 for adjusting the air amount is provided in the supply pipe 41 that sends the compressed air 5 from the air compressor 2 to the combustor 3.

燃焼器3の1段目燃焼部21では、1段目燃焼部21のノズル24の前方に設けた圧縮空気供給孔から供給する圧縮空気5aと、ノズル24から噴出される燃料6aを混合しつつ直接燃焼させる拡散燃焼が行なわれる。これに対し、2段目燃焼部22では、2段目燃焼部22のノズル25の基端側に圧縮空気供給孔を設け、燃焼用の圧縮空気5bとノズル25から噴出される燃料6bを予め混合して、混合した燃料を燃焼する予混合燃焼が行われている。   In the first stage combustion section 21 of the combustor 3, the compressed air 5 a supplied from the compressed air supply hole provided in front of the nozzle 24 of the first stage combustion section 21 and the fuel 6 a ejected from the nozzle 24 are mixed. Direct diffusion combustion is performed. On the other hand, in the second stage combustion section 22, a compressed air supply hole is provided on the base end side of the nozzle 25 of the second stage combustion section 22, and the combustion compressed air 5b and the fuel 6b ejected from the nozzle 25 are preliminarily supplied. Premixed combustion is performed in which the fuel is mixed and the mixed fuel is burned.

2段目燃焼部22の着火動作は、1段目燃焼部21が燃焼している状態で行われ、図4に示すように、まず、第2燃料マニホールド27の圧力制御弁31を開き、圧力制御弁31の開度を一定に固定する工程51と、第2燃料マニホールド27内の燃料の圧力を一定にしてから第2燃料マニホールド27の流量制御弁33を徐々に開く工程52を備えており、流量制御弁33が完全に開く途中で2段目燃焼部22は1段目燃焼部21が火種となって着火して終了する53。その後、2段目燃焼部22に供給する燃料の流量を制御することにより、ガスタービンの出力を調整する工程54に移行する。ガスタービン燃焼装置の2段目燃焼部22を着火させる動作は、「燃焼器切替」と称されており、本明細書でも適宜に「燃焼器切替」との用語を用い、2段目燃焼部22を着火させる動作の制御を「燃焼器切替の制御」という。   The ignition operation of the second-stage combustion unit 22 is performed in a state where the first-stage combustion unit 21 is burning. As shown in FIG. 4, first, the pressure control valve 31 of the second fuel manifold 27 is opened, and the pressure A step 51 for fixing the opening degree of the control valve 31 to a constant, and a step 52 for gradually opening the flow control valve 33 of the second fuel manifold 27 after the pressure of the fuel in the second fuel manifold 27 is made constant. In the middle of the flow control valve 33 being fully opened, the second stage combustion section 22 is ignited with the first stage combustion section 21 igniting and ends 53. Thereafter, the flow proceeds to step 54 where the output of the gas turbine is adjusted by controlling the flow rate of the fuel supplied to the second stage combustion unit 22. The operation of igniting the second stage combustion unit 22 of the gas turbine combustion apparatus is called “combustor switching”, and the term “combustor switching” is also used in this specification as appropriate. Control of the operation for igniting 22 is referred to as “combustor switching control”.

上述したガスタービン燃焼装置は、タービン部4に供給される燃焼ガス7の温度の設定に際し、タービンの耐熱温度が考慮され、タービンが損傷しない程度の温度に設定している。例えば、発明者らが使用する実機(日立F7FAガスタービン(ゼネラルエレクトリック社製))では、タービン部4に供給する燃焼ガス7の温度は1418℃に設定している。斯かる設定において、タービン部4に供給する燃焼ガス7の温度があまりに高温であるためこれを直接測定することはできない。このため、タービン部4に供給する燃焼ガス7の温度は、空気圧縮機2の出口圧力と、タービン部4から排気される排ガス温度11から推定することにより、間接的に測定している。なお、タービン部4に供給された高温高圧の燃焼ガス7は、タービン部4で圧力と温度がともに低下して排出され、排ガス温度は650度前後なので測定することができる。   In the gas turbine combustion apparatus described above, when the temperature of the combustion gas 7 supplied to the turbine unit 4 is set, the heat resistance temperature of the turbine is taken into consideration and the temperature is set so as not to damage the turbine. For example, in the actual machine (Hitachi F7FA gas turbine (manufactured by General Electric)) used by the inventors, the temperature of the combustion gas 7 supplied to the turbine section 4 is set to 1418 ° C. In such a setting, since the temperature of the combustion gas 7 supplied to the turbine section 4 is too high, it cannot be directly measured. For this reason, the temperature of the combustion gas 7 supplied to the turbine unit 4 is indirectly measured by estimating from the outlet pressure of the air compressor 2 and the exhaust gas temperature 11 exhausted from the turbine unit 4. Note that the high-temperature and high-pressure combustion gas 7 supplied to the turbine unit 4 is discharged with both the pressure and the temperature decreased in the turbine unit 4 and the exhaust gas temperature is around 650 degrees, so that it can be measured.

