JP2005248446A - Stud structure of building - Google Patents

Stud structure of building Download PDF

Info

Publication number
JP2005248446A
JP2005248446A JP2004056673A JP2004056673A JP2005248446A JP 2005248446 A JP2005248446 A JP 2005248446A JP 2004056673 A JP2004056673 A JP 2004056673A JP 2004056673 A JP2004056673 A JP 2004056673A JP 2005248446 A JP2005248446 A JP 2005248446A
Authority
JP
Japan
Prior art keywords
building
steel
stud
stud member
column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004056673A
Other languages
Japanese (ja)
Other versions
JP4314130B2 (en
Inventor
Yoshihiro Ota
義弘 太田
Hirofumi Kaneko
洋文 金子
Kazutomi Nakane
一臣 中根
Masayuki Yamamoto
正幸 山本
Tetsuya Muroya
哲也 室屋
Yutaka Soga
裕 曽我
Kenji Umemura
建次 梅村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Komuten Co Ltd
Original Assignee
Takenaka Komuten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Komuten Co Ltd filed Critical Takenaka Komuten Co Ltd
Priority to JP2004056673A priority Critical patent/JP4314130B2/en
Publication of JP2005248446A publication Critical patent/JP2005248446A/en
Application granted granted Critical
Publication of JP4314130B2 publication Critical patent/JP4314130B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a stud structure of a building extremely superior in workability and economic efficiency, by easily setting flexural rigidity balancing with rigidity of the building, needless to say to improve aseismatic performance of the building by early reducing the seismic movement of the building, by transmitting only horizontal force without transmitting axial force. <P>SOLUTION: A stud member 4 is formed of a steel material. Any one of an upper part or a lower part of the stud member 4 is joined to a beam. The other is connecting by a sliding structure 5 for transmitting the horizontal force to a beam 2 on the opposite side of the beam 2 and transmitting no axial force. An adjusting bolt 6 is arranged for transmitting the horizontal force to the connecting part. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、鉄骨造建物、鉄筋コンクリート造建物、及び鉄骨鉄筋コンクリート造建物(以下、総称して単に建物と云う)の間柱であって、軸力を伝達せず、水平力のみ伝達して、主として耐震機能を発揮させる構造の技術分野に属し、更に云えば、建物の剛性とバランスする曲げ剛性を設定(調整)することが可能な建物の間柱構造に関する。   The present invention relates to a steel pillar, a reinforced concrete building, and a steel reinforced concrete building (hereinafter collectively referred to simply as a building), which does not transmit axial force but transmits only horizontal force and is mainly seismic resistant. More particularly, the present invention relates to a column structure of a building that can set (adjust) a bending rigidity that balances the rigidity of the building.

従来、建物に地震や風等の水平力が入力した際の建物震動を早期に低減して建物の耐震性を向上させる耐震技術として、水平力が入力すると塑性変形して履歴エネルギーを吸収する低降伏点鋼などの履歴減衰部材を間柱に適用した建物の間柱構造が知られている(例えば、特許文献1)。前記間柱は、ブレース材や耐震壁などと比して、柱梁架構面内の開口部の自由度を損なうことなく水平剛性・耐力を確保できる利点があり、近年、その需要が高まっている。   Conventionally, as a seismic technology to improve building earthquake resistance by reducing building vibration when building horizontal forces such as earthquakes and winds enter the building early, it absorbs hysteresis energy by plastic deformation when horizontal forces are input. A column structure of a building in which a hysteresis damping member such as yield point steel is applied to the column is known (for example, Patent Document 1). Compared to brace materials and earthquake-resistant walls, the studs have the advantage that horizontal rigidity and proof stress can be ensured without impairing the degree of freedom of the openings in the column beam frame, and the demand for them is increasing in recent years.

前記特許文献1に開示された建物の間柱構造は、柱と梁とが形成する架構面内にほぼ鉛直に設置して、地震や風等の水平力の入力による震動を低減して耐震性を向上させる技術であり、従来のダイナミックダンパーの如き制震装置や、水平力をセンサで検知して質点系が建物の動きと逆位相になるように自動制御する制震装置などと比して、特殊な施工技術を必要としないで実施できるので、施工性及び経済性に優れている。   The inter-column structure of the building disclosed in Patent Document 1 is installed almost vertically in the frame surface formed by the columns and beams to reduce the vibration caused by the input of horizontal forces such as earthquakes and winds, thereby improving the earthquake resistance. Compared to conventional vibration control devices such as dynamic dampers, and vibration control devices that automatically control the mass system so that the mass system is in the opposite phase to the movement of the building. Since it can be carried out without the need for special construction techniques, it is excellent in workability and economy.

しかし、前記間柱を耐震(制震)要素として有効に機能させるためには、建物の長期軸力を当該間柱に伝達させないことが肝要である。前記間柱に建物の軸力が伝達されると、当該間柱の累積履歴エネルギーが低下する虞があること、及び前記間柱の曲げ耐力が低減し、必要とする水平耐力が確保されない可能性があるからである。また、前記間柱に建物の軸力が伝達されると、図29に示したように、当該間柱aが鉛直方向に連続して設置されていない高層建物の場合には、間柱a自体の軸力が、ある階層の梁2aに集中し、当該梁2aの剛性および耐力を大きく設計しなければならないという不都合もある。ちなみに図29の符号1は柱を示し、符号2は梁を示している。   However, in order for the studs to function effectively as seismic (damping) elements, it is important not to transmit the long-term axial force of the building to the studs. If the axial force of the building is transmitted to the studs, the accumulated hysteresis energy of the studs may be reduced, and the bending strength of the studs may be reduced, and the required horizontal strength may not be ensured. It is. When the building axial force is transmitted to the stud, as shown in FIG. 29, in the case of a high-rise building in which the stud a is not continuously installed in the vertical direction, the axial force of the stud a itself. However, there is also an inconvenience that it is necessary to concentrate on the beam 2a at a certain level and to design the rigidity and proof strength of the beam 2a to be large. Incidentally, reference numeral 1 in FIG. 29 indicates a column, and reference numeral 2 indicates a beam.

そこで、間柱に建物の軸力を伝達させない構成として、制震効果(累積履歴エネルギーなど)の低下を防止する建物の制震間柱が、例えば特許文献2などに開示されている。   Therefore, for example, Patent Document 2 discloses a building damping column that prevents a reduction in damping effect (accumulated history energy, etc.) as a configuration that does not transmit the axial force of the building to the stud.

前記特許文献2に開示された建物の制震間柱は、間柱とその上下の連結部とを塗装層により連結して間柱に対する上下の連結部の軸方向の保持力を低下させている。よって、当該制震間柱は、地震や風等の水平力が入力した際に制震効果を発揮するので、制震間柱の緊結等の仕上げ作業を鉄筋コンクリート躯体の構築工事とほぼ同時に効率的に進めることができる。したがって、竣工後のコンクリートの乾燥収縮やクリープ変形により制震間柱の累積履歴エネルギーが低下する虞もない。   In the seismic control column of a building disclosed in Patent Document 2, the intermediate column and its upper and lower connecting portions are connected by a paint layer to reduce the axial holding force of the upper and lower connecting portions with respect to the intermediate column. Therefore, the seismic control columns exhibit seismic control effects when horizontal forces such as earthquakes and winds are input. Therefore, finishing work such as tightening the seismic control columns is effectively advanced almost simultaneously with the construction work of the reinforced concrete frame. be able to. Therefore, there is no possibility that the accumulated hysteresis energy of the seismic control column will decrease due to drying shrinkage or creep deformation of the concrete after completion.

特開平10−82201号公報Japanese Patent Laid-Open No. 10-82201 特開平11−303450号公報JP-A-11-303450

ところで、建物に地震や風等の水平力が入力したときの建物震動の大きさ(応答)は建物の各階層毎に異なる。よって、建物の間柱構造に必要な水平剛性も建物の階層毎(厳密には設置位置毎)に異なる。したがって、建物の間柱構造は、前記建物の剛性とバランスする曲げ剛性をフレキシブルに設定(調整)できることが望ましい。   By the way, the magnitude (response) of the building vibration when a horizontal force such as earthquake or wind is input to the building is different for each level of the building. Accordingly, the horizontal rigidity required for the structure of the pillars of the building is also different for each level of the building (strictly, for each installation position). Therefore, it is desirable that the stud structure of the building can flexibly set (adjust) the bending rigidity that balances the rigidity of the building.

しかし、上記特許文献2に開示された建物の制震間柱には、建物の剛性とバランスする曲げ剛性の設定については一切記載されていない。   However, the building seismic control column disclosed in Patent Document 2 does not describe any setting of bending rigidity that balances with the rigidity of the building.

したがって、本発明の目的は、軸力を伝達せず、水平力のみ伝達することにより、建物震動を早期に低減して建物の耐震性を向上させることは勿論、建物の剛性とバランスする曲げ剛性を簡易に設定することが可能な、施工性及び経済性に大変優れた建物の間柱構造を提供することにある。   Therefore, the object of the present invention is not only to transmit axial force but only horizontal force, thereby reducing building vibration early and improving building earthquake resistance, as well as bending stiffness that balances building stiffness. The object is to provide a pillar structure of a building that can be easily set and has excellent workability and economy.

上記従来技術の課題を解決するための手段として、請求項1に記載した発明に係る建物の間柱構造は、例えば、図1〜図3に示したように、
間柱部材4が鋼材で形成されており、同間柱部材4の上部又は下部のいずれか一方が梁2へ接合され、他方は前記梁2と反対側の梁2へ水平力は伝達するが軸力は伝達しないスライド構造5で連結され、同連結部分に水平力を伝達する調整ボルト6が設置されていることを特徴とする。
As a means for solving the above-mentioned problems of the prior art, the stud structure of the building according to the invention described in claim 1 is, for example, as shown in FIGS.
The stud member 4 is made of steel, and either the upper part or the lower part of the stud member 4 is joined to the beam 2, while the other transmits a horizontal force to the beam 2 opposite to the beam 2, but the axial force Are connected by a slide structure 5 that does not transmit, and an adjusting bolt 6 that transmits a horizontal force is installed in the connecting part.

請求項2に記載した発明は、請求項1に記載した建物の間柱構造において、
調整ボルト6の設置位置と数量を調整することにより建物の剛性とバランスする曲げ剛性が設定されていることを特徴とする。
The invention described in claim 2 is the pillar structure of the building described in claim 1,
By adjusting the installation position and quantity of the adjusting bolt 6, a bending rigidity that balances the rigidity of the building is set.