燃焼器3は、タービン部4の主軸の周りに複数台配設されており、各燃焼器3からタービン部4に向けてそれぞれ周方向にずれた位置に燃焼ガス7が供給され、それぞれ周方向にずれてタービン部4の後方に排気される。このため、タービン部4の後方には主軸の周りにそれぞれ周方向にずれた位置に、それぞれタービン部4から排気される排ガス温度11を測定する温度センサ(図示省略)を設けている。これにより、主軸の周りに複数台並設された燃焼器3の何れかに不具合が生じた場合には、各温度センサ間で測定される排ガス温度に著しい差が生じ、これを検知することにより、燃焼器3の不具合を検知することができるようになっている。燃焼ガスの温度を間接的に測定する場合のタービン部4の排ガス温度には、各温度センサにより測定された排ガス温度の平均値を用いる。   A plurality of the combustors 3 are arranged around the main shaft of the turbine unit 4, and the combustion gas 7 is supplied from the respective combustors 3 toward the turbine unit 4 at positions shifted in the circumferential direction, respectively. And the exhaust gas is exhausted to the rear of the turbine section 4. For this reason, a temperature sensor (not shown) for measuring the exhaust gas temperature 11 exhausted from the turbine unit 4 is provided behind the turbine unit 4 at positions shifted in the circumferential direction around the main shaft. As a result, when a malfunction occurs in any of the plurality of combustors 3 arranged around the main shaft, a significant difference occurs in the exhaust gas temperature measured between the temperature sensors. The malfunction of the combustor 3 can be detected. The average value of the exhaust gas temperature measured by each temperature sensor is used as the exhaust gas temperature of the turbine unit 4 when the temperature of the combustion gas is indirectly measured.

燃焼ガス7の温度は、空気圧縮機2の出口圧力と、タービン部4から排気される排ガス温度11と、燃焼ガス7の温度との関係を理論的に求めた図5に示す曲線S1に基づいて制御する。この曲線S1は、タービン部4に供給する燃焼ガス7の温度を、タービンが損傷しない程度の温度に設定する場合の空気圧縮機2の出口圧力とタービン部4の排ガス温度の関係を示している。なお、熱効率を考慮すれば、タービン部4に供給する燃焼ガス7の温度はできる限り高い温度に設定することが望ましい。このため、ガスタービンの出力を調整する工程54では、空気圧縮機2の出口圧力とタービン部4の排ガス温度が、この曲線S1上に位置するように燃料の流量制御弁32、33と空気流量調整弁42を調整している。   The temperature of the combustion gas 7 is based on a curve S1 shown in FIG. 5 in which the relationship between the outlet pressure of the air compressor 2, the exhaust gas temperature 11 exhausted from the turbine section 4 and the temperature of the combustion gas 7 is theoretically obtained. Control. This curve S1 shows the relationship between the outlet pressure of the air compressor 2 and the exhaust gas temperature of the turbine unit 4 when the temperature of the combustion gas 7 supplied to the turbine unit 4 is set to a temperature that does not damage the turbine. . In consideration of the thermal efficiency, it is desirable to set the temperature of the combustion gas 7 supplied to the turbine unit 4 as high as possible. For this reason, in the step 54 of adjusting the output of the gas turbine, the fuel flow control valves 32 and 33 and the air flow rate are set so that the outlet pressure of the air compressor 2 and the exhaust gas temperature of the turbine section 4 are located on this curve S1. The adjustment valve 42 is adjusted.

流量制御弁32、33と空気流量調整弁42の調整は、例えば、図6に示すように、空気圧縮機2の出口圧力5とタービン部4の排ガス温度11の関係が、図5に示す曲線S1よりも上にあるか否かを判定して行う61。この判定61で出口圧力5と排ガス温度11の関係が曲線S1よりも上にあるときは、まず空気量調整弁42を開くように制御する62。そして、再び、出口圧力5と排ガス温度11の関係が曲線S1よりも上にある否かを判定し63、この判定63で出口圧力5と排ガス温度11の関係がまだ曲線S1よりも上にあるときは、今度は流量制御弁32、33を絞るように制御する64。また、最初の判定61で、出口圧力5と排ガス温度11の関係が曲線S1よりも下にあるときは、空気量調整弁42を絞るように制御する65。そして、再び出口圧力5と排ガス温度11が曲線S1よりも上にある否かを判定し66、この判定65で出口圧力5と排ガス温度11の関係がまだ曲線S1よりも上にあるときは、今度は流量制御弁32、33を開くように制御する67(排ガス温度制御)。この排ガス温度制御は、燃焼器切替から2段目燃焼部22が燃焼している状態で常に作動し64、燃焼器切替の制御よりも優先して機能するようになっている。   Adjustment of the flow rate control valves 32 and 33 and the air flow rate adjustment valve 42 is, for example, as shown in FIG. 6, the relationship between the outlet pressure 5 of the air compressor 2 and the exhaust gas temperature 11 of the turbine section 4 is a curve shown in FIG. It is determined 61 by determining whether or not it is above S1. When the determination 61 determines that the relationship between the outlet pressure 5 and the exhaust gas temperature 11 is higher than the curve S1, first, the air amount adjustment valve 42 is controlled to be opened 62. Then, again, it is determined whether or not the relationship between the outlet pressure 5 and the exhaust gas temperature 11 is above the curve S1, and in this determination 63, the relationship between the outlet pressure 5 and the exhaust gas temperature 11 is still above the curve S1. At this time, the flow control valves 32 and 33 are controlled to be throttled 64 this time. Further, when the relationship between the outlet pressure 5 and the exhaust gas temperature 11 is lower than the curve S1 in the first determination 61, control is performed so that the air amount adjustment valve 42 is throttled 65. Then, it is determined again whether or not the outlet pressure 5 and the exhaust gas temperature 11 are above the curve S1, 66. When the relationship between the outlet pressure 5 and the exhaust gas temperature 11 is still above the curve S1 in this determination 65, Next, the flow control valves 32 and 33 are controlled to be opened 67 (exhaust gas temperature control). This exhaust gas temperature control always operates 64 in a state where the second stage combustion unit 22 is combusting after switching the combustor, and functions in preference to the control of the combustor switching.