請求項3に記載した発明に係る建物の間柱構造は、例えば、図14〜図16に示したように、間柱部材が鋼材4で形成されており、同間柱部材4の上部又は下部のいずれか一方が梁2へ接合され、他方は前記梁2と反対側の梁2へ水平力は伝達するが軸力は伝達しないスライド構造15で連結され、同連結部分に水平力を伝達する充填材8が一定の長さ範囲に充填されていることを特徴とする。   For example, as shown in FIGS. 14 to 16, the stud structure of the building according to the invention described in claim 3 is formed by a steel material 4, and either the upper part or the lower part of the stud member 4. One is joined to the beam 2 and the other is connected to the beam 2 opposite to the beam 2 by a slide structure 15 that transmits horizontal force but not axial force, and a filler 8 that transmits horizontal force to the connecting portion. Is filled in a certain length range.

請求項4に記載した発明は、請求項3に記載した建物の間柱構造において、
充填材8の充填長さL3を調整することにより建物の剛性とバランスする曲げ剛性が設定されていることを特徴とする。
The invention described in claim 4 is the building pillar structure described in claim 3,
By adjusting the filling length L3 of the filler 8, a bending rigidity that balances the rigidity of the building is set.

請求項5に記載した発明は、請求項1〜4のいずれか一に記載した建物の間柱構造において、鋼材が、柱梁架構の降伏耐力を超える水平力が作用する以前に塑性変形するように形成されていることを特徴とする。   According to a fifth aspect of the present invention, in the inter-column structure of the building described in any one of the first to fourth aspects, the steel material is plastically deformed before a horizontal force exceeding the yield strength of the column beam frame is applied. It is formed.

請求項6に記載した発明は、請求項1〜5のいずれか一に記載した建物の間柱構造において、間柱部材4の上部又は下部は、鋼材、プレキャストコンクリート製腰壁、又はプレキャストコンクリート製垂れ壁などの取付部材7を介して梁へ接合されていることを特徴とする。   The invention described in claim 6 is the building column structure according to any one of claims 1 to 5, wherein the upper or lower portion of the column member 4 is made of steel, precast concrete waist wall, or precast concrete drooping wall. It is characterized by being joined to the beam via the attachment member 7.

請求項7に記載した発明は、請求項1〜6のいずれか一に記載した建物の間柱構造において、スライド構造5(15)が、鋼材、プレキャストコンクリート製腰壁、又はプレキャストコンクリート製垂れ壁などの取付部材7を介して梁へ接合されていることを特徴とする。   The invention described in claim 7 is the inter-column structure of the building described in any one of claims 1 to 6, wherein the slide structure 5 (15) is a steel material, a precast concrete waist wall, a precast concrete drooping wall, or the like. It is characterized by being joined to the beam via the mounting member 7.

請求項8に記載した発明は、請求項1〜7のいずれか一に記載した建物の間柱構造において、間柱部材4は、低降伏点鋼、普通鋼、高張力鋼などの鋼材から成る角形鋼管4、又はウエブ部とフランジ部を低降伏点鋼、普通鋼、高張力鋼などの鋼材を任意に組み合わせて構成されたH形鋼(図7と図18参照)、ダブルH形鋼(図9と図20参照)、若しくはクロスH形鋼(図13と図24参照)で形成されていることを特徴とする。   According to an eighth aspect of the present invention, in the building stud structure according to any one of the first to seventh aspects, the stud member 4 is a square steel pipe made of a steel material such as low yield point steel, ordinary steel, or high strength steel. 4, H-section steel (see FIG. 7 and FIG. 18), double H-section steel (see FIG. 9), which is formed by arbitrarily combining steel materials such as low-yield point steel, ordinary steel, and high-strength steel. And FIG. 20) or a cross H-section steel (see FIGS. 13 and 24).

請求項1〜8に記載した建物の間柱構造は、下記する効果を奏する。
1)地震や風等の大きな水平力が柱梁架構に入力すると、スライド構造5が間柱部材4の水平方向の動きをしっかり拘束しているので、当該間柱部材4に水平力(せん断力或いは曲げ力)は確実に伝達される。よって、柱梁架構の降伏耐力を超える水平力が作用する以前に前記間柱部材4が塑性変形し、それにより履歴エネルギーを吸収する履歴減衰作用が生じるので、前記柱梁架構は安定した耐力を維持することができる。
2)スライド構造5が、間柱部材4の鉛直方向のスライドを許容しているので、上階の軸力が間柱部材4に伝達されたとしても、間柱部材4は、スライド構造5の内部を鉛直方向に相対的にスライドするだけなので、間柱部材4の曲げ耐力が低下する虞もなく、当該間柱部材4の累積履歴エネルギーが低下する虞もない。
3)調整ボルト6の設置位置と数量、又は充填材8の充填長さ範囲を調整して建物の剛性とバランスする曲げ剛性を自在に設定できるので、間柱部材4を最適値で塑性変形させることができ、或いは間柱部材4の材端部で曲げ降伏させることができ、更なる安定した柱梁架構、ひいては建物を実現することができるのである。
4)間柱部材4が鉛直方向に連続していない高層建物の場合でも、間柱部材4の軸力が直下の梁2に伝達されることはないため、間柱部材4を支持する梁2の剛性および耐力を大きく設計する必要がなく、経済的である。
5)上下の梁2の間に間柱部材4とスライド構造5を直列に連結した簡便な構造なので、設置作業に特殊な技術を必要としない。しかも設置作業に手間や時間がかからないので、工期の短縮を図りつつ経済性に優れた施工を実現できる。また、既存の建物の柱梁架構面3内に設置して実施することもできる。
The pillar structure of the building described in claims 1 to 8 has the following effects.
1) When a large horizontal force such as an earthquake or wind is input to the column beam frame, the slide structure 5 firmly restrains the horizontal movement of the intermediate column member 4, so that the horizontal force (shearing force or bending force) is applied to the intermediate column member 4. Force) is transmitted reliably. Therefore, before the horizontal force exceeding the yield strength of the column beam frame is applied, the inter-column member 4 is plastically deformed, thereby generating a hysteresis damping action that absorbs hysteresis energy, so that the column beam frame maintains a stable strength. can do.
2) Since the slide structure 5 allows the vertical pillar member 4 to slide in the vertical direction, even if the axial force of the upper floor is transmitted to the intermediate pillar member 4, the intermediate pillar member 4 vertically moves inside the slide structure 5. Since it only slides relative to the direction, there is no possibility that the bending strength of the stud member 4 will be lowered, and there is no possibility that the accumulated hysteresis energy of the stud member 4 will be lowered.
3) Since the installation position and quantity of the adjusting bolt 6 or the filling length range of the filler 8 can be adjusted to flexibly set the bending rigidity to balance the rigidity of the building, the stud member 4 is plastically deformed at an optimum value. Alternatively, it can be bent and yielded at the material end portion of the inter-column member 4, and a more stable column beam frame, and thus a building, can be realized.
4) Even in the case of a high-rise building where the stud member 4 is not continuous in the vertical direction, the axial force of the stud member 4 is not transmitted to the beam 2 directly below, so the rigidity of the beam 2 that supports the stud member 4 and There is no need to design a large proof stress, which is economical.
5) Since it is a simple structure in which the stud member 4 and the slide structure 5 are connected in series between the upper and lower beams 2, no special technique is required for the installation work. Moreover, since the installation work does not take time and effort, it is possible to realize construction with excellent economic efficiency while shortening the construction period. It can also be carried out by installing it in the column beam frame 3 of an existing building.

請求項1〜8に記載した建物の間柱構造10(20)は、柱1と梁2とが形成する架構面3内における上下の梁2、2の長手方向中央部にほぼ鉛直に設けられ、地震や風等の水平力の入力による震動を低減して耐震性を向上させるべく、以下のように実施される。   The building column structure 10 (20) according to claims 1 to 8 is provided substantially vertically in the longitudinal center of the upper and lower beams 2 and 2 in the frame surface 3 formed by the columns 1 and 2. In order to improve the earthquake resistance by reducing the vibration caused by the input of horizontal forces such as earthquakes and winds, it is implemented as follows.

図1〜図3は、請求項1に記載した発明に係る建物の間柱構造10の実施例を示している。   1 to 3 show an embodiment of a pillar structure 10 of a building according to the invention described in claim 1.

この建物の間柱構造10の主な構成要素である間柱部材4は鋼材で形成されており、同間柱部材4の上部又は下部のいずれか一方が梁2へ接合され、他方は前記梁2と反対側の梁2へ水平力は伝達するが軸力は伝達しないスライド構造5で連結され、同連結部分に水平力を伝達する調整ボルト6が設置されている(請求項1記載の発明)。   The stud member 4 which is a main component of the pillar structure 10 of this building is formed of steel, and either the upper part or the lower part of the stud member 4 is joined to the beam 2 and the other is opposite to the beam 2. The horizontal beam 2 is transmitted to the side beam 2 but is connected by a slide structure 5 that does not transmit the axial force, and an adjusting bolt 6 that transmits the horizontal force is installed in the connecting portion (the invention according to claim 1).

前記間柱部材4(鋼材)は、本実施例では、普通鋼から成る中空の角形鋼管で形成されている(請求項8記載の発明)。ここで、普通鋼とは一般の建築用鋼材(SM490、SS400等)を指す。   In the present embodiment, the stud member 4 (steel material) is formed of a hollow square steel pipe made of ordinary steel (the invention according to claim 8). Here, ordinary steel refers to general construction steel (SM490, SS400, etc.).

なお、前記間柱部材4(鋼材)は、前記普通鋼から成る中空の角形鋼管に限定されず、構造設計上、柱梁架構の降伏耐力を超える水平力が作用する以前に、当該間柱部材4における調整ボルト6により拘束される部位が塑性変形するように形成することを条件として、後述するような種々の形状・強度を有するバリエーションに富む鋼材で実施可能である(請求項5記載の発明)。   In addition, the said stud member 4 (steel material) is not limited to the hollow square steel pipe which consists of the said normal steel, In structural design, before the horizontal force exceeding the yield strength of a pillar beam frame acts, in the said stud member 4 The present invention can be implemented with a variety of steel materials having various shapes and strengths as will be described later on condition that the portion restrained by the adjusting bolt 6 is plastically deformed (invention according to claim 5).