また、図5に示す曲線S1の上方には、燃焼ガス7が高くなりすぎた場合に、安全性を考慮して1段目燃焼部21と2段目燃焼部22の燃焼を完全に停止させるための曲線S2が設定されている。ガスタービン燃焼装置の制御装置9は、図7に示すように、空気圧縮機2の出口圧力5とタービン部4の排ガス温度11の関係がこの曲線S2を越えるか否かを判定し71、越えたときには、流量制御弁32、33と圧力制御弁30、31を急激に閉じる72ように制御する(排ガス温度高トリップ制御)。   Further, above the curve S1 shown in FIG. 5, when the combustion gas 7 becomes too high, the combustion in the first stage combustion section 21 and the second stage combustion section 22 is completely stopped in consideration of safety. A curve S2 is set for this purpose. As shown in FIG. 7, the control device 9 of the gas turbine combustion apparatus determines whether the relationship between the outlet pressure 5 of the air compressor 2 and the exhaust gas temperature 11 of the turbine section 4 exceeds this curve S2, 71 and exceeds it. When the flow rate is adjusted, the flow control valves 32 and 33 and the pressure control valves 30 and 31 are controlled to be closed 72 (exhaust gas temperature high trip control).

また、ガスタービン燃焼装置の制御装置9は、図8に示すように、タービン部4の周囲に複数設けた温度センサ(図示省略)のうち、何れかの温度センサが他の温度センサよりも著しく低い温度、又は、著しく高い温度を測定したか否かを判定し81、タービン部の排ガス温度を測定する温度センサの偏差が所定の偏差より大きいときは、ガスタービン燃焼装置の何らかの異常を示すものであるから、この場合も、流量制御弁32、33と圧力制御弁30、31を急激に閉じるように制御する82(排ガス温度偏差制御)。   Further, as shown in FIG. 8, the control device 9 of the gas turbine combustion apparatus is configured such that any one of the temperature sensors (not shown) provided around the turbine unit 4 is significantly more than the other temperature sensors. It is determined whether or not a low temperature or a significantly high temperature has been measured 81, and if the deviation of the temperature sensor that measures the exhaust gas temperature of the turbine section is greater than a predetermined deviation, it indicates some abnormality of the gas turbine combustion device Therefore, also in this case, the flow control valves 32 and 33 and the pressure control valves 30 and 31 are controlled to be closed 82 (exhaust gas temperature deviation control).

排ガス温度偏差制御と排ガス温度高トリップ制御は、それぞれ燃焼器切替の制御と排ガス温度制御よりも優先して機能する。   Exhaust gas temperature deviation control and exhaust gas temperature high trip control function in preference to combustor switching control and exhaust gas temperature control, respectively.

この種ガスタービン燃焼装置に関連するものとしては、下記の特許文献が挙げられる。
特開平8−135910号公報
The following patent documents can be cited as related to this kind of gas turbine combustion apparatus.
JP-A-8-135910

ガスタービン燃焼器切替中は、燃焼器の完全着火と安定燃焼を図るため、上述したように燃料を送る圧力制御弁、流量制御弁、燃焼空気調整器を動作プログラムにより制御して着火動作を行っている。燃焼器切替中の供給する燃料の調整は、上述したように、まず圧力制御弁31を開き、供給する燃料の圧力を一定の圧力に上昇固定してから、燃料の流量制御弁32を徐々に開いていくというものである。   During gas turbine combustor switching, in order to achieve complete ignition and stable combustion of the combustor, as described above, the pressure control valve, flow control valve, and combustion air regulator that send fuel are controlled by the operation program to perform the ignition operation. ing. As described above, the adjustment of the fuel to be supplied during the combustor switching is performed by first opening the pressure control valve 31 and increasing and fixing the pressure of the supplied fuel to a constant pressure, and then gradually adjusting the fuel flow control valve 32. It is to open.

しかし、ガスタービン燃焼装置は、安全性を確保することが優先されるため、斯かる燃焼器切替の制御中においても排ガス温度制御(図6)や、排ガス温度高トリップ制御(図7)や、排ガス温度偏差制御(図8)が、燃焼器切替の制御(図4)に対して優先的に起動するようになっている。   However, since priority is given to ensuring safety in the gas turbine combustion apparatus, even during such combustor switching control, exhaust gas temperature control (FIG. 6), exhaust gas temperature high trip control (FIG. 7), The exhaust gas temperature deviation control (FIG. 8) is activated with priority over the combustor switching control (FIG. 4).

このため、燃焼器切替中でも、2段目燃焼部22の着火動作の途中で、燃焼器3に送られる燃料と空気の燃焼バランスが規定値を外れるなどした場合、強制的に2段目燃焼部22への燃料の供給が止められることが生じる。   For this reason, even when the combustor is switched, if the combustion balance between the fuel and air sent to the combustor 3 deviates from a specified value during the ignition operation of the second stage combustor 22, the second stage combustor is forcibly used. The supply of fuel to 22 is stopped.

具体的な事象として、燃焼ガスを各燃焼部21、22からタービン部4に導くトラジションピース23と呼ばれる配管に欠損が生じており、欠損部分から燃焼ガスが外部に漏れる不具合が生じた場合が想定される。この場合には、実際に燃焼器3からタービン部4に供給される燃焼ガス7の温度が規定の温度(実機例では1418℃)に達していないのに、トラジションピース23から外に漏れた燃焼ガスにより、タービン部4で排ガス温度が高く測定されてしまう。また、空気圧縮機2の性能低下や外衣部からの空気漏れなどの不具合によって、排ガスの冷却用空気が減少し、排ガス温度7が上昇する。   As a specific event, there is a case where a defect has occurred in a pipe called a transition piece 23 that guides the combustion gas from the combustion units 21 and 22 to the turbine unit 4, and a problem has occurred in which the combustion gas leaks from the defective part to the outside. is assumed. In this case, the temperature of the combustion gas 7 that is actually supplied from the combustor 3 to the turbine unit 4 has not reached the specified temperature (1418 ° C. in the actual machine example), but leaked out of the transition piece 23. Due to the combustion gas, the exhaust gas temperature is measured high in the turbine section 4. In addition, due to problems such as a decrease in performance of the air compressor 2 and air leakage from the outer garment, the cooling air for the exhaust gas decreases and the exhaust gas temperature 7 rises.

以下、このような不具合が生じている状況で燃焼器切替の制御が行われた場合に起きる事象を図9に示す時系列図に基づいて時系列に説明する。図9中、L1はタービン部の排ガス温度の平均値を、L2は燃料供給のための制御信号量を、L3はタービン部の排ガス温度の偏差を、L4は空気圧縮機の出口圧力を、L5は2段目燃焼部の圧力制御弁の開度を、L6は2段目燃焼部の流量制御弁の開度を、L7はガスタービンの出力を、L8は空気量調整弁の開度をそれぞれ示している。なお、圧力制御弁31、流量制御弁33、空気量調整弁42については、図3を参照されたい。   Hereinafter, events that occur when combustor switching control is performed in a situation where such a problem occurs will be described in time series based on the time series diagram shown in FIG. 9. In FIG. 9, L1 is the average value of the exhaust gas temperature of the turbine section, L2 is the control signal amount for fuel supply, L3 is the deviation of the exhaust gas temperature of the turbine section, L4 is the outlet pressure of the air compressor, L5 Indicates the opening of the pressure control valve in the second stage combustion section, L6 indicates the opening of the flow control valve in the second stage combustion section, L7 indicates the output of the gas turbine, and L8 indicates the opening of the air amount adjustment valve. Show. Refer to FIG. 3 for the pressure control valve 31, the flow control valve 33, and the air amount adjustment valve.

燃焼器切替の制御が行われると、図9に示すように、2段目燃焼部22の燃料の圧力制御弁31の開度L5が一定に固定され(A)、2段目燃焼部22の燃料の流量制御弁33が徐々に開かれ(B)、流量制御弁33が開かれる途中で2段目燃焼部22が点火される(C)。2段目燃焼部22が点火されると、トラジションピース23から外に漏れた燃焼ガスにより、タービン部4の排ガス温度の平均値L1が上昇し、空気圧縮機2の出口圧力とタービン部4の排ガス温度の関係が図5の曲線S1を越える(D)。   When the combustor switching control is performed, as shown in FIG. 9, the opening L5 of the fuel pressure control valve 31 of the second stage combustion section 22 is fixed (A), and the second stage combustion section 22 The fuel flow control valve 33 is gradually opened (B), and the second stage combustion unit 22 is ignited while the flow control valve 33 is being opened (C). When the second stage combustion unit 22 is ignited, the combustion gas leaked outside from the transition piece 23 raises the average value L1 of the exhaust gas temperature of the turbine unit 4, and the outlet pressure of the air compressor 2 and the turbine unit 4 The exhaust gas temperature relationship exceeds the curve S1 in FIG. 5 (D).

空気圧縮機2の出口圧力とタービン部4の排ガス温度の関係が曲線S1を越えると、図6に示す排ガス温度制御が作動する。この排ガス温度制御は、燃焼器切替の制御に優先して機能する。このため排ガス温度制御により、2段目燃焼部22の圧力制御弁31と流量制御弁33を急激に絞るとともに、圧縮空気の供給量を調整する空気量調整弁42が増開される(E)。   When the relationship between the outlet pressure of the air compressor 2 and the exhaust gas temperature of the turbine section 4 exceeds the curve S1, the exhaust gas temperature control shown in FIG. 6 is activated. This exhaust gas temperature control functions in preference to the combustor switching control. Therefore, the exhaust gas temperature control causes the pressure control valve 31 and the flow rate control valve 33 of the second stage combustion unit 22 to be rapidly throttled, and the air amount adjustment valve 42 for adjusting the supply amount of compressed air is opened (E). .