本実施例に係る前記間柱部材4の上部は、上梁2へ直接接合して実施されている。一方、前記間柱部材4の下部は前記スライド構造5で連結され、同スライド構造5は取付部材(鋼材)7を介して下梁2へ接合して実施されている(請求項7記載の発明)。   The upper part of the stud member 4 according to the present embodiment is directly joined to the upper beam 2. On the other hand, the lower part of the said stud member 4 is connected with the said slide structure 5, and the said slide structure 5 is joined to the lower beam 2 via the attachment member (steel material) 7, and is implemented (invention of Claim 7). .

なお、前記取付部材(鋼材)7は、施工性、経済性を考慮して、前記間柱部材4と同様の普通鋼から成る角形鋼管で実施されているが、勿論これに限定されない。H形鋼やプレキャストコンクリート製腰壁(図27の符号7a参照)などでもほぼ同様に実施できる(請求項7記載の発明)。図5に示したように、前記取付部材7を使用しないで、スライド構造5を下梁2に直接接合して実施することもできる。また、前記間柱部材4の上部は、上梁2へ直接接合して実施しているがこれに限定されず、プレキャストコンクリート製垂れ壁(図27の符号7b参照)などの取付部材7を介して上梁2に接合して実施することもできる(請求項6記載の発明)。ちなみに、図27の符号12は、アンボンドPC鋼棒を示しており、符号13はナットを示しており、符号16は鋼製プレートを示している。以下の実施例についても同様の技術的思想とする。   The mounting member (steel material) 7 is implemented by a rectangular steel pipe made of ordinary steel similar to the stud member 4 in consideration of workability and economy, but of course is not limited thereto. The present invention can be carried out in substantially the same manner with a H-shaped steel or a precast concrete waist wall (see reference numeral 7a in FIG. 27). As shown in FIG. 5, the slide structure 5 can be directly joined to the lower beam 2 without using the mounting member 7. Further, the upper portion of the stud member 4 is directly joined to the upper beam 2 but is not limited to this, and via an attachment member 7 such as a precast concrete hanging wall (see reference numeral 7b in FIG. 27). It can also be carried out by joining to the upper beam 2 (the invention according to claim 6). Incidentally, reference numeral 12 in FIG. 27 denotes an unbonded PC steel bar, reference numeral 13 denotes a nut, and reference numeral 16 denotes a steel plate. The same technical idea applies to the following embodiments.

前記スライド構造5は、前記間柱部材4の下部を十分に挿入し得る深さを有する上面が開口した鋼製ボックスで実施され、同鋼製ボックス内で前記間柱部材4が鉛直方向に相対的にスライド可能な構造とされている。このスライド構造の左右側面には、調整ボルト6をねじ込み可能なボルト孔が所要の数(図示例では42個)設けられ、同ボルト孔に水平力を伝達する調整ボルト6が一定の長さ(高さ)範囲L1にほぼ水平にねじ込まれている。ちなみに、本実施例では、前記スライド構造5(鋼製ボックス)の下端面と前記取付部材(鋼材)7の上端面とは溶接等の接合手段で強固に定着されている。   The slide structure 5 is implemented by a steel box having an open upper surface having a depth that allows the lower part of the stud member 4 to be sufficiently inserted, and the stud member 4 is relatively moved in the vertical direction within the steel box. It has a slidable structure. On the left and right side surfaces of the slide structure, a required number of bolt holes (42 in the illustrated example) into which the adjustment bolts 6 can be screwed are provided, and the adjustment bolts 6 that transmit horizontal force to the bolt holes have a certain length ( It is screwed almost horizontally into the (height) range L1. Incidentally, in this embodiment, the lower end surface of the slide structure 5 (steel box) and the upper end surface of the mounting member (steel material) 7 are firmly fixed by joining means such as welding.

また、前記スライド構造5は、前記間柱部材4の鉛直方向のスライドを許容できるように、正面方向にみて、前記間柱部材4の下端部が当該スライド構造5の底面部に衝突しないような隙間Hを確保して構成されている。また、前記スライド構造5は、前記間柱部材4の水平方向の動きを拘束するように、平面方向にみて、その短辺方向の内径が間柱部材4の外径とほぼ一致してきっちり嵌め込み可能な長さとされ、その長辺方向の内径が間柱部材4の外径より若干長い長さとされた矩形状で実施されている(図3参照)。また、前記調整ボルト6は、所要の高さ位置毎に複数本ずつ用いて実施され、その先端は前記間柱部材4の側面に当接した状態で定着されている。   Further, the slide structure 5 has a gap H such that the lower end portion of the stud member 4 does not collide with the bottom surface portion of the slide structure 5 when viewed in the front direction so as to allow the slide of the stud member 4 in the vertical direction. Is ensured. Further, the slide structure 5 can be fitted tightly so that the inner diameter in the short side direction substantially coincides with the outer diameter of the stud member 4 when viewed in the plane direction so as to restrain the horizontal movement of the stud member 4. This is implemented in a rectangular shape whose inner diameter in the long side direction is slightly longer than the outer diameter of the stud member 4 (see FIG. 3). The adjustment bolt 6 is implemented by using a plurality of adjustment bolts for each required height position, and the tip thereof is fixed in a state of being in contact with the side surface of the stud member 4.

よって、上記構成の建物の間柱構造10は、下梁2側の取付部材(鋼材)7に固定されたスライド構造5が、前記上梁2側の間柱部材4の水平方向の動きをしっかり拘束すると共に鉛直方向のスライドを許容しているので、建物の水平力(せん断力或いは曲げ力)は伝達するが軸力は伝達しない構成を実現できるのである。   Therefore, in the building column structure 10 having the above-described configuration, the slide structure 5 fixed to the attachment member (steel material) 7 on the lower beam 2 side firmly restrains the horizontal movement of the column member 4 on the upper beam 2 side. At the same time, since vertical sliding is allowed, it is possible to realize a configuration that transmits the horizontal force (shearing force or bending force) of the building but not the axial force.

したがって、地震や風等の大きな水平力が柱梁架構に入力すると、下梁2側のスライド構造5と調整ボルト6が、上梁2側の間柱部材4の水平方向の動きをしっかり拘束しているので、当該間柱部材4に水平力(せん断力或いは曲げ力)が繰り返し作用する。このとき、柱梁架構の降伏耐力を超える水平力が作用する以前に、間柱部材4における調整ボルト6により拘束される部位が塑性変形し、それにより履歴エネルギーを吸収する履歴減衰作用が生じるので、前記柱梁架構は安定した耐力を維持することができる。   Therefore, when a large horizontal force such as earthquake or wind is input to the column beam frame, the slide structure 5 and the adjusting bolt 6 on the lower beam 2 side firmly restrain the horizontal movement of the column member 4 on the upper beam 2 side. Therefore, a horizontal force (shearing force or bending force) acts repeatedly on the stud member 4. At this time, before the horizontal force that exceeds the yield strength of the column beam frame is applied, the portion of the inter-column member 4 that is restrained by the adjustment bolt 6 is plastically deformed, thereby producing a hysteresis damping action that absorbs hysteresis energy. The column beam frame can maintain a stable proof stress.

下梁2側のスライド構造5が、上梁2側の間柱部材4の鉛直方向のスライドを許容しているので、上階の軸力が間柱部材4に伝達されたとしても、前記間柱部材4は、スライド構造5の内部を鉛直方向に相対的にスライドするだけなので、間柱部材4の曲げ耐力が低下する虞もなく、当該間柱部材4の累積履歴エネルギーが低下する虞もない。   Since the slide structure 5 on the lower beam 2 side allows the vertical column member 4 to slide in the vertical direction, even if the axial force on the upper floor is transmitted to the intermediate column member 4, the intermediate column member 4. Since only the inside of the slide structure 5 is slid relatively in the vertical direction, there is no possibility that the bending strength of the stud member 4 is lowered, and there is no possibility that the accumulated hysteresis energy of the stud member 4 is lowered.

前記間柱部材4は、調整ボルト6の設置位置と数量を調整して建物の剛性とバランスする曲げ剛性を自在に設定できるので、間柱部材4における調整ボルト6により拘束される部位を最適値で塑性変形させることができ、更なる安定した柱梁架構、ひいては建物を実現することができる。また、前記間柱部材4が鉛直方向に連続していない高層建物の場合でも、間柱部材4の軸力が直下の梁2に伝達されることはないため、間柱部材4を支持する梁2の剛性および耐力を大きく設計する必要がなく、経済的である。さらには、上下の梁2の間に間柱部材4とスライド構造5を直列に連結した簡便な構造なので、設置作業に特殊な技術を必要としない。しかも設置作業に手間や時間がかからないので、工期の短縮を図りつつ経済性に優れた施工を実現できる。既存の建物の柱梁架構面3内に設置して実施することもできる。   The stud member 4 can be flexibly set with a bending rigidity that balances with the rigidity of the building by adjusting the installation position and quantity of the adjusting bolt 6, so that the portion restrained by the adjusting bolt 6 in the stud member 4 is plasticized at an optimum value. It can be deformed, and a more stable column beam frame and eventually a building can be realized. Even in the case of a high-rise building in which the stud member 4 is not continuous in the vertical direction, the axial force of the stud member 4 is not transmitted to the beam 2 directly below, so the rigidity of the beam 2 that supports the stud member 4 It is economical because it is not necessary to design a large proof stress. Furthermore, since it is a simple structure in which the stud member 4 and the slide structure 5 are connected in series between the upper and lower beams 2, no special technique is required for the installation work. Moreover, since the installation work does not take time and effort, it is possible to realize construction with excellent economic efficiency while shortening the construction period. It can also be implemented by installing it in the column beam frame 3 of an existing building.