排ガス温度制御(E)の作動により、圧力制御弁31と流量制御弁33が急激に絞られ、空気量調整弁42が増開されると、トラジションピース23から外に漏れた燃焼ガスの温度も下がるので、タービン部の排ガス温度が急激に下がる(F)。排ガス温度(平均値L1)がある程度下がると、排ガス温度制御が解除され、再び燃焼器切替の制御が機能し始める。このとき、(C)の時点で2段目燃焼部22が一度着火しているので、燃焼器切替の制御により要求される圧力制御弁31と流量制御弁33の開度信号が大きく、圧力制御弁31と流量制御弁33はそれぞれ急激に開かれる(G)。圧力制御弁31と流量制御弁33を急激に開くと、トラジションピース23に損傷がある燃焼器から高温の燃焼ガスが漏れるため、タービン部4の排ガス温度を測定する温度センサの一部のみが高い温度を計測する(H)。このため、図8に示す排ガス温度偏差制御が作動する。排ガス温度偏差制御は、燃焼器切替の制御に優先して機能し、燃焼器切替の動作を停止させるように制御し、2段目燃焼部の圧力制御弁31と流量制御弁33を閉じる(I)。   When the pressure control valve 31 and the flow rate control valve 33 are rapidly throttled by the operation of the exhaust gas temperature control (E) and the air amount adjustment valve 42 is opened, the temperature of the combustion gas leaked to the outside from the transition piece 23 As a result, the exhaust gas temperature in the turbine section rapidly decreases (F). When the exhaust gas temperature (average value L1) falls to some extent, the exhaust gas temperature control is canceled and the combustor switching control starts to function again. At this time, since the second stage combustion unit 22 has ignited once at the time of (C), the opening signals of the pressure control valve 31 and the flow rate control valve 33 required by the control of the combustor switching are large, and the pressure control The valve 31 and the flow rate control valve 33 are each suddenly opened (G). When the pressure control valve 31 and the flow rate control valve 33 are suddenly opened, high-temperature combustion gas leaks from the combustor having a damaged transition piece 23, so that only a part of the temperature sensor that measures the exhaust gas temperature of the turbine unit 4 is used. Measure high temperature (H). For this reason, the exhaust gas temperature deviation control shown in FIG. 8 operates. The exhaust gas temperature deviation control functions in preference to the combustor switching control, is controlled to stop the combustor switching operation, and closes the pressure control valve 31 and the flow control valve 33 of the second stage combustion section (I ).

燃焼器切替の制御は、2段目燃焼部22の着火に失敗した場合でも、一度、1段目燃焼部21が燃焼している状態に戻し、数十秒間経ってから再び燃焼器切替の制御を行うようになっている(J)(リトライ)。   Even when the ignition of the second-stage combustion unit 22 fails, the combustor switching control is once returned to the state where the first-stage combustion unit 21 is combusted, and after several tens of seconds, the combustor switching control is performed again. (J) (retry).

2回目の点火動作(リトライ)では、既に1回目の点火動作でタービン部4の排ガス温度が少し高くなっているため、流量制御弁33が開き出すと、排ガス温度が急激に上昇する(K)。このとき、空気圧縮機2の出口圧力とタービン部4の排ガス温度の関係が図5の曲線S2を越えると、図7に示す排ガス温度高トリップ制御が作動する。排ガス温度高トリップ制御は、燃焼器切替の制御及び排ガス温度制御に優先して機能し、2段目燃焼部22の流量制御弁33と圧力制御弁31を急激に閉じるとともに、空気量調整弁42を増開させる(L)。   In the second ignition operation (retry), since the exhaust gas temperature of the turbine section 4 has already been slightly higher in the first ignition operation, the exhaust gas temperature rapidly rises when the flow control valve 33 opens (K). . At this time, if the relationship between the outlet pressure of the air compressor 2 and the exhaust gas temperature of the turbine section 4 exceeds the curve S2 of FIG. 5, the exhaust gas temperature high trip control shown in FIG. 7 is activated. The exhaust gas temperature high trip control functions in preference to the combustor switching control and the exhaust gas temperature control. The flow control valve 33 and the pressure control valve 31 of the second stage combustion unit 22 are rapidly closed, and the air amount adjustment valve 42 is used. (L).

燃焼器切替の制御は、排ガス温度高トリップ制御により、2段目燃焼部22の着火失敗が2回起こると、燃焼器切替の動作を停止して1段目燃焼部21の燃焼動作も停止させ、ガスタービンはメンテナンスのため待機状態になる。   When the ignition failure of the second stage combustion unit 22 occurs twice by the exhaust gas temperature high trip control, the combustor switching control stops the combustor switching operation and also stops the combustion operation of the first stage combustion unit 21. The gas turbine is put on standby for maintenance.

上述したように、2段目燃焼部22を点火させる燃焼器切替の制御において、何らかのトラブルでタービン部4の排ガス温度が高くなった場合でも、排ガス温度制御(E)、排ガス温度偏差制御(I)、排ガス温度高トリップ制御(L)が機能して安全性が確保されている。   As described above, in the control of the combustor switching for igniting the second stage combustion unit 22, even when the exhaust gas temperature of the turbine unit 4 becomes high due to some trouble, the exhaust gas temperature control (E) and the exhaust gas temperature deviation control (I ), Exhaust gas temperature high trip control (L) is functioning to ensure safety.

しかし、上述した現状の制御では、2段目燃焼部22を点火させる燃焼器切替の制御の途中に、排ガス温度制御(E)、排ガス温度偏差制御(I)、排ガス温度高トリップ制御(L)が順次に機能し、圧力制御弁31や流量制御弁33を急激に開閉させる。このため、高温域でガスタービン燃焼装置に急激な温度変化が生じ、ガスタービン燃焼装置の寿命を進行させることになる。また、排ガス温度制御から、燃焼器切替の制御に移行する過程で、通常の燃焼器切替の制御に比べて、流量制御弁33が特に急激に開かれるため、制御上不安定な状態に陥り易いという問題もある。   However, in the current control described above, the exhaust gas temperature control (E), the exhaust gas temperature deviation control (I), and the exhaust gas temperature high trip control (L) are performed during the combustor switching control that ignites the second stage combustion unit 22. Sequentially function to open and close the pressure control valve 31 and the flow control valve 33 abruptly. For this reason, a rapid temperature change occurs in the gas turbine combustion device in a high temperature range, and the life of the gas turbine combustion device is advanced. Further, in the process of shifting from the exhaust gas temperature control to the combustor switching control, the flow rate control valve 33 is opened particularly rapidly as compared with the normal combustor switching control, so that the control is likely to be unstable. There is also a problem.