なお、本実施形態に係る調整ボルト6の設置位置と数量は、前記間柱部材4の左右の側面にそれぞれ、所要の高さ位置毎に3本ずつ7段に設け、計42本で実施しているが、勿論これに限定されない。当該調整ボルト6の設置位置及び数量は、構造設計上、建物の剛性とバランスする曲げ剛性に応じて設定する(請求項2記載の発明)。この場合、使用する調整ボルト6の一定の長さ範囲(最上段と最下段の高さの差)L1、L2に応じて曲げ剛性は大きな影響を受けることに特に留意する。参考として、前記間柱部材4に係る曲げモーメント図を、図4A、Bに概略的に示す。このように、L1(7段)とL2(4段)とを対比すると、P1>P3、P2>P4となり、伝達できる曲げ力及びせん断力が異なるのである。以下の実施例についても同様の技術的思想とする。   In addition, the installation position and quantity of the adjusting bolt 6 according to the present embodiment are provided on the left and right side surfaces of the stud member 4 in three stages for each required height position in seven stages, for a total of 42. Of course, this is not a limitation. The installation position and quantity of the adjusting bolt 6 are set according to the bending rigidity that balances the rigidity of the building in terms of the structural design (the invention according to claim 2). In this case, it should be particularly noted that the bending rigidity is greatly influenced according to a certain length range (difference in height between the uppermost and lowermost stages) L1 and L2 of the adjusting bolt 6 to be used. For reference, a bending moment diagram relating to the stud member 4 is schematically shown in FIGS. 4A and 4B. Thus, when L1 (7th stage) and L2 (4th stage) are compared, P1> P3 and P2> P4, and the bending force and shearing force that can be transmitted are different. The same technical idea applies to the following embodiments.

また、本実施形態に係るスライド構造5を設ける高さ位置は、図示例では、上梁2と下梁2との間の中央より若干下側で実施しているが、勿論これに限定されない。入力する水平力の大きさ、間柱部材4の剛性などを考慮して、適宜、構造設計変更可能である。例えば、前記スライド構造5を図2より低い位置(図5参照)で実施すれば、図4中の符号P1、P3は大きくなり、図2より高い位置で実施すれば、符号P1、P3は小さくなる。以下の実施例についても同様の技術的思想とする。   Further, in the illustrated example, the height position where the slide structure 5 according to the present embodiment is provided is slightly below the center between the upper beam 2 and the lower beam 2, but it is not limited to this. The structural design can be changed as appropriate in consideration of the magnitude of the horizontal force to be input and the rigidity of the stud member 4. For example, if the slide structure 5 is implemented at a position lower than that in FIG. 2 (see FIG. 5), the symbols P1 and P3 in FIG. 4 will be large, and if implemented at a position higher than that in FIG. 2, the symbols P1 and P3 will be small. Become. The same technical idea applies to the following embodiments.

さらに、図示は省略するが、前記間柱部材4とスライド構造5の位置関係を上下逆、即ち、前記間柱部材4の下部を下梁2へ直接接合し、前記間柱部材4の上部を上梁2へ水平力は伝達するが軸力は伝達しないスライド構造5で連結し、同スライド構造5を、前記取付部材(鋼材)7を介して上梁2へ接合して実施しても、ほぼ同様の作用効果を期待できる。以下の実施例についても同様の技術的思想とする。   Further, although not shown, the positional relationship between the stud member 4 and the slide structure 5 is reversed upside down, that is, the lower part of the stud member 4 is directly joined to the lower beam 2, and the upper part of the stud member 4 is joined to the upper beam 2. Even if the slide structure 5 is connected to the upper beam 2 via the mounting member (steel material) 7 and connected by the slide structure 5 that transmits the horizontal force to the shaft but not the axial force, it is almost the same. Expected effects. The same technical idea applies to the following embodiments.

図6と図7は、請求項1に記載した発明に係る建物の間柱構造10の異なる実施例を示している。   6 and 7 show different embodiments of the building pillar structure 10 according to the first aspect of the present invention.

この実施例2は、上記実施例1と比して、主に間柱部材14の構造が相違する。即ち、上記実施例1に係る間柱部材4は、普通鋼から成る中空の角形鋼管で実施されているのに対し、本実施例2に係る間柱部材14は、水平力が入力した際に塑性変形する低降伏点鋼などでウエブ14aを形成し、普通鋼でフランジ14bを形成した所謂H形鋼で実施されている。   In the second embodiment, the structure of the stud member 14 is mainly different from the first embodiment. That is, the stud member 4 according to the first embodiment is a hollow rectangular steel pipe made of plain steel, whereas the stud member 14 according to the second embodiment is plastically deformed when a horizontal force is input. The so-called H-shaped steel is formed by forming the web 14a with low yield point steel and the like and forming the flange 14b with ordinary steel.

前記低降伏点鋼とは、前記普通鋼と比して降伏点、引っ張り強度が低い鋼材を指す。もちろん、低降伏点鋼を使用する代わりに極低降伏点鋼を用いてもほぼ同様に実施できる。即ち、前記ウエブ14aは、柱梁架構の降伏耐力を超える水平力が作用する以前に塑性変形する構造設計であればよく、低降伏点鋼や極低降伏点鋼の代わりに薄肉の普通鋼を用いて実施することもできる(以上、請求項8記載の発明)。   The low yield point steel refers to a steel material having a lower yield point and tensile strength than the ordinary steel. Of course, it can be carried out in substantially the same manner by using an extremely low yield point steel instead of using a low yield point steel. That is, the web 14a only needs to have a structural design that is plastically deformed before a horizontal force exceeding the yield strength of the column beam frame is applied, and instead of a low yield point steel or an extremely low yield point steel, a thin plain steel is used. (The invention according to claim 8).

したがって、上記構成の建物の間柱構造10によれば、前記図1〜図3に基づいて説明した実施例1とほぼ同様の作用効果を奏する。すなわち、地震や風等の大きな水平力が柱梁架構に入力すると、下梁2側のスライド構造5と調整ボルト6が、上梁2側の間柱部材14の水平方向の動きをしっかり拘束しているので、当該間柱部材14に水平力(せん断力或いは曲げ力)が繰り返し作用する。このとき、柱梁架構の降伏耐力を超える水平力が作用する以前に、間柱部材14のウエブ(低降伏点鋼)14aが塑性変形し、それにより履歴エネルギーを吸収する履歴減衰作用が生じるので、前記柱梁架構は安定した耐力を維持することができる。   Therefore, according to the pillar structure 10 of the building having the above-described configuration, there are substantially the same effects as those of the first embodiment described with reference to FIGS. That is, when a large horizontal force such as earthquake or wind is input to the column beam frame, the slide structure 5 and the adjusting bolt 6 on the lower beam 2 side firmly restrain the horizontal movement of the intermediate column member 14 on the upper beam 2 side. Therefore, a horizontal force (shearing force or bending force) acts repeatedly on the stud member 14. At this time, before the horizontal force exceeding the yield strength of the column beam frame is applied, the web (low yield point steel) 14a of the inter-column member 14 is plastically deformed, thereby causing a hysteresis damping action to absorb hysteresis energy. The column beam frame can maintain a stable proof stress.

下梁2側のスライド構造5が、上梁2側の間柱部材14の鉛直方向のスライドを許容しているので、上階の軸力が間柱部材14に伝達されたとしても、前記間柱部材14がスライド構造5の内部を鉛直方向に相対的にスライドするだけなので、間柱部材14の曲げ耐力が低下する虞もなく、当該間柱部材14の累積履歴エネルギーが低下する虞もない。   Since the sliding structure 5 on the lower beam 2 side allows the vertical column member 14 to slide in the vertical direction, even if the axial force on the upper floor is transmitted to the intermediate column member 14, the intermediate column member 14. However, since the sliding structure 5 only slides relatively in the vertical direction, there is no possibility that the bending strength of the stud member 14 will be lowered, and there is no possibility that the accumulated hysteresis energy of the stud member 14 will be lowered.

前記間柱部材14は、調整ボルト6の設置位置と数量を調整して建物の剛性とバランスする曲げ剛性を自在に設定できるので、間柱部材14のウエブ(低降伏点鋼)14aにおける調整ボルト6により拘束される部位を最適値で塑性変形させることができ、更なる安定した柱梁架構、ひいては建物を実現することができる。また、前記間柱部材14が鉛直方向に連続していない高層建物の場合でも、間柱部材14の軸力が直下の梁2に伝達されることはないため、間柱部材14を支持する梁2の剛性および耐力を大きく設計する必要がなく、経済的である。さらには、上下の梁2の間に間柱部材14とスライド構造5を直列に連結した簡便な構造なので、設置作業に特殊な技術を必要としない。しかも設置作業に手間や時間がかからないので、工期の短縮を図りつつ経済性に優れた施工を実現できる。既存の建物の柱梁架構面3内に設置して実施することもできる。   The stud member 14 can be freely set in bending rigidity to balance the rigidity of the building by adjusting the installation position and quantity of the adjusting bolt 6, so that the adjusting bolt 6 on the web (low yield point steel) 14 a of the stud member 14 can be used. The constrained part can be plastically deformed at an optimum value, and a more stable column beam frame and, consequently, a building can be realized. Even in the case of a high-rise building where the stud member 14 is not continuous in the vertical direction, the axial force of the stud member 14 is not transmitted to the beam 2 directly below, so that the rigidity of the beam 2 that supports the stud member 14 is increased. It is economical because it is not necessary to design a large proof stress. Furthermore, since it is a simple structure in which the stud member 14 and the slide structure 5 are connected in series between the upper and lower beams 2, no special technique is required for the installation work. Moreover, since the installation work does not take time and effort, it is possible to realize construction with excellent economic efficiency while shortening the construction period. It can also be implemented by installing it in the column beam frame 3 of an existing building.

図8と図9は、請求項1に記載した発明に係る建物の間柱構造10の異なる実施例を示している。   FIGS. 8 and 9 show different embodiments of the building pillar structure 10 according to the first aspect of the present invention.

この実施例3は、上記実施例1及び実施例2と比して、主に間柱部材24の構造が相違する。即ち、この実施例3に係る間柱部材24は、前記水平力が入力した際に塑性変形する低降伏点鋼などでウエブ24aを並行に2本形成し、普通鋼でフランジ24bを形成した所謂ダブルH形鋼で実施されている。前記ウエブ24a、24aは、当該間柱部材24における調整ボルト6により拘束される部位が、柱梁架構の降伏耐力を超える水平力が作用する以前に塑性変形する構造設計であればよく、低降伏点鋼や極低降伏点鋼の代わりに薄肉の普通鋼を用いて実施できることは上述した通りである(請求項8記載の発明)。したがって、この実施例3に係る建物の間柱構造10によれば、上記実施例2とほぼ同様の作用効果を奏する(段落番号[0039]〜[0041]参照)。   The third embodiment is mainly different from the first and second embodiments in the structure of the stud member 24. That is, the stud member 24 according to the third embodiment has a so-called double structure in which two webs 24a are formed in parallel with low yield point steel that plastically deforms when the horizontal force is input, and flange 24b is formed with plain steel. Implemented with H-section steel. The webs 24a, 24a may have any structural design in which the portion of the intermediate column member 24 restrained by the adjusting bolt 6 is plastically deformed before a horizontal force exceeding the yield strength of the column beam frame is applied. As described above, the present invention can be carried out using thin plain steel instead of steel or extremely low yield point steel (the invention according to claim 8). Therefore, according to the stud structure 10 of the building according to the third embodiment, there are almost the same effects as the second embodiment (see paragraphs [0039] to [0041]).

図10と図11は、請求項1に記載した発明に係る建物の間柱構造10の異なる実施例を示している。   10 and 11 show different embodiments of the building pillar structure 10 according to the invention described in claim 1.

この実施例4は、上記実施例1〜実施例3と比して、主に、間柱部材34の構造が相違するほか、調整ボルト6の設置方向が相違する。   The fourth embodiment is mainly different from the first to third embodiments in the structure of the stud member 34 and the installation direction of the adjusting bolt 6.

この実施例4に係る間柱部材34は、断面がほぼ正方形状の普通鋼の角形鋼管で実施されている(請求項8記載の発明)。スライド構造5は、前記間柱部材34を挿入可能な相似形状で実施されている。このスライド構造5の四方の側面には、前記調整ボルト6をねじ込み可能なボルト孔が所要の数(図示例では一側面21個の計84個)設けられ、同ボルト孔に水平力を伝達する調整ボルト6が一定の長さ(高さ)範囲L1にほぼ水平にねじ込まれている。前記調整ボルト6の先端は前記間柱部材34の四方の側面に当接した状態で強固に定着されている。   The stud member 34 according to the fourth embodiment is a square steel pipe made of plain steel having a substantially square cross section (the invention according to claim 8). The slide structure 5 is implemented in a similar shape into which the stud member 34 can be inserted. A required number of bolt holes into which the adjustment bolts 6 can be screwed (84 in total in the illustrated example, 84 in total in the illustrated example) are provided on four side surfaces of the slide structure 5 to transmit a horizontal force to the bolt holes. The adjusting bolt 6 is screwed almost horizontally into a certain length (height) range L1. The tip of the adjustment bolt 6 is firmly fixed in a state where it abuts against the four side surfaces of the stud member 34.

したがって、この実施例4に係る建物の間柱構造10によれば、上記実施例1とほぼ同様の作用効果を奏することに加え(段落番号[0030]〜[0032]参照)、前記間柱部材34が、直角2方向の水平力に対して塑性変形できる点が構造的に優れている。これは、前記調整ボルト6を設置する方向を考慮しないで前記間柱部材34の設置作業を行い得るので施工性においても優れていると云える。   Therefore, according to the stud structure 10 of the building according to the fourth embodiment, in addition to the effects similar to those of the first embodiment (see paragraphs [0030] to [0032]), the stud member 34 includes The structure is excellent in that it can be plastically deformed with respect to horizontal forces in two perpendicular directions. This can be said to be excellent in workability because the installation work of the stud member 34 can be performed without considering the direction in which the adjustment bolt 6 is installed.

図12と図13は、前記実施例4に係る間柱部材34が、直角2方向の水平力に対して塑性変形できるバリエーションを示している。図示例の間柱部材44は、前記水平力が入力した際に塑性変形する低降伏点鋼などでウエブ44aを形成し、普通鋼でフランジ44bを形成した所謂H形鋼をクロスさせた形状(所謂クロスH形鋼)で実施されている(請求項8記載の発明)。したがって、この実施例5に係る建物の間柱構造10によれば、上記実施例4とほぼ同様の作用効果を奏するのである(段落番号[0047]参照)。   12 and 13 show a variation in which the stud member 34 according to the fourth embodiment can be plastically deformed with respect to a horizontal force in two perpendicular directions. In the illustrated example, the intermediate column member 44 is formed by crossing a so-called H-shaped steel in which a web 44a is formed of low yield point steel or the like that is plastically deformed when the horizontal force is input, and a flange 44b is formed of plain steel (so-called cross section) (Cross H-section steel) (Invention of Claim 8). Therefore, according to the stud structure 10 of the building according to the fifth embodiment, there are almost the same functions and effects as those of the fourth embodiment (see paragraph [0047]).

図14〜図16は、請求項3に記載した発明に係る建物の間柱構造20の実施例を示している。なお、間柱部材4、14…や取付部材7等については同一の符号を付して、その説明を適宜省略する。   14-16 has shown the Example of the pillar structure 20 of the building based on the invention described in Claim 3. FIG. In addition, about the stud member 4,14 ..., the attachment member 7, etc., the same code | symbol is attached | subjected and the description is abbreviate | omitted suitably.

この建物の間柱構造20は、上記図1〜図13に基づいて説明した実施例と比して、主として建物の剛性とバランスする曲げ剛性の調整手段のみが相違する。   This building column structure 20 is different from the embodiment described with reference to FIGS. 1 to 13 only in the adjustment means of the bending stiffness that mainly balances the stiffness of the building.

すなわち、間柱部材4が鋼材で形成され、同間柱部材4の上部又は下部のいずれか一方が梁2へ接合され、他方は前記梁2と反対側の梁2へ水平力は伝達するが軸力は伝達しないスライド構造15で連結され、同連結部分に水平力を伝達する充填材8が一定の長さ範囲L3に充填されている(請求項3記載の発明)。   That is, the stud member 4 is made of steel, and either the upper part or the lower part of the stud member 4 is joined to the beam 2, while the other transmits the horizontal force to the beam 2 opposite to the beam 2, but the axial force Are connected by a slide structure 15 that does not transmit, and a filling material 8 that transmits a horizontal force to the connecting portion is filled in a certain length range L3 (invention of claim 3).

前記スライド構造15は、前記間柱部材4の下部を十分に挿入し得る深さを有する上面が開口した鋼製ボックスで実施され、同鋼製ボックス内で前記間柱部材4が鉛直方向に相対的にスライド可能な構造とされている。前記スライド構造15は、前記間柱部材4の鉛直方向のスライドを許容できるように、正面方向にみて、前記間柱部材4の下端部が当該スライド構造15の底面部に衝突しないような隙間Hを確保して構成されている。また、前記スライド構造15は、前記間柱部材4の水平方向の動きを拘束するように、平面方向にみて、その短辺方向の内径が間柱部材4の外径とほぼ一致してきっちり嵌め込み可能な長さとされ、その長辺方向の内径が間柱部材4の外径より若干長い長さとされた矩形状で実施されている(図16参照)。   The slide structure 15 is implemented by a steel box having an open upper surface having a depth that allows the lower part of the stud member 4 to be sufficiently inserted, and the stud member 4 is relatively moved in the vertical direction within the steel box. It has a slidable structure. The slide structure 15 secures a gap H so that the lower end portion of the stud member 4 does not collide with the bottom surface of the slide structure 15 when viewed in the front direction so that the slide of the stud member 4 in the vertical direction can be allowed. Configured. Further, the slide structure 15 can be fitted tightly so that the inner diameter in the short side direction substantially coincides with the outer diameter of the stud member 4 when viewed in the plane direction so as to restrain the horizontal movement of the stud member 4. This is implemented in a rectangular shape having an inner diameter in the long side direction that is slightly longer than the outer diameter of the stud member 4 (see FIG. 16).

この実施例6に係る充填材8は、グラウト材が好適に用いられ、平面方向に見て、前記スライド構造15の左右の内側面と前記間柱部材4の左右の外側面との間に充填されている。前記間柱部材4と前記スライド構造15とは短辺方向には一切の隙間なく嵌め込まれているので充填材8が漏れる虞はない。   The filler 8 according to the sixth embodiment is preferably a grout material, and is filled between the left and right inner surfaces of the slide structure 15 and the left and right outer surfaces of the stud member 4 when viewed in the plane direction. ing. Since the stud member 4 and the slide structure 15 are fitted in the short side direction without any gap, there is no possibility that the filler 8 leaks.

なお、前記充填材8を充填する場合には、充填材8を充填する部位の下側をシール材9でシールすることが好ましい。充填材8が前記間柱部材4の下端部とスライド構造15の底面部との隙間Hに漏れないようにすることで、前記間柱部材4の鉛直方向のスライドを恒久的に許容するためである。   When filling the filler 8, it is preferable to seal the lower side of the portion where the filler 8 is filled with the sealant 9. This is because the filler 8 is permanently allowed to slide in the vertical direction of the inter-column member 4 by preventing the filler 8 from leaking into the gap H between the lower end portion of the inter-column member 4 and the bottom surface portion of the slide structure 15.

前記充填材8の充填高さ(L3)は、構造設計上、建物の剛性とバランスする曲げ剛性に応じて調整する(請求項4記載の発明)。この場合、充填材8の上端と下端の高さの差L3に応じて曲げ剛性は大きな影響を受けるのでその設定に特に留意する。また、充填材8の性質によっては間柱部材4の外側面に付着して同間柱部材4の鉛直方向のスライドを阻害する虞があるので、必要に応じて、同間柱部材4の外側面と充填材8と間にプレート(図示省略)を介在させたり、同間柱部材4の外側面に潤滑剤(図示省略)を塗布したりして実施することもできる。また、前記プレートは、充填材8の漏れを防止する役割を果たし得るので、この場合にはシール材9を使用しないでも前記間柱部材4の鉛直方向のスライドを恒久的に許容することができる。   The filling height (L3) of the filler 8 is adjusted according to the bending rigidity that balances the rigidity of the building in terms of the structural design (the invention according to claim 4). In this case, since the bending rigidity is greatly influenced according to the difference L3 in height between the upper end and the lower end of the filler 8, the setting is particularly noted. Further, depending on the nature of the filler 8, it may adhere to the outer surface of the stud member 4 and hinder vertical sliding of the stud member 4. It can also be carried out by interposing a plate (not shown) between the members 8 or applying a lubricant (not shown) to the outer surface of the same column member 4. Moreover, since the said plate can play the role which prevents the leakage of the filler 8, in this case, even if it does not use the sealing material 9, the vertical direction slide of the said stud member 4 can be accept | permitted permanently.