現状では、燃焼器切替中は、完全なプログラム制御をとなっているから制御員の介在が不可能となっており、結果として、上述したように排ガス温度高トリップするか、制御員の判断で燃焼器切替の制御自体をハンドトリップ(手動停止)させることになる。   At present, during the switching of the combustor, complete program control is performed, so it is impossible for the control person to intervene. As a result, the exhaust gas temperature is tripped as described above, or the control person judges. The combustor switching control itself is hand tripped (manual stop).

本発明は、1段目燃焼部が燃焼している状態で2段目燃焼部に供給する燃料の流量を調整して2段目燃焼部を着火させる動作を制御する制御(上記例では、「燃焼器切替の制御」)の途中で、燃焼器の燃焼ガスの温度に基づいて2段目燃焼部に供給する燃料の流量を調整する制御(上記例では、「排ガス温度制御」)が作動した場合に、2段目燃焼部の着火動作を停止させるようにした。   The present invention controls the operation of igniting the second-stage combustion section by adjusting the flow rate of the fuel supplied to the second-stage combustion section while the first-stage combustion section is burning (in the above example, “ During the control of combustor switching "), a control (in the above example," exhaust gas temperature control ") that adjusts the flow rate of fuel supplied to the second stage combustion section based on the temperature of the combustion gas in the combustor was activated. In such a case, the ignition operation of the second stage combustion section is stopped.

本発明は、2段目燃焼部を着火させる動作を制御する制御の途中で、燃焼器の燃焼ガスの温度に基づいて2段目燃焼部に供給する燃料の流量を調整する制御が作動した場合に、2段目燃焼部の着火動作を停止させるようにしたので、燃焼器切替の制御の途中で何らかのトラブルが生じ、タービン部の排ガス温度が高くなり排ガス温度制御が機能したときには、燃焼器切替の制御が停止される。これにより、流量制御弁が急激に開閉されることがなく、高温域でガスタービン燃焼装置に急激な温度変化が生じるのを防止することができる。これによりガスタービン燃焼装置の寿命を進行させることを防止でき、またガスタービン燃焼装置が制御上不安定な状態に陥いることも防止できる。   In the present invention, when the control for adjusting the flow rate of the fuel supplied to the second-stage combustion section is activated based on the temperature of the combustion gas of the combustor during the control for controlling the operation for igniting the second-stage combustion section. In addition, since the ignition operation of the second stage combustion unit is stopped, when some trouble occurs during the control of the combustor switching, the exhaust gas temperature of the turbine unit becomes high and the exhaust gas temperature control functions, the combustor switching is performed. Control is stopped. As a result, the flow rate control valve is not suddenly opened and closed, and a sudden temperature change can be prevented from occurring in the gas turbine combustion device in a high temperature range. Thereby, it is possible to prevent the life of the gas turbine combustion device from being advanced, and it is also possible to prevent the gas turbine combustion device from being in an unstable state in terms of control.

以下、本発明の一実施形態に係るガスタービン燃焼装置およびその制御方法を図面に基づいて説明する。なお、上述したガスタービン燃焼装置と同じ作用を奏する部材、部位には同一の符号を付して説明する。   Hereinafter, a gas turbine combustion apparatus and a control method thereof according to an embodiment of the present invention will be described with reference to the drawings. In addition, the same code | symbol is attached | subjected and demonstrated to the member and site | part which show | plays the same effect | action as the gas turbine combustion apparatus mentioned above.

この制御装置は、従来の燃焼器切替の制御の途中で、排ガス温度制御が作動したときに(図9中のEのときに)、燃焼器切替の制御を停止させるものである。   This control device is configured to stop the combustor switching control when the exhaust gas temperature control is activated during the conventional combustor switching control (in the case of E in FIG. 9).

具体的には、図1のフロー図に示すように、圧力制御弁31の開度を固定し、流量制御弁33を開動させていく燃焼器切替の制御(第1制御)の途中に、空気圧縮機2の出口圧力とタービン部4の排ガス温度の関係が図5の曲線S1よりも上になって排ガス温度制御(第2制御)が作動したかを判定する判定部101と、この判定部において、排ガス温度制御が作動したと判定された場合に、2段目燃焼部の着火動作を制御する燃焼器切替の制御を停止させる処理部102とを備えている。この新たな制御(第3制御)は、燃焼器切替の制御及び排ガス温度制御に優先して機能する。   Specifically, as shown in the flowchart of FIG. 1, during the combustor switching control (first control) in which the opening degree of the pressure control valve 31 is fixed and the flow rate control valve 33 is opened, air A determination unit 101 that determines whether the relationship between the outlet pressure of the compressor 2 and the exhaust gas temperature of the turbine unit 4 is higher than the curve S1 in FIG. 5 and the exhaust gas temperature control (second control) is activated, and the determination unit , The processing unit 102 for stopping the combustor switching control for controlling the ignition operation of the second-stage combustion unit when it is determined that the exhaust gas temperature control is activated. This new control (third control) functions in preference to combustor switching control and exhaust gas temperature control.