よって、この実施例6に係る建物の間柱構造20は、下梁2の取付部材(鋼材)7に固定されたスライド構造15が、前記上梁2側の間柱部材4の水平方向の動きをしっかり拘束すると共に鉛直方向のスライドを許容しているので、建物の水平力(せん断力或いは曲げ力)は伝達するが軸力は伝達しない構成を実現できる。   Accordingly, in the building column structure 20 according to the sixth embodiment, the slide structure 15 fixed to the attachment member (steel material) 7 of the lower beam 2 firmly moves the movement of the column member 4 on the upper beam 2 side in the horizontal direction. Since restraint and vertical sliding are allowed, it is possible to realize a configuration that transmits the horizontal force (shearing force or bending force) of the building but not the axial force.

したがって、この実施例6に係る建物の間柱構造20によれば、前記図1〜図3に基づいて説明した実施例1とほぼ同様の作用効果を奏する。すなわち、地震や風等の大きな水平力が柱梁架構に入力すると、下梁2側のスライド構造15と充填材8が、上梁2側の間柱部材4の水平方向の動きをしっかり拘束しているので、当該間柱部材4に水平力(せん断力或いは曲げ力)が繰り返し作用する。このとき、柱梁架構の降伏耐力を超える水平力が作用する以前に、間柱部材4における充填材8により拘束される部位が塑性変形し、それにより履歴エネルギーを吸収する履歴減衰作用が生じるので、前記柱梁架構は安定した耐力を維持することができる。   Therefore, according to the pillar structure 20 of the building according to the sixth embodiment, the same effects as those of the first embodiment described with reference to FIGS. That is, when a large horizontal force such as an earthquake or wind is input to the column beam frame, the slide structure 15 on the lower beam 2 side and the filler 8 firmly restrain the horizontal movement of the intermediate column member 4 on the upper beam 2 side. Therefore, a horizontal force (shearing force or bending force) acts repeatedly on the stud member 4. At this time, before the horizontal force exceeding the yield strength of the column beam frame is applied, the portion of the inter-column member 4 constrained by the filler 8 is plastically deformed, thereby generating a hysteresis damping action that absorbs hysteresis energy. The column beam frame can maintain a stable proof stress.

下梁2側のスライド構造15が、上梁2側の間柱部材4の鉛直方向のスライドを許容しているので、上階の軸力が間柱部材4に伝達されたとしても、前記間柱部材4は、スライド構造15の内部を鉛直方向に相対的にスライドするだけなので、間柱部材4の曲げ耐力が低下する虞もなく、当該間柱部材4の累積履歴エネルギーが低下する虞もない。   Since the slide structure 15 on the lower beam 2 side allows the vertical column member 4 to slide in the vertical direction, even if the axial force on the upper floor is transmitted to the intermediate column member 4, the intermediate column member 4. Since the inside of the slide structure 15 is merely slid relatively in the vertical direction, there is no possibility that the bending strength of the stud member 4 is lowered, and there is no possibility that the accumulated hysteresis energy of the stud member 4 is lowered.

前記間柱部材4は、充填材8の長さ範囲L3を調整して建物の剛性とバランスする曲げ剛性を自在に設定できるので、間柱部材4における充填材8により拘束される部位を最適値で塑性変形させることができ、更なる安定した柱梁架構、ひいては建物を実現することができる。また、前記間柱部材4が鉛直方向に連続していない高層建物の場合でも、間柱部材4の軸力が直下の梁2に伝達されることはないため、間柱部材4を支持する梁2の剛性および耐力を大きく設計する必要がなく、経済的である。さらには、上下の梁2の間に間柱部材4とスライド構造15を直列に連結した簡便な構造なので、設置作業に特殊な技術を必要としない。しかも設置作業に手間や時間がかからないので、工期の短縮を図りつつ経済性に優れた施工を実現できる。既存の建物の柱梁架構面3内に設置して実施することもできる。   Since the stud member 4 can adjust the length range L3 of the filler 8 and flexibly set the bending rigidity to balance the rigidity of the building, the portion restrained by the filler 8 in the stud member 4 is plasticized at an optimum value. It can be deformed, and a more stable column beam frame and eventually a building can be realized. Even in the case of a high-rise building in which the stud member 4 is not continuous in the vertical direction, the axial force of the stud member 4 is not transmitted to the beam 2 directly below, so the rigidity of the beam 2 that supports the stud member 4 It is economical because it is not necessary to design a large proof stress. Furthermore, since it is a simple structure in which the stud member 4 and the slide structure 15 are connected in series between the upper and lower beams 2, no special technique is required for the installation work. Moreover, since the installation work does not take time and effort, it is possible to realize construction with excellent economic efficiency while shortening the construction period. It can also be implemented by installing it in the column beam frame 3 of an existing building.

なお、図示は省略するが、前記間柱部材4とスライド構造15の位置関係を上下逆、即ち、前記間柱部材4の下部を下梁2へ直接接合し、前記間柱部材4の上部を上梁2へ水平力は伝達するが軸力は伝達しないスライド構造15で連結し、同スライド構造15を、前記取付部材(鋼材)7を介して上梁2へ接合して実施しても、ほぼ同様の作用効果が期待できる。ちなみに、この場合には、前記充填材8の漏れを防止するために、充填材8を充填する部位の下側をシールすることに留意する。以下の実施例についても同様の技術的思想とする。   Although not shown, the positional relationship between the stud member 4 and the slide structure 15 is upside down, that is, the lower part of the stud member 4 is directly joined to the lower beam 2, and the upper part of the stud member 4 is joined to the upper beam 2. Even if the slide structure 15 is connected to the upper beam 2 via the mounting member (steel material) 7 and connected by the slide structure 15 that transmits the horizontal force to the shaft but not the axial force, it is almost the same. The effect can be expected. Incidentally, in this case, in order to prevent the filler 8 from leaking, it is noted that the lower side of the portion where the filler 8 is filled is sealed. The same technical idea applies to the following embodiments.

図17と図18は、請求項3に記載した発明に係る建物の間柱構造20の異なる実施例を示している。   FIG. 17 and FIG. 18 show different embodiments of the pillar structure 20 of the building according to the invention described in claim 3.

この実施例7は、上記実施例6と比して、主に間柱部材14の構造が相違する。言い換えると、この実施例7は、上記実施例2(図6と図7参照)について、調整ボルト6の代わりに充填材8を使用して間柱部材14を塑性変形させる実施例を示している。   The seventh embodiment is mainly different from the sixth embodiment in the structure of the stud member 14. In other words, the seventh embodiment shows an embodiment in which the stud member 14 is plastically deformed using the filler 8 instead of the adjusting bolt 6 in the second embodiment (see FIGS. 6 and 7).

上記実施例6に係る間柱部材4は、普通鋼から成る中空の角形鋼管で実施されているのに対し、本実施例7に係る間柱部材14は、前記水平力が入力した際に塑性変形する低降伏点鋼などでウエブ14aを形成し、普通鋼でフランジ14bを形成した所謂H形鋼で実施されている。   The stud member 4 according to the sixth embodiment is a hollow rectangular steel pipe made of plain steel, whereas the stud member 14 according to the seventh embodiment is plastically deformed when the horizontal force is input. This is implemented by a so-called H-shaped steel in which the web 14a is formed of a low yield point steel or the like and the flange 14b is formed of ordinary steel.

本実施例7に係る充填材8は、上記実施例6と同様のグラウト材が好適に用いられ、平面方向に見て、前記スライド構造15の左右の内側面と前記間柱部材14のフランジ14bの外側面との間に充填されている。前記間柱部材4と前記スライド構造15とは短辺方向には一切の隙間なく嵌め込まれているので充填材8がウエブ14a側に漏れる虞はない。   As the filler 8 according to the seventh embodiment, the grout material similar to that of the sixth embodiment is preferably used. When viewed in the plane direction, the left and right inner surfaces of the slide structure 15 and the flanges 14b of the stud members 14 are formed. It is filled between the outer surface. Since the spacer member 4 and the slide structure 15 are fitted in the short side direction without any gap, there is no possibility that the filler 8 leaks to the web 14a side.

したがって、この実施例7に係る建物の間柱構造20によれば、上記実施例6(実施例2)とほぼ同様の作用効果を奏する。すなわち、地震や風等の大きな水平力が柱梁架構に入力すると、下梁2のスライド構造15と充填材8が、上梁2の間柱部材14の水平方向の動きをしっかり拘束しているので、当該間柱部材14に水平力(せん断力或いは曲げ力)が繰り返し作用する。このとき、柱梁架構の降伏耐力を超える水平力が作用する以前に、間柱部材14のウエブ(低降伏点鋼)14aが塑性変形し、それにより履歴エネルギーを吸収する履歴減衰作用が生じるので、前記柱梁架構は安定した耐力を維持することができる。   Therefore, according to the stud structure 20 of the building according to the seventh embodiment, there are substantially the same effects as the sixth embodiment (second embodiment). That is, when a large horizontal force such as an earthquake or wind is input to the column beam frame, the slide structure 15 of the lower beam 2 and the filler 8 firmly restrain the horizontal movement of the column member 14 of the upper beam 2. A horizontal force (shearing force or bending force) is repeatedly applied to the stud member 14. At this time, before the horizontal force exceeding the yield strength of the column beam frame is applied, the web (low yield point steel) 14a of the inter-column member 14 is plastically deformed, thereby causing a hysteresis damping action to absorb hysteresis energy. The column beam frame can maintain a stable proof stress.

下梁2側のスライド構造15が、上梁2側の間柱部材14の鉛直方向のスライドを許容しているので、建物の軸力が間柱部材14に伝達されたとしても、前記間柱部材14は、スライド構造5の内部を鉛直方向に相対的にスライドするだけなので、間柱部材14の曲げ耐力が低下する虞もなく、当該間柱部材14の累積履歴エネルギーが低下する虞もない。   Since the sliding structure 15 on the lower beam 2 side allows the vertical column member 14 to slide in the vertical direction, even if the axial force of the building is transmitted to the intermediate column member 14, the intermediate column member 14 is Since the inside of the slide structure 5 is merely slid relative to the vertical direction, there is no possibility that the bending strength of the intermediate column member 14 is reduced, and there is no possibility that the accumulated hysteresis energy of the intermediate column member 14 is reduced.