燃焼器切替の制御に、この制御を加えることで、燃焼器に不具合が生じ、排ガス温度制御が作動したとき、すなわち、図9のEの時点ですぐに燃焼器切替の制御を停止される。これにより、排ガス温度偏差制御や排ガス温度高トリップ制御などが作動することがなく、流量制御弁が急激に開閉される動作を防止することができる。これにより、流量調整弁が急激に開閉される状態に陥らず、ガスタービン燃焼装置の寿命を進行させることを防止でき、また、制御上不安定な状態に陥ることも防止できる。   When this control is added to the combustor switching control, a malfunction occurs in the combustor and the exhaust gas temperature control is activated, that is, the combustor switching control is stopped immediately at the time point E in FIG. Thereby, exhaust gas temperature deviation control, exhaust gas temperature high trip control, etc. do not operate | move and the operation | movement by which a flow control valve is opened and closed rapidly can be prevented. As a result, the flow rate adjusting valve does not fall into a state where it is suddenly opened and closed, so that the life of the gas turbine combustion device can be prevented from progressing, and it can also be prevented from falling into an unstable state in terms of control.

以上、本発明の一実施形態を説明したが、本発明は上記の実施形態に限定されるものではない。   Although one embodiment of the present invention has been described above, the present invention is not limited to the above embodiment.

本発明の一実施形態に係る新たな制御を組み込んだ燃焼器切替の制御を示すフロー図。The flowchart which shows the control of the combustor switching incorporating the new control which concerns on one Embodiment of this invention. ガスタービンの全体構成を示す概略図。Schematic which shows the whole structure of a gas turbine. 燃焼器を示す縦断側面図。The vertical side view which shows a combustor. 燃焼器切替の制御のフロー図。The flowchart of control of combustor switching. 排ガス温度制御のしきい値を示す図。The figure which shows the threshold value of exhaust gas temperature control. 排ガス温度制御のフロー図。FIG. 3 is a flowchart of exhaust gas temperature control. 排ガス温度高トリップ制御のフロー図。Flow chart of exhaust gas temperature high trip control. 排ガス温度偏差制御のフロー図。The flowchart of exhaust gas temperature deviation control. トラジションピースに不具合が生じている状況で燃焼器切替の制御が行われた場合に起きる事象を示す時系列図。The time series figure which shows the event which occurs when control of combustor switching is performed in the situation where the malfunction has occurred in the transition piece.

符号の説明Explanation of symbols

1 ガスタービン
2 空気圧縮機
3 燃焼器
4 タービン部
5 圧縮空気
6 燃料
7 燃焼ガス
8 燃料母管
9 制御装置
10 発電機
11 排ガス
20 燃焼筒
21 1段目燃焼部
22 2段目燃焼部
23 トラジションピース
24、25 ノズル
26、27 燃料マニホールド
28、29 燃料供給配管
30、31 圧力制御弁
32、33 流量制御弁
41 供給配管
42 空気量調整弁
DESCRIPTION OF SYMBOLS 1 Gas turbine 2 Air compressor 3 Combustor 4 Turbine part 5 Compressed air 6 Fuel 7 Combustion gas 8 Fuel mother pipe 9 Control apparatus 10 Generator 11 Exhaust gas 20 Combustion cylinder 21 First stage combustion part 22 Second stage combustion part 23 Suction pieces 24, 25 Nozzles 26, 27 Fuel manifolds 28, 29 Fuel supply piping 30, 31 Pressure control valves 32, 33 Flow control valve 41 Supply piping 42 Air amount adjustment valve

Claims (3)

1段目燃焼部と、前記1段目燃焼部を火種として着火される2段目燃焼部とを備えた燃焼器と、
前記1段目燃焼部が燃焼している状態で前記2段目燃焼部に供給する燃料の流量を調整して2段目燃焼部の着火させる動作を制御する第1制御部と、
燃焼器の燃焼ガスの温度に基づいて2段目燃焼部に供給する燃料の流量を調整する第2制御部を備えたガスタービン燃焼装置において、
前記第1制御部による2段目燃焼部の着火動作制御の途中で、前記第2制御部により2段目燃焼部に供給する燃料の流量を調整する制御が作動した場合に、前記第1制御部による2段目燃焼部の着火動作を停止させる第3制御部を備えたことを特徴とするガスタービン燃焼装置。
A combustor comprising a first stage combustion section and a second stage combustion section that is ignited using the first stage combustion section as a fire type;
A first control unit that controls an operation of igniting the second-stage combustion unit by adjusting a flow rate of fuel supplied to the second-stage combustion unit while the first-stage combustion unit is burning;
In the gas turbine combustion apparatus including the second control unit that adjusts the flow rate of the fuel supplied to the second stage combustion unit based on the temperature of the combustion gas of the combustor,
When the control for adjusting the flow rate of the fuel supplied to the second stage combustion unit by the second control unit is activated during the ignition operation control of the second stage combustion unit by the first control unit, the first control A gas turbine combustion apparatus comprising a third control unit that stops the ignition operation of the second-stage combustion unit by the unit.
1段目燃焼部と、前記1段目燃焼部を火種として着火される2段目燃焼部とを備えたガスタービン燃焼装置に装備され、
前記1段目燃焼部が燃焼している状態で前記2段目燃焼部に供給する燃料の流量を調整して2段目燃焼部を着火させる動作を制御する第1制御部と、
燃焼器の燃焼ガスの温度に基づいて2段目燃焼部に供給する燃料の流量を調整する第2制御部とを備えたガスタービン燃焼装置の制御装置において、
前記第1制御部による2段目燃焼部の着火動作制御の途中で、前記第2制御部により2段目燃焼部に供給する燃料の流量を調整する制御が作動した場合に、前記第1制御部による2段目燃焼部の着火動作を停止させる第3制御部を備えたことを特徴とするガスタービン燃焼装置の制御装置。
The gas turbine combustion apparatus includes a first stage combustion section and a second stage combustion section that is ignited using the first stage combustion section as a fire type,
A first control unit for controlling an operation of igniting the second stage combustion unit by adjusting a flow rate of fuel supplied to the second stage combustion unit in a state where the first stage combustion unit is burning;
In a control device for a gas turbine combustion apparatus comprising: a second control unit that adjusts a flow rate of fuel supplied to a second stage combustion unit based on a temperature of combustion gas of a combustor;
When the control for adjusting the flow rate of the fuel supplied to the second stage combustion unit by the second control unit is activated during the ignition operation control of the second stage combustion unit by the first control unit, the first control A control device for a gas turbine combustion device, comprising: a third control unit that stops the ignition operation of the second-stage combustion unit by the unit.
1段目燃焼部と、前記1段目燃焼部を火種として着火される2段目燃焼部とを備えたガスタービン燃焼装置の制御方法において、
前記1段目燃焼部が燃焼している状態で前記2段目燃焼部に供給する燃料の流量を調整して2段目燃焼部を着火させる動作を制御する制御の途中で、燃焼ガスの温度に基づいて2段目燃焼部に供給する燃料の流量を調整する制御が作動した場合に、前記2段目燃焼部の着火動作を停止させることを特徴とするガスタービン燃焼装置の制御方法。
In a control method of a gas turbine combustion apparatus comprising a first stage combustion section and a second stage combustion section ignited using the first stage combustion section as a fire type,
During the control of controlling the operation of igniting the second-stage combustion section by adjusting the flow rate of the fuel supplied to the second-stage combustion section while the first-stage combustion section is burning, the temperature of the combustion gas A control method for a gas turbine combustion apparatus, comprising: stopping an ignition operation of the second-stage combustion section when control for adjusting a flow rate of fuel supplied to the second-stage combustion section is activated based on
JP2004055797A 2004-03-01 2004-03-01 Gas turbine combustion device, and control device and control method for gas turbine combustion device Pending JP2005248707A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004055797A JP2005248707A (en) 2004-03-01 2004-03-01 Gas turbine combustion device, and control device and control method for gas turbine combustion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004055797A JP2005248707A (en) 2004-03-01 2004-03-01 Gas turbine combustion device, and control device and control method for gas turbine combustion device

Publications (1)

Publication Number Publication Date
JP2005248707A true JP2005248707A (en) 2005-09-15

Family

ID=35029446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004055797A Pending JP2005248707A (en) 2004-03-01 2004-03-01 Gas turbine combustion device, and control device and control method for gas turbine combustion device

Country Status (1)

Country Link
JP (1) JP2005248707A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007205224A (en) * 2006-02-01 2007-08-16 Hitachi Ltd Fuel gas pressure control device and fuel gas pressure control method for dual fuel combustion gas turbine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08135910A (en) * 1994-11-04 1996-05-31 Hitachi Ltd Gas turbine combustion device and its controlling method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08135910A (en) * 1994-11-04 1996-05-31 Hitachi Ltd Gas turbine combustion device and its controlling method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007205224A (en) * 2006-02-01 2007-08-16 Hitachi Ltd Fuel gas pressure control device and fuel gas pressure control method for dual fuel combustion gas turbine

Similar Documents

Publication Publication Date Title
US6442928B1 (en) Control system for gas turbine
JP5571197B2 (en) Gas turbine and gas turbine plant equipped with the same
US9228501B2 (en) Bleed valve override schedule on off-load transients
JP5302066B2 (en) Control system and method for controlling a load point of a gas turbine engine
US20140150438A1 (en) System and method for operating a gas turbine in a turndown mode
US20080047275A1 (en) Methods and systems for operating a gas turbine
JP2009052557A (en) Method and system for sensing gas turbine combustion blowout using fuel normalized output response
WO2012165601A1 (en) Exhaust heat recovery boiler and electricity generation plant
JP2010025069A (en) Control device of two-shaft type gas turbine system
US9810159B2 (en) Method and apparatus for controlling gas turbine combustor
CN110030090B (en) Gas turbine cogeneration system and operation switching method thereof
JP5400850B2 (en) Method and apparatus for controlling exhaust heat boiler system
US8844295B2 (en) Method for meeting a purge flow requirement for a power plant and a power plant having a purge control system
JP2015059571A (en) Method and system for augmenting detection reliability of secondary flame detectors in gas turbine
JP2005248707A (en) Gas turbine combustion device, and control device and control method for gas turbine combustion device
US10731568B2 (en) Systems and methods for reducing airflow imbalances in turbines
US20130104561A1 (en) Active fuel control on gas turbine shutdown sequence
JP5988862B2 (en) Gas turbine for power generation and control device for gas turbine for power generation
JP4791284B2 (en) Combustion device
JP2016109355A (en) boiler
KR101709004B1 (en) Combustor device of gas turbine and control method thereof
JP3712024B2 (en) Gas turbine ignition detection method
JPH11200890A (en) Air supplier for gas turbine device
JP2003328779A (en) Fuel supply system and air-fuel ratio adjusting method for gas turbine and gas turbine
JP2002030944A (en) Multi fuel combustion monitoring device and multi fuel combustion control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070223

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091110

A977 Report on retrieval

Effective date: 20091124

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20091127

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100326