前記間柱部材14は、充填材8の長さ範囲L3を調整して建物の剛性とバランスする曲げ剛性を自在に設定できるので、間柱部材14のウエブ(低降伏点鋼)14aにおける充填材8により拘束される部位を最適値で塑性変形させることができ、更なる安定した柱梁架構、ひいては建物を実現することができる。また、前記間柱部材14が鉛直方向に連続していない高層建物の場合でも、間柱部材14の軸力が直下の梁2に伝達されることはないため、間柱部材14を支持する梁2の剛性および耐力を大きく設計する必要がなく、経済的である。さらには、上下の梁2の間に間柱部材14とスライド構造15を直列に連結した簡便な構造なので、設置作業に特殊な技術を必要としない。しかも設置作業に手間や時間がかからないので、工期の短縮を図りつつ経済性に優れた施工を実現できる。既存の建物の柱梁架構面3内に設置して実施することもできる。   Since the intermediate column member 14 can freely set the bending rigidity that balances the rigidity of the building by adjusting the length range L3 of the filler 8, the filler 8 in the web (low yield point steel) 14a of the intermediate column member 14 The constrained part can be plastically deformed at an optimum value, and a more stable column beam frame and, consequently, a building can be realized. Even in the case of a high-rise building where the stud member 14 is not continuous in the vertical direction, the axial force of the stud member 14 is not transmitted to the beam 2 directly below, so that the rigidity of the beam 2 that supports the stud member 14 is increased. It is economical because it is not necessary to design a large proof stress. Furthermore, since it is a simple structure in which the stud member 14 and the slide structure 15 are connected in series between the upper and lower beams 2, no special technique is required for the installation work. Moreover, since the installation work does not take time and effort, it is possible to realize construction with excellent economic efficiency while shortening the construction period. It can also be implemented by installing it in the column beam frame 3 of an existing building.

図19と図20は、請求項3に記載した発明に係る建物の間柱構造20の異なる実施例を示している。   19 and 20 show different embodiments of the stud structure 20 of the building according to the invention described in claim 3.

この実施例8は、上記実施例6及び実施例7と比して、主に間柱部材24の構造が相違する。言い換えると、この実施例8は、上記実施例3(図8と図9参照)について、調整ボルト6の代わりに充填材8を使用して間柱部材24を塑性変形させる実施例を示している。   The eighth embodiment is mainly different from the sixth and seventh embodiments in the structure of the stud member 24. In other words, the eighth embodiment shows an embodiment in which the spacer member 24 is plastically deformed using the filler 8 instead of the adjusting bolt 6 in the third embodiment (see FIGS. 8 and 9).

この実施例8に係る間柱部材24は、前記水平力が入力した際に塑性変形する低降伏点鋼などでウエブ24aを並行に2本形成し、普通鋼でフランジ24bを形成した所謂ダブルH形鋼で実施されている。前記ウエブ24a、24aは、当該間柱部材24における充填材8により拘束される部位が、柱梁架構の降伏耐力を超える水平力が入力した際に塑性変形する構造設計であればよく、低降伏点鋼や極低降伏点鋼の代わりに薄肉の普通鋼を用いて実施できることは上述した通りである(請求項8記載の発明)。したがって、上記構成の建物の間柱構造20によれば、上記実施例7(実施例3)とほぼ同様の作用効果を奏する(段落番号[0065]〜[0067]など参照)。   The stud member 24 according to the eighth embodiment is a so-called double H type in which two webs 24a are formed in parallel with low yield point steel that plastically deforms when the horizontal force is input, and a flange 24b is formed with plain steel. Implemented with steel. The webs 24a, 24a may have any structural design in which the portion constrained by the filler 8 in the intermediate column member 24 is plastically deformed when a horizontal force exceeding the yield strength of the column beam frame is input. As described above, the present invention can be carried out using thin plain steel instead of steel or extremely low yield point steel (the invention according to claim 8). Therefore, according to the pillar structure 20 of the building having the above-described configuration, the same operational effects as those of the seventh embodiment (third embodiment) are obtained (see paragraph numbers [0065] to [0067] and the like).

図21と図22は、請求項3に記載した発明に係る建物の間柱構造20の異なる実施例を示している。   FIG. 21 and FIG. 22 show different embodiments of the pillar structure 20 of the building according to the invention described in claim 3.

この実施例9は、上記実施例6〜実施例8と比して、主に、間柱部材34の構造が相違するほか、充填材8を充填する部位が相違する。言い換えると、この実施例9は、上記実施例4(図10と図11参照)について、調整ボルト6の代わりに充填材8を使用して間柱部材34を塑性変形させる実施例を示している。   Compared with Examples 6 to 8 described above, Example 9 mainly differs in the structure of the stud member 34 and also in the site where the filler 8 is filled. In other words, the ninth embodiment shows an embodiment in which the spacer member 34 is plastically deformed by using the filler 8 instead of the adjusting bolt 6 with respect to the fourth embodiment (see FIGS. 10 and 11).

この実施例9に係る間柱部材34は、断面がほぼ正方形状の普通鋼の角形鋼管で実施されている(請求項8記載の発明)。スライド構造15は、前記間柱部材34を挿入可能な相似形状で実施されている。前記スライド構造15の内側面と前記間柱部材34の外側面との間には、四方に充填材8が一定の長さ範囲L3に充填されている   The stud member 34 according to the ninth embodiment is a square steel pipe made of plain steel having a substantially square cross section (the invention according to claim 8). The slide structure 15 is implemented in a similar shape into which the stud member 34 can be inserted. Between the inner surface of the slide structure 15 and the outer surface of the stud member 34, the filler 8 is filled in a certain length range L3 in all directions.

したがって、この実施例9に係る建物の間柱構造20によれば、上記実施例6とほぼ同様の作用効果を奏することに加え(段落番号[0057]〜[0059]参照)、前記間柱部材34が、直角2方向の水平力に対して塑性変形できる点が構造的に優れている。これは、充填材8を充填する部位を考慮しないで前記間柱部材34の設置作業を行い得るので施工性においても優れていると云える。   Therefore, according to the stud structure 20 of the building according to the ninth embodiment, in addition to the effects similar to those of the sixth embodiment (see paragraph numbers [0057] to [0059]), the stud member 34 includes The structure is excellent in that it can be plastically deformed with respect to horizontal forces in two perpendicular directions. This can be said to be excellent in workability because the installation work of the stud member 34 can be performed without considering the portion where the filler 8 is filled.

図23と図24は、前記実施例9に係る間柱部材34が、直角2方向の水平力に対して塑性変形できるバリエーションを示している。言い換えると、この実施例10は、上記実施例5(図12と図13参照)について、調整ボルト6の代わりに充填材8を使用して間柱部材44を塑性変形させる実施例を示している。   23 and 24 show a variation in which the stud member 34 according to the ninth embodiment can be plastically deformed with respect to a horizontal force in two directions at right angles. In other words, the tenth embodiment shows an embodiment in which the spacer member 44 is plastically deformed by using the filler 8 instead of the adjusting bolt 6 in the fifth embodiment (see FIGS. 12 and 13).

図示例の間柱部材44は、前記水平力が入力した際に塑性変形する低降伏点鋼などでウエブ44aを形成し、普通鋼でフランジ44bを形成した所謂H形鋼をクロスさせた形状(所謂クロスH形鋼)で実施されている(請求項8記載の発明)。なお、この実施例の場合は、充填材8が間柱部材44のウエブ44a側へ漏れるのを防止するべく、間柱部材44の四方のフランジ44bを取り囲むように前記プレートを介在させて実施することが好ましい。したがって、この実施例10に係る建物の間柱構造20によれば、上記実施例9とほぼ同様の作用効果を奏するのである(段落番号[0074]参照)。   In the illustrated example, the intermediate column member 44 is formed by crossing a so-called H-shaped steel in which a web 44a is formed of low yield point steel or the like that is plastically deformed when the horizontal force is input, and a flange 44b is formed of plain steel (so-called cross section) (Cross H-section steel) (Invention of Claim 8). In the case of this embodiment, in order to prevent the filler 8 from leaking to the web 44a side of the intermediate column member 44, the plate is interposed so as to surround the four flanges 44b of the intermediate column member 44. preferable. Therefore, according to the stud structure 20 of the building according to the tenth embodiment, there are almost the same effects as the ninth embodiment (see paragraph [0074]).

以上に実施例1〜10を図面に基づいて説明したが、本発明は、図示例の実施形態の限りではなく、その技術的思想を逸脱しない範囲において、当業者が通常に行う設計変更、応用のバリエーションの範囲を含むことを念のために言及する。   Although Examples 1 to 10 have been described above with reference to the drawings, the present invention is not limited to the illustrated embodiments, and design changes and applications that are usually made by those skilled in the art without departing from the technical idea thereof. Note that it includes a range of variations.

例えば、図25と図26に示したように、前記スライド構造15(又は5)の側面の上端部を取り囲むように補強リブ11を設けて実施することもできる。   For example, as shown in FIGS. 25 and 26, the reinforcing rib 11 may be provided so as to surround the upper end of the side surface of the slide structure 15 (or 5).

また、前記スライド構造5(又は15)の構成は、上面部を開口した鋼製ボックスに限定されない。図28に示したように、下梁2にアンボンドPC鋼棒12とナット13により定着したプレキャストコンクリート製腰壁7aの上面中央部に間柱部材4(又は14等)の下部を十分に挿入し得る深さを有する非貫通孔17(凹部)を設け、当該非貫通孔17をスライド構造として実施することもできる。   Moreover, the structure of the said slide structure 5 (or 15) is not limited to the steel box which opened the upper surface part. As shown in FIG. 28, the lower portion of the stud member 4 (or 14 etc.) can be sufficiently inserted into the center of the upper surface of the precast concrete waist wall 7 a fixed to the lower beam 2 by the unbonded PC steel rod 12 and the nut 13. A non-through hole 17 (concave portion) having a depth may be provided, and the non-through hole 17 may be implemented as a slide structure.

請求項1に係る建物の間柱構造の実施例を概略的に示した立面図である。It is the elevation which showed roughly the Example of the pillar structure of the building concerning Claim 1. 請求項1に係る建物の間柱構造の実施例1を示した立面図である。It is the elevation which showed Example 1 of the stud structure of the building which concerns on Claim 1. 図2の建物の間柱構造を示した断面図である。It is sectional drawing which showed the pillar structure of the building of FIG. A、Bはそれぞれ、調整ボルトの長さ範囲に応じた間柱部材の曲げモーメント図を示している。A and B each show a bending moment diagram of the stud member according to the length range of the adjusting bolt. 請求項1に係る建物の間柱構造の実施例1のバリエーションを示した立面図である。It is the elevation which showed the variation of Example 1 of the pillar structure of the building which concerns on Claim 1. 請求項1に係る建物の間柱構造の実施例2を示した立面図である。It is the elevation which showed Example 2 of the stud structure of the building which concerns on Claim 1. 図6の建物の間柱構造を示した断面図である。It is sectional drawing which showed the pillar structure of the building of FIG. 請求項1に係る建物の間柱構造の実施例3を示した立面図である。It is the elevation which showed Example 3 of the stud structure of the building which concerns on Claim 1. 図8の建物の間柱構造を示した断面図である。It is sectional drawing which showed the stud structure of the building of FIG. 請求項1に係る建物の間柱構造の実施例4を示した立面図である。It is the elevation which showed Example 4 of the pillar structure of the building which concerns on Claim 1. 図10の建物の間柱構造を示した断面図である。It is sectional drawing which showed the pillar structure of the building of FIG. 請求項1に係る建物の間柱構造の実施例5を示した立面図である。It is the elevation which showed Example 5 of the pillar structure of the building which concerns on Claim 1. 図12の建物の間柱構造を示した断面図である。It is sectional drawing which showed the pillar structure of the building of FIG. 請求項3に係る建物の間柱構造の実施例を概略的に示した立面図である。It is the elevation which showed roughly the Example of the pillar structure of the building which concerns on Claim 3. 請求項3に係る建物の間柱構造の実施例6を示した立面図である。It is the elevation which showed Example 6 of the pillar structure of the building which concerns on Claim 3. 図15の建物の間柱構造を示した断面図である。It is sectional drawing which showed the pillar structure of the building of FIG. 請求項3に係る建物の間柱構造の実施例7を示した立面図である。It is the elevation which showed Example 7 of the pillar structure of the building which concerns on Claim 3. 図17の建物の間柱構造を示した断面図である。It is sectional drawing which showed the stud structure of the building of FIG. 請求項3に係る建物の間柱構造の実施例8を示した立面図である。It is the elevation which showed Example 8 of the pillar structure of the building which concerns on Claim 3. 図19の建物の間柱構造を示した断面図である。FIG. 20 is a cross-sectional view illustrating a stud structure of the building in FIG. 19. 請求項3に係る建物の間柱構造の実施例9を示した立面図である。It is the elevation which showed Example 9 of the pillar structure of the building which concerns on Claim 3. 図21の建物の間柱構造を示した断面図である。It is sectional drawing which showed the stud structure of the building of FIG. 請求項3に係る建物の間柱構造の実施例10を示した立面図である。It is the elevation which showed Example 10 of the pillar structure of the building which concerns on Claim 3. 図23の建物の間柱構造を示した断面図である。It is sectional drawing which showed the pillar structure of the building of FIG. 請求項1及び請求項3に係る建物の間柱構造の異なる実施例を示した立面図である。It is the elevation which showed the Example from which the pillar structure of the building which concerns on Claim 1 and Claim 3 differs. 図25の建物の間柱構造を示した断面図である。It is sectional drawing which showed the pillar structure of the building of FIG. 請求項1及び請求項3に係る建物の間柱構造の異なる実施例を示した立面図である。It is the elevation which showed the Example from which the pillar structure of the building which concerns on Claim 1 and Claim 3 differs. 請求項1及び請求項3に係る建物の間柱構造の異なる実施例を示した立面図である。It is the elevation which showed the Example from which the pillar structure of the building which concerns on Claim 1 and Claim 3 differs. 従来技術を示した立面図である。It is the elevation which showed the prior art.

符号の説明Explanation of symbols

1 柱
2 梁
3 柱梁架構面
4、14、24、34、44 間柱部材
5、15 スライド構造
6 調整ボルト
7 取付部材
8 充填材
9 シール材
10、20 間柱構造
11 補強リブ
12 アンボンドPC鋼棒
13 ナット
16 鋼製プレート
17 非貫通孔
DESCRIPTION OF SYMBOLS 1 Column 2 Beam 3 Column beam frame 4, 14, 24, 34, 44 Interstitial member 5, 15 Slide structure 6 Adjustment bolt 7 Mounting member 8 Filler 9 Sealing material 10, 20 Interstitial structure 11 Reinforcement rib 12 Unbonded PC steel rod 13 Nut 16 Steel plate 17 Non-through hole

Claims (8)

間柱部材が鋼材で形成されており、同間柱部材の上部又は下部のいずれか一方が梁へ接合され、他方は前記梁と反対側の梁へ水平力は伝達するが軸力は伝達しないスライド構造で連結され、同連結部分に水平力を伝達する調整ボルトが設置されていることを特徴とする、建物の間柱構造。   A sliding structure in which the stud member is made of steel, and either the upper or lower part of the stud member is joined to the beam, and the other transmits horizontal force to the beam opposite to the beam but does not transmit axial force. The building's stud structure is characterized in that an adjustment bolt is installed that is connected to the connecting portion and transmits a horizontal force to the connecting portion. 調整ボルトの設置位置と数量を調整することにより建物の剛性とバランスする曲げ剛性が設定されていることを特徴とする、請求項1に記載した建物の間柱構造。   2. The stud structure of a building according to claim 1, wherein a bending rigidity that balances the rigidity of the building is set by adjusting the installation position and quantity of the adjusting bolt. 間柱部材が鋼材で形成されており、同間柱部材の上部又は下部のいずれか一方が梁へ接合され、他方は前記梁と反対側の梁へ水平力は伝達するが軸力は伝達しないスライド構造で連結され、同連結部分に水平力を伝達する充填材が一定の長さ範囲に充填されていることを特徴とする、建物の間柱構造。   A sliding structure in which the stud member is formed of steel, and either the upper or lower part of the stud member is joined to the beam, and the other transmits horizontal force to the beam opposite to the beam but does not transmit axial force. The pillar structure of a building, which is connected to the connecting portion and is filled with a filler that transmits a horizontal force to the connecting portion in a certain length range. 充填材の充填長さを調整することにより建物の剛性とバランスする曲げ剛性が設定されていることを特徴とする、請求項3に記載した建物の間柱構造。   4. The stud structure of a building according to claim 3, wherein a bending rigidity that balances the rigidity of the building is set by adjusting a filling length of the filler. 鋼材が、柱梁架構の降伏耐力を超える水平力が作用する以前に塑性変形するように形成されていることを特徴とする、請求項1〜4のいずれか一に記載した建物の間柱構造。   The steel column structure according to any one of claims 1 to 4, wherein the steel material is formed to be plastically deformed before a horizontal force exceeding the yield strength of the column beam frame is applied. 間柱部材の上部又は下部は、鋼材、プレキャストコンクリート製腰壁、又はプレキャストコンクリート製垂れ壁などの取付部材を介して梁へ接合されていることを特徴とする、請求項1〜5のいずれか一に記載した建物の間柱構造。   The upper part or the lower part of the stud member is joined to the beam via an attachment member such as a steel material, a precast concrete waist wall, or a precast concrete hanging wall. The pillar structure of the building described in 2. スライド構造が、鋼材、プレキャストコンクリート製腰壁、又はプレキャストコンクリート製垂れ壁などの取付部材を介して梁へ接合されていることを特徴とする、請求項1〜6のいずれか一に記載した建物の間柱構造。   The building according to any one of claims 1 to 6, wherein the slide structure is joined to the beam via a mounting member such as a steel material, a precast concrete waist wall, or a precast concrete hanging wall. Column structure. 間柱部材は、低降伏点鋼、普通鋼、高張力鋼などの鋼材から成る角形鋼管、又はウエブ部とフランジ部を低降伏点鋼、普通鋼、高張力鋼などの鋼材を任意に組み合わせて構成されたH形鋼、ダブルH形鋼、若しくはクロスH形鋼で形成されていることを特徴とする、請求項1〜7のいずれか一に記載した建物の間柱構造。   The stud member is a square steel pipe made of steel, such as low yield point steel, ordinary steel, or high strength steel, or the web and flange are arbitrarily combined with steel materials such as low yield point steel, ordinary steel, or high strength steel. The pillar structure of a building according to any one of claims 1 to 7, characterized in that the building is made of an H-shaped steel, a double H-shaped steel, or a cross H-shaped steel.
JP2004056673A 2004-03-01 2004-03-01 Building column structure Expired - Fee Related JP4314130B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004056673A JP4314130B2 (en) 2004-03-01 2004-03-01 Building column structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004056673A JP4314130B2 (en) 2004-03-01 2004-03-01 Building column structure

Publications (2)

Publication Number Publication Date
JP2005248446A true JP2005248446A (en) 2005-09-15
JP4314130B2 JP4314130B2 (en) 2009-08-12

Family

ID=35029191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004056673A Expired - Fee Related JP4314130B2 (en) 2004-03-01 2004-03-01 Building column structure

Country Status (1)

Country Link
JP (1) JP4314130B2 (en)

Also Published As

Publication number Publication date
JP4314130B2 (en) 2009-08-12

Similar Documents

Publication Publication Date Title
JP5069534B2 (en) Outer shell reinforcement structure of existing building
JP4587386B2 (en) Seismic reinforcement structure for existing buildings
WO2009093712A1 (en) Connection metal fitting and building with the same
JP2007138472A (en) Earthquake resistant reinforcing method of existing building of reinforced concrete construction frame structure
JP2006226054A (en) Aseismic reinforcing method for existing reinforced concrete building with rigid frame structure
JP2001262774A (en) Steel concrete composite structural member
JP4664997B2 (en) Buildings with joint hardware
JP2023029562A (en) pile foundation structure
JP2012117327A (en) Vibration control structure
JP3807360B2 (en) Building control column
JP2018199958A (en) Damping structure
JP2008208612A (en) External aseismatic reinforcing structure
JP2005248446A (en) Stud structure of building
JPH0776953A (en) Damping structure
JP2008075314A (en) Aseismic control structure of connected buildings
KR20150032264A (en) Aseismic reinforcing structure
JP2012207389A (en) Seismic strengthening construction method for existing building
JP2011001815A (en) Building with joint metal
JP2001248331A (en) Installation structure and installation method for vibration control damper
JP4722560B2 (en) Building materials that effectively use the strength of reinforced steel
JP2009281074A (en) Connecting vibration control structure of building
JP5946165B2 (en) Seismic reinforcement structure
JP6399623B1 (en) Damping and seismic reinforcement structure for concrete structures
JP6535157B2 (en) Seismic structure, building panels and buildings
JP4432581B2 (en) Building structure that can change floor height

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081030

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090311

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090428

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090518

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4314130

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130522

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees