JP2005248320A - 600-1,200 MPa-CLASS HIGH-STRENGTH MEMBER FOR AUTOMOBILE WHICH IS EXCELLENT IN STRENGTH HOMOGENEITY WITHIN THE MEMBER AND ITS MANUFACTURING METHOD - Google Patents

600-1,200 MPa-CLASS HIGH-STRENGTH MEMBER FOR AUTOMOBILE WHICH IS EXCELLENT IN STRENGTH HOMOGENEITY WITHIN THE MEMBER AND ITS MANUFACTURING METHOD Download PDF

Info

Publication number
JP2005248320A
JP2005248320A JP2004324780A JP2004324780A JP2005248320A JP 2005248320 A JP2005248320 A JP 2005248320A JP 2004324780 A JP2004324780 A JP 2004324780A JP 2004324780 A JP2004324780 A JP 2004324780A JP 2005248320 A JP2005248320 A JP 2005248320A
Authority
JP
Japan
Prior art keywords
less
strength
mpa
uniformity
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004324780A
Other languages
Japanese (ja)
Other versions
JP4452157B2 (en
Inventor
Naoki Maruyama
直紀 丸山
Takehide Senuma
武秀 瀬沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2004324780A priority Critical patent/JP4452157B2/en
Publication of JP2005248320A publication Critical patent/JP2005248320A/en
Application granted granted Critical
Publication of JP4452157B2 publication Critical patent/JP4452157B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a 600-1,200 MPa-class high-strength member for an automobile at a low cost, wherein the high-strength member is excellent in strength homogeneity within the member and is difficult to manufacture through cold-press method. <P>SOLUTION: In a manufacturing method of the 600-1,200 MPa-class high-strength member, a steel sheet is heated to a temperature equal to or above Ac<SB>3</SB>, and hot-press molding is subsequently initiated at temperature not lower than Ar<SB>3</SB>, wherein the steel sheet comprises, by mass%, ≤0.07% C, ≤1.5% Si, 1.0-5.0% Mn, ≤1.0% Mo, ≤10.0% Cr, ≤1.0% Cu, ≤1.0% Ni, ≤0.005% B, ≤0.2% P, ≤0.1% S, ≤0.02% N and the balance being Fe and unavoidable impurities, provided that [%Mn]+2×[%Mo+%Cr]+0.5×[%Cu+%Ni]+300×[%B] is ≥1.8. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、最大引張強度(TS)で600MPaから1200MPaの強度を有する自動車用の構造用部材、補強用部材、足廻り用部材に関するものであり、特に、衝撃エネルギー吸収特性および疲労特性が要求される部材に好適である。   The present invention relates to a structural member, a reinforcing member, and a suspension member for automobiles having a maximum tensile strength (TS) of 600 MPa to 1200 MPa. Particularly, impact energy absorption characteristics and fatigue characteristics are required. It is suitable for a member.

近年、自動車部材の軽量化のために、ハイテンと呼ばれる高強度鋼板の使用比率が増大している。しかしながら、鋼板が高強度化するほど冷間プレス成形性は低下し、加工度が高い部分で板破断したり、スプリングバック現象により狙いの寸法形状に成形することが極めて難しくなる。このプレス成形性の低下は、600MPa以上の鋼板を冷間プレス成形する場合に顕在化しており、鋼板強度が高いほど、成形性の低下はより顕著になっていた。   In recent years, the use ratio of high-strength steel plates called high tension has been increasing in order to reduce the weight of automobile members. However, the higher the strength of the steel plate, the lower the cold press formability, and it becomes extremely difficult to break the plate at a portion with a high degree of processing or to form the desired size and shape due to the springback phenomenon. This decrease in press formability is apparent when cold press forming a steel sheet of 600 MPa or more. The higher the steel sheet strength, the more remarkable the decrease in formability.

この課題を解決する手段として、鋼板をオーステナイト域に加熱し、軟質かつ高延性の状態で熱間プレス加工を行い、これと同時に成形した金型内で急冷することによりマルテンサイト変態を起こさせて、高強度でかつ複雑な形状を有する部材を作製する方法が開示されている。また、この熱間プレス用鋼板あるいは熱間プレス用亜鉛めっき鋼板に係る技術が、例えば、特許文献1や、特許文献2により開示されている。   As a means to solve this problem, the steel sheet is heated to the austenite region, hot pressed in a soft and highly ductile state, and at the same time, the martensite transformation is caused by rapid cooling in the formed mold. A method for producing a member having a high strength and a complicated shape is disclosed. Moreover, the technique which concerns on this hot press steel plate or hot press galvanized steel plate is disclosed by patent document 1 and patent document 2, for example.

しかしながら、従来方法では部材使用量として大部分を占める600〜1200MPaの強度を有する部材の製造は困難であるか、あるいは製造できたとしても、部材内の強度不均一性が極めて高くなり、部材内の強度不均一性と強い相関がある衝撃エネルギー吸収特性や疲労特性などの特性が低下してしまうという問題点があった。   However, in the conventional method, it is difficult to manufacture a member having a strength of 600 to 1200 MPa, which accounts for the majority of the amount of the member used, or even if it can be manufactured, the strength non-uniformity in the member becomes extremely high, There is a problem that characteristics such as impact energy absorption characteristics and fatigue characteristics that have a strong correlation with non-uniformity in strength of the steel deteriorate.

特開2003−147499号公報JP 2003-147499 A 特開2003−73774号公報JP 2003-73774 A

本発明は、冷間プレスでは製造が困難な複雑形状を有し、さらに、部材内の強度不均一性が小さい、TSで600〜1200MPaの強度を有する自動車用構造部材を、容易かつ安価に提供することを目的とする。   The present invention provides an automotive structural member that has a complicated shape that is difficult to manufacture with a cold press and that has a low strength non-uniformity within the member and that has a strength of 600 to 1200 MPa in TS, easily and inexpensively. The purpose is to do.

本発明者らは、上記の目的を達成すべく鋭意、実験と検討を重ねた結果、合金元素を適正量添加した鋼板素材を用いることで、従来の技術で問題となっていた、部材内の強度不均一性が極めて少ない、引張強度で600〜1200MPaの部材を、熱間プレス法により作製できることを見出した。   As a result of earnestly experimenting and studying to achieve the above object, the present inventors have used a steel plate material to which an appropriate amount of an alloy element has been added, which has been a problem in the conventional technology. It has been found that a member having a tensile strength of 600 to 1200 MPa with very little strength non-uniformity can be produced by a hot pressing method.

すなわち、本発明は、まず、部材内の強度均一性に優れる600〜1000MPa級自動車用高強度部材の製造方法であって、
第1の発明は、質量%で、
C:0.05%以下、
Si:1.5%以下、
Mn:1.0〜5.0%、
Mo:1.0%以下、
Cr:10.0%以下、
Cu:1.0%以下、
Ni:1.0%以下、
B:0.005%以下、
P:0.2%以下、
S:0.1%以下、
N:0.02%以下
を含有し、残部がFeおよび不可避不純物からなり、さらに、A値=[%Mn]+2×[%Mo+%Cr]+0.5×[%Cu+%Ni]+300×[%B]が1.8以上を満たす鋼板をAc3温度以上に加熱し、次いでAr3以上の温度で熱間プレス成形を開始することを特徴とするものである。
That is, the present invention is a method for producing a high-strength member for a 600 to 1000 MPa class automobile that is excellent in strength uniformity within the member,
1st invention is the mass%,
C: 0.05% or less,
Si: 1.5% or less,
Mn: 1.0 to 5.0%
Mo: 1.0% or less,
Cr: 10.0% or less,
Cu: 1.0% or less,
Ni: 1.0% or less,
B: 0.005% or less,
P: 0.2% or less,
S: 0.1% or less,
N: 0.02% or less, with the balance being Fe and inevitable impurities, and A value = [% Mn] + 2 × [% Mo +% Cr] + 0.5 × [% Cu +% Ni] + 300 × [ % B] is heated to a temperature of Ac 3 or higher, and then hot press forming is started at a temperature of Ar 3 or higher.

第2の発明は、前記発明に加えて、下記a群、b群の1群または2群を含むことを特徴とするものである。
a群:Nb、Ti、V、Ta、Alのうち1種または2種以上の合計を0.001〜0.2質量%。
b群:Ca、Mg、Zr、REMのうち1種または2種以上を合計で0.001〜0.01質量%。
In addition to the said invention, 2nd invention is characterized by including 1 group or 2 groups of the following a group and b group.
Group a: 0.001 to 0.2% by mass of one or more of Nb, Ti, V, Ta, and Al.
Group b: 0.001 to 0.01% by mass in total of one or more of Ca, Mg, Zr, and REM.

第3の発明は、前記第1または第2の発明において、アルミ系または亜鉛系めっきが施されている鋼板を使用することを特徴とするものである。   A third invention is characterized in that in the first or second invention, a steel plate on which an aluminum-based or zinc-based plating is applied is used.

第4の発明は、第1から第3の発明のいずれかの製造方法で作製した部材内の強度均一性に優れる600〜1000MPa級自動車用高強度部材であって、部材中の最小硬さ部および最大硬さ部がベイナイト組織であることを特徴とするものである。   A fourth invention is a 600 to 1000 MPa class high-strength member for automobiles excellent in strength uniformity in a member produced by any one of the manufacturing methods of the first to third inventions, wherein the minimum hardness portion in the member The maximum hardness portion is a bainite structure.

また、本発明は、部材内の強度均一性に優れる600〜1200MPa級自動車用高強度部材の製造方法であって、
第5の発明は、質量%で、
C:0.07%以下、
Si:1.5%以下、
Mn:1.0〜5.0%、
Mo:1.0%以下、
Cr:10.0%以下、
Cu:1.0%以下、
Ni:1.0%以下、
B:0.005%以下、
P:0.2%以下、
S:0.1%以下、
N:0.02%以下
を含有し、残部がFeおよび不可避不純物からなり、さらに、[%Mn]+2×[%Mo+%Cr]+0.5×[%Cu+%Ni]+300×[%B]が1.8以上を満たす鋼板をAc3温度以上に加熱し、次いで、Ar3以上の温度で熱間プレス成形を開始することを特徴とするものである。
Moreover, the present invention is a method for producing a high-strength member for a 600 to 1200 MPa class automobile excellent in strength uniformity within the member,
5th invention is the mass%,
C: 0.07% or less,
Si: 1.5% or less,
Mn: 1.0 to 5.0%
Mo: 1.0% or less,
Cr: 10.0% or less,
Cu: 1.0% or less,
Ni: 1.0% or less,
B: 0.005% or less,
P: 0.2% or less,
S: 0.1% or less,
N: not more than 0.02%, the balance being Fe and inevitable impurities, [% Mn] + 2 × [% Mo +% Cr] + 0.5 × [% Cu +% Ni] + 300 × [% B] Is heated to an Ac 3 temperature or higher, and then hot press forming is started at a temperature of Ar 3 or higher.

第6の発明は、前記発明に加えて、下記a群、b群の1群または2群を含むことを特徴とするものである。
a群:Nb、Ti、V、Ta、Alのうち1種または2種以上の合計を0.001〜0.2質量%。
b群:Ca、Mg、Zr、REMのうち1種または2種以上を合計で0.001〜0.01質量%。
In addition to the said invention, 6th invention is characterized by including 1 group or 2 groups of the following a group and b group.
Group a: 0.001 to 0.2% by mass of one or more of Nb, Ti, V, Ta, and Al.
Group b: 0.001 to 0.01% by mass in total of one or more of Ca, Mg, Zr, and REM.

第7の発明は、前記第5または第6の発明において、アルミ系または亜鉛系めっきが施されている鋼板を使用することを特徴とするものである。   A seventh invention is characterized in that, in the fifth or sixth invention, a steel plate on which an aluminum-based or zinc-based plating is applied is used.

第8の発明は、第5から第7のいずれかの製造方法で作製した部材内の強度均一性に優れる600〜1200MPa級自動車用高強度部材であって、部材中の最小硬さ部および最大硬さ部がベイナイト組織とマルテンサイト組織の混合組織からなるものである。   An eighth invention is a 600 to 1200 MPa class high strength member for automobiles having excellent strength uniformity in a member produced by any one of the fifth to seventh manufacturing methods, wherein the minimum hardness portion and the maximum The hardness part consists of a mixed structure of a bainite structure and a martensite structure.

本発明は、部材中の強度均一性に優れるTSで600MPaから1200MPa級の高強度を有する自動車用の構造用部材、補強用部材、足廻り用部材を、容易かつ安価に提供できる。さらに、本発明は、熱間プレス法を利用するために、冷間プレス法では成形が困難であった複雑形状の部材の製造も可能である。   INDUSTRIAL APPLICABILITY The present invention can easily and inexpensively provide a structural member, a reinforcing member, and a suspension member for automobiles having a high strength of 600 MPa to 1200 MPa with TS having excellent strength uniformity in the member. Furthermore, since the present invention uses the hot pressing method, it is possible to manufacture a member having a complicated shape that has been difficult to form by the cold pressing method.

本発明者らは、熱間プレス成形法により引張強度で600〜1200MPa級の部材を作ると、部材内の強度不均一性が大きくなる原因について調査した。その結果、金型内における鋼板の冷却速度は場所により大きく異なるため、成分が適正でないと、急冷された部分と徐冷された部分ではミクロ組織が大きく異なり、この結果、強度も大きく変化してしまうことを見出した。   The present inventors have investigated the cause of increased strength non-uniformity in a member when a member having a tensile strength of 600 to 1200 MPa is made by a hot press molding method. As a result, the cooling rate of the steel sheet in the mold varies greatly depending on the location, so if the ingredients are not appropriate, the microstructure is greatly different between the rapidly cooled part and the gradually cooled part, and as a result, the strength also changes greatly. I found out.

例えば、ある成分系では、金型と接触して150℃/s以上の冷却速度が得られた部分は、マルテンサイト組織で1000MPaの強度を有するが、その近くで金型と接触していないために30℃/s程度の冷却速度しか得られていないと考えられる部分は、フェライト相が混じり、強度としては600MPa以下となっていた。   For example, in a certain component system, a portion where a cooling rate of 150 ° C./s or more is obtained by contact with the mold has a martensite structure of 1000 MPa, but is not in contact with the mold in the vicinity thereof. In addition, the portion considered that only a cooling rate of about 30 ° C./s was obtained, the ferrite phase was mixed, and the strength was 600 MPa or less.

そこで、本発明者らは、金型内における鋼板の冷却速度として最も遅いと考えられた30℃/sの冷却速度において、軟質のフェライト相あるいはパーライト相の形成を抑制し、さらに、高い冷却速度において、硬質のマルテンサイト相が形成されにくい成分にすることが課題解決に重要であるとの認識に立ち、数多くの実験と検討を重ねた。   Therefore, the present inventors suppressed the formation of a soft ferrite phase or a pearlite phase at a cooling rate of 30 ° C./s, which was considered to be the slowest cooling rate of the steel sheet in the mold, and further increased the cooling rate. Therefore, many experiments and examinations were repeated in recognition that it was important to solve the problem by making the component difficult to form a hard martensite phase.

その結果、図1に示すように、成分を適正範囲にすることによって、冷却速度変化に伴う硬さあるいは引張強度の減少を小さくすることが可能であることを見出し、本発明に至った。   As a result, as shown in FIG. 1, it was found that it is possible to reduce the decrease in the hardness or the tensile strength accompanying the change in the cooling rate by setting the components within an appropriate range, and the present invention has been achieved.

以下に、本発明について詳細に説明する。   The present invention is described in detail below.

まず、成分の限定理由について説明する。なお、%は質量%を意味する。   First, the reasons for limiting the components will be described. In addition,% means the mass%.

C:Cは部材の強度調整に用いられる。しかし、0.07%を超えると600〜1200MPaの強度範囲と金型内の冷却速度変化に伴う強度均一性の確保の両立が困難となる。このため、その範囲を0.07%以下に限定した。   C: C is used for adjusting the strength of the member. However, if it exceeds 0.07%, it becomes difficult to ensure both the strength range of 600 to 1200 MPa and the strength uniformity accompanying the change in the cooling rate in the mold. For this reason, the range was limited to 0.07% or less.

なお、金型内の冷却速度変化に伴う強度均一性が確保できるC量の目安として、TS:1000MPa以下の部材作製にはC:0.05%以下、TS:800MPa以下の部材作製にはC:0.04%以下であることが好ましい。   As a guideline for the amount of C that can ensure the strength uniformity accompanying the change in the cooling rate in the mold, C: 0.05% or less for the production of a member of TS: 1000 MPa or less, C for the production of a member of TS: 800 MPa or less. : 0.04% or less is preferable.

下限は特に限定しないが、製鋼コストの観点から0.0005%以上であることが望ましい。フェライトあるいはパーライト相の形成をできる限り抑制する観点からは、Cは0.04%以下であることが望ましい。   Although a minimum is not specifically limited, From a viewpoint of steelmaking cost, it is desirable that it is 0.0005% or more. From the viewpoint of suppressing the formation of ferrite or pearlite phase as much as possible, C is preferably 0.04% or less.

Si:SiはCと同様に、部材の強度調整に用いられる。しかしながら、1.5%を超えると脱スケール性の悪化を招き、また、Ac3温度が上昇するために製造コスト高になる。従って、Si含有量は1.5%以下の範囲に制限した。下限は特に限定しないが、製鋼コストの観点から、0.0005%以上含有することが望ましい。 Si: Si, like C, is used to adjust the strength of the member. However, if it exceeds 1.5%, the descalability deteriorates, and the Ac 3 temperature rises, resulting in an increase in production cost. Therefore, the Si content is limited to a range of 1.5% or less. Although a minimum is not specifically limited, From a viewpoint of steelmaking cost, it is desirable to contain 0.0005% or more.

Mn:Mnは本発明において最も重要な元素の一つであり、部材の強度調整および強度の冷却速度依存性を小さくするために用いられる。Mnは効果に比較して安価であるので、多く使用することが好ましい。   Mn: Mn is one of the most important elements in the present invention, and is used for adjusting the strength of the member and reducing the dependency of the strength on the cooling rate. Since Mn is inexpensive compared with the effect, it is preferable to use a large amount.

しかしながら、1.0%未満であると、低冷却速度部分においてフェライト変態あるいはパーライト変態を十分に抑制するためにCr、Mo、Ni、Cu等の合金元素を多量に使用する必要があり、極めてコスト高になる。また、5.0%を超えると、部材のスポット溶接性が悪化する。   However, if it is less than 1.0%, it is necessary to use a large amount of alloy elements such as Cr, Mo, Ni and Cu in order to sufficiently suppress ferrite transformation or pearlite transformation in the low cooling rate portion, which is extremely costly. Become high. Moreover, when it exceeds 5.0%, the spot weldability of a member will deteriorate.

このため、Mn含有量の適正範囲を1.0〜5.0%の範囲内に限定した。なお、製造コストの観点からは、1.5%以上添加することがより好ましく、また、鋼板のマクロ偏析にともなう加工割れを防止する観点から、その含有量は2.5%以下であることがより望ましい。   For this reason, the appropriate range of Mn content was limited to the range of 1.0 to 5.0%. In addition, from the viewpoint of manufacturing cost, it is more preferable to add 1.5% or more, and from the viewpoint of preventing processing cracks accompanying macrosegregation of the steel sheet, the content thereof is 2.5% or less. More desirable.

Mo:Moは強度の冷却速度依存性を小さくするために、Mnの代替元素として主に用いる。しかしながら、1.0%を超えるとコスト高になる。このため、Mo含有量の適正範囲を1.0%以下、好ましくは0.5%以下の範囲内に限定した。   Mo: Mo is mainly used as an alternative element for Mn in order to reduce the dependency of strength on the cooling rate. However, if it exceeds 1.0%, the cost becomes high. For this reason, the appropriate range of Mo content was limited to 1.0% or less, preferably 0.5% or less.

Cr:Crは強度の冷却速度依存性を小さくするために、Mnの代替として主に用いられる。また、鋼板加熱時の耐酸化性の向上にも有効である。しかしながら、10.0%を超えるとコスト高になるため、Cr含有量の適正範囲を10.0%以下の範囲内に限定した。耐酸化性を求めない場合には、コスト面から2.0%以下にするのが好ましい。   Cr: Cr is mainly used as a substitute for Mn in order to reduce the dependence of the strength on the cooling rate. It is also effective for improving the oxidation resistance when heating the steel sheet. However, if it exceeds 10.0%, the cost increases, so the appropriate range of Cr content is limited to a range of 10.0% or less. In the case where the oxidation resistance is not required, it is preferably 2.0% or less from the viewpoint of cost.

Cu:Cuは強度の調整および冷却速度依存性を小さくするために、Mnの代替として主に用いられる。しかしながら、1.0%を超えると鋼板製造時に熱間加工割れを起こし、鋼板の品質が低下する。このため、Cu含有量の適正範囲を1.0%以下の範囲内に限定した。   Cu: Cu is mainly used as a substitute for Mn in order to adjust the strength and reduce the cooling rate dependency. However, if it exceeds 1.0%, hot working cracks occur during the production of the steel sheet, and the quality of the steel sheet is deteriorated. For this reason, the appropriate range of Cu content was limited to 1.0% or less.

Ni:Niは強度の冷却速度依存性を小さくするために、Mnの代替として主に用いられる。しかしながら、1.0%を超えるとコスト高になる。このためNi含有量の適正範囲を1.0%以下の範囲内に限定した。   Ni: Ni is mainly used as a substitute for Mn in order to reduce the dependence of strength on the cooling rate. However, if it exceeds 1.0%, the cost becomes high. For this reason, the appropriate range of Ni content was limited to 1.0% or less.

B:Bは強度の冷却速度依存性を小さくするために、Mnの代替として主に用いられる。しかしながら、0.005%を超えると粗大な硼化物あるいは硼炭化物の析出により熱間プレス成形中の割れを起こす。このため、B含有量の適正範囲を0.005%以下の範囲内に限定した。   B: B is mainly used as an alternative to Mn in order to reduce the dependence of strength on the cooling rate. However, if it exceeds 0.005%, cracks occur during hot press molding due to precipitation of coarse borides or carbocarbides. For this reason, the appropriate range of B content was limited to 0.005% or less.

下限は特に限定しないが、不可避的不純物として0.00005%以上含有するものとする。Bは微量添加でA値を上昇させ、Ar3を低下させる元素であるので、コスト上0.0003%以上添加することが望ましい。 Although a minimum is not specifically limited, 0.00005% or more shall be contained as an unavoidable impurity. B is an element that increases the A value and decreases Ar 3 when added in a small amount, so it is desirable to add 0.0003% or more in view of cost.

P:Pに主に部材の強度調整に用いられる。0.2%を超えると2次加工割れが顕著になるので、P含有量の範囲を0.2%以下とした。下限は特に限定しないが、不可避的不純物として0.0003%以上含有するものとする。   P: P is mainly used for adjusting the strength of members. If it exceeds 0.2%, secondary processing cracks become prominent, so the range of P content is set to 0.2% or less. Although a minimum is not specifically limited, 0.0003% or more shall be contained as an unavoidable impurity.

S:Sは不純物であり、多量に含有すると鋼板製造時の熱間加工割れあるいは熱間プレス中の破断を起こすので、0.1%以下とした。下限は特に限定しないが、不可避的不純物として0.0003%以上含有するものとする。   S: S is an impurity, and if it is contained in a large amount, it causes hot working cracks at the time of steel plate production or breakage during hot pressing, so it was made 0.1% or less. Although a minimum is not specifically limited, 0.0003% or more shall be contained as an unavoidable impurity.

N:Nは主にオーステナイト域の結晶粒径制御および強度の調整に用いられる。しかしながら、Nが0.02%を超えると、強度の冷却速度依存性を小さくすることが困難となるため、N含有量の範囲を0.02%以下とした。   N: N is mainly used for crystal grain size control and strength adjustment in the austenite region. However, if N exceeds 0.02%, it becomes difficult to reduce the dependency of strength on the cooling rate, so the range of N content is set to 0.02% or less.

[%Mn]+2×[%Mo+%Cr]+0.5×[%Cu+%Ni]+300×[%B]値(A値):本値は本発明において最も重要なパラメータである。本値が1.8未満であると部材中の冷却速度として最も遅いと考えられる30℃/sの冷却速度の部分において、軟質のフェライト相あるいはパーライト相の形成を抑制することができない。従って、その適正範囲を1.8以上と限定した。   [% Mn] + 2 × [% Mo +% Cr] + 0.5 × [% Cu +% Ni] + 300 × [% B] value (A value): This value is the most important parameter in the present invention. When this value is less than 1.8, formation of a soft ferrite phase or pearlite phase cannot be suppressed in a portion at a cooling rate of 30 ° C./s, which is considered to be the slowest cooling rate in the member. Therefore, the appropriate range is limited to 1.8 or more.

なお、この値が大きいほど低い冷却速度でもフェライトやパーライト相等の軟質相の形成を抑制することができる。従って、金型設計の都合上、低冷却速度の部分が回避できない場合には、この値を増大させる必要がある。金型中での最小の冷却速度が10℃/s程度になる部位も想定されるので、2.0以上にすることが好ましく、さらに2.3以上がより好ましい条件である。   In addition, formation of soft phases, such as a ferrite and a pearlite phase, can be suppressed even if a cooling rate is so low that this value is large. Therefore, if the low cooling rate portion cannot be avoided due to the design of the mold, it is necessary to increase this value. Since a part where the minimum cooling rate in the mold is about 10 ° C./s is also assumed, it is preferably 2.0 or more, and more preferably 2.3 or more.

本発明では、上記した成分に加えて、さらに、a群とb群のうちの1群または2群を含有しても、本発明の目的を達成することができる。   In the present invention, in addition to the above-described components, the object of the present invention can also be achieved by containing one or two groups out of groups a and b.

a群:Nb、Ti、V、Ta、Alのうち1種または2種以上の合計を0.001〜0.2%。   Group a: 0.001 to 0.2% of the total of one or more of Nb, Ti, V, Ta, and Al.

Nb、Ti、V、Ta、Alは脱酸元素、あるいは、炭窒化物形成元素として用いて鋼材の強度を調整するのに用いられるので、1種または2種以上の合計を0.001%以上含有することが好ましい。しかしながら、合計で0.2%を超えるとコスト高になる。従って、その合計量の範囲を0.001〜0.2%とした。   Since Nb, Ti, V, Ta, and Al are used as deoxidizing elements or carbonitride-forming elements to adjust the strength of steel materials, the total of one or more types is 0.001% or more. It is preferable to contain. However, if the total exceeds 0.2%, the cost becomes high. Therefore, the range of the total amount is set to 0.001 to 0.2%.

b群:Ca、Mg、Zr、REMのうち1種または2種を合計で0.001〜0.01%。   Group b: 0.001 to 0.01% in total of one or two of Ca, Mg, Zr, and REM.

Ca、Mg、ZrおよびREMは脱酸に用いる元素であり、1種または2種を合計で0.001%以上含有することが好ましい。しかしながら、合計の含有量が0.01%を超えると、成形加工性の悪化の原因となる。そのため、合計量の範囲を0.001〜0.01%とした。なお、本発明において、REMとはLaおよびランタノイド系列の元素を指すものとする。   Ca, Mg, Zr, and REM are elements used for deoxidation, and it is preferable to contain one or two kinds in total in an amount of 0.001% or more. However, if the total content exceeds 0.01%, the moldability is deteriorated. Therefore, the total amount range is set to 0.001 to 0.01%. In the present invention, REM refers to La and lanthanoid series elements.

なお、その他の不可避不純物としてOを0.01%以下含んでいてもよい。   In addition, 0.01% or less of O may be included as other inevitable impurities.

次に、熱間プレス成形方法の限定理由について説明する。   Next, the reason for limitation of the hot press molding method will be described.

加熱温度がAc3温度未満であると、強度均一性に優れかつ600〜1200MPaの強度を有する部材を製造することが困難となるので、その適正範囲をAc3以上に限定した。加熱温度の上限は特に定めないが、鋼板加熱中のスケール形成を避ける観点からは、1000℃以下とすることが好ましい。 When the heating temperature is less than the Ac 3 temperature, it becomes difficult to produce a member having excellent strength uniformity and a strength of 600 to 1200 MPa, so the appropriate range is limited to Ac 3 or higher. The upper limit of the heating temperature is not particularly defined, but is preferably set to 1000 ° C. or less from the viewpoint of avoiding scale formation during heating of the steel sheet.

また、熱間プレス成形の開始温度がAr3未満であると、フェライト、パーライト相等の軟質相が部材内で不均一に形成されやすくなり、強度不均一性が大きくなる傾向があるので、熱間プレス成形開始温度の適正範囲をAr3以上に限定した。なお、軟質相の形成をできる限り回避するという観点から、Ar3+50℃以上であることがより望ましい。 In addition, if the hot press molding start temperature is less than Ar 3 , soft phases such as ferrite and pearlite phases tend to be formed unevenly in the member, and the strength non-uniformity tends to increase. The appropriate range of the press molding start temperature was limited to Ar 3 or more. From the viewpoint of avoiding the formation of the soft phase as much as possible, Ar 3 + 50 ° C. or higher is more desirable.

なお、Ac3温度およびAr3温度は、化学組成(mass%)より次の式を用いて簡易的に計算することができる。
Ac3=910−203*C1/2+45*Si−30*Mn+700*P−15*Ni− 20*Cu−11*Cr+10*Mo
Ar3=900−325*C+30Si+40Al−90*(Mn+Cu)−50Ni− 50000*B
The Ac 3 temperature and the Ar 3 temperature can be simply calculated from the chemical composition (mass%) using the following formula.
Ac 3 = 910-203 * C 1/2 + 45 * Si-30 * Mn + 700 * P-15 * Ni- 20 * Cu-11 * Cr + 10 * Mo
Ar 3 = 900-325 * C + 30Si + 40Al-90 * (Mn + Cu) -50Ni- 50000 * B

プレス成形の開始温度の上限は特に定めないが、熱間プレス成形中の板破断を回避する点からは、1100℃以下とすることが好ましい。なお、ここで成形開始とは金型上に鋼板が置かれた瞬間を指す。   The upper limit of the press molding start temperature is not particularly defined, but is preferably set to 1100 ° C. or less from the viewpoint of avoiding plate breakage during hot press molding. Here, the start of molding refers to the moment when the steel plate is placed on the mold.

本発明は、熱間プレス金型中で急冷された場所も徐冷された場所もベイナイト組織とマルテンサイト組織の混合組織とすることが肝要である。TSで1000MPa以下の場合には、ベイナイト組織分率が80%以上の組織であることが好ましく、部材内の均一性をより高める観点からはベイナイト単相組織であることがより好ましい。   In the present invention, it is important that a place where quenched and slowly cooled in a hot press mold have a mixed structure of a bainite structure and a martensite structure. When TS is 1000 MPa or less, it is preferably a structure having a bainite structure fraction of 80% or more, and more preferably a bainite single-phase structure from the viewpoint of further improving the uniformity within the member.

TSで1000MPaを超え1200MPa以下の場合も、部材内の均一性をより高める観点からベイナイト組織分率が50%以上であることが好ましい。ここで、ベイナイトとは、ラス状ベイナイト、グラニュラーベイナイトを指すものとする。   Also in the case of TS exceeding 1000 MPa and not more than 1200 MPa, it is preferable that the bainite structure fraction is 50% or more from the viewpoint of further improving the uniformity within the member. Here, bainite refers to lath-shaped bainite and granular bainite.

なお、ベイナイト相の判別は、鋼のベイナイト写真集1:〔低炭素鋼の連続冷却(中間段階)変態組織 Atlas for Bainitic Microstructures Vol.1、日本鉄鋼協会基礎研究会ベイナイト調査研究部会/編、1992年〕を参考にして行うものとする。   Note that the bainite phase is identified by a bainite photo collection of steel 1: [Continuous cooling (intermediate stage) transformation structure of low carbon steel, Atlas for Bainitic Microstructures Vol. Year].

また、C:0.04%を超える場合には、ラス状ベイナイトとマルテンサイト相の区別がしにくい場合があるが、この場合は、透過電子顕微鏡法により微視組織観察を行い、何らかの炭化物析出が認められた場合はラス状ベイナイトと分類することとする。   In addition, when C exceeds 0.04%, it may be difficult to distinguish between the lath bainite and the martensite phase. In this case, the microstructure is observed by transmission electron microscopy, and some carbide precipitation occurs. If it is found, it shall be classified as lath bainite.

熱間プレス成形を行う素材鋼板は、熱延鋼板、冷延まま鋼板、冷延焼鈍板のいずれでもよく、また、鋼板表面に電気めっき、溶融めっき、合金化めっき層が施されている鋼板でも、本発明の効果を奏功することができる。ただし、熱間プレス後のめっき品質を確保するという観点からは、めっきの主成分としてはアルミまたは亜鉛であることが、より望ましい。   The raw steel plate for hot press forming may be either a hot-rolled steel plate, a cold-rolled steel plate, or a cold-rolled annealed plate, or a steel plate having a surface plated with an electroplating, hot-dip plating, or alloyed plating layer. The effect of the present invention can be achieved. However, from the viewpoint of ensuring plating quality after hot pressing, it is more desirable that the main component of plating is aluminum or zinc.

本発明に係る成分の鋼板および部材の製造方法は、異なる強度の鋼板を接合した後に熱間プレスを行う場合にも適用可能である。例えば、金型冷却後に、本発明に係る700MPaになる成分を有する鋼板と1500MPaになる成分を有する鋼板を接合して、その後、本発明に示された条件で熱間プレス成形を行うことにより、全く異なる強度を有する一体部品(テーラードブランク部品)を製造することが可能になる。   The manufacturing method of the steel plate and member of the component which concerns on this invention is applicable also when performing hot pressing, after joining the steel plate of different intensity | strength. For example, after mold cooling, by joining a steel plate having a component of 700 MPa and a steel plate having a component of 1500 MPa according to the present invention, and then performing hot press molding under the conditions indicated in the present invention, It becomes possible to manufacture an integral part (tailored blank part) having completely different strengths.

なお、本発明において強度均一性に優れるとは、金型内で冷却された部分のうち最小の引張強度(または硬さ)を有する部分が最大の引張強度(または硬さ)の80%以上であるものを指す。より、安定的に衝撃吸収エネルギーを吸収するあるいは良好な耐変形特性を得るという観点からは、85%以上であることがより望ましい。   In the present invention, excellent strength uniformity means that the portion having the minimum tensile strength (or hardness) among the portions cooled in the mold is 80% or more of the maximum tensile strength (or hardness). It points to something. From the viewpoint of stably absorbing shock absorption energy or obtaining good deformation resistance, it is more preferably 85% or more.

その評価方法としては、鋼板を920℃に加熱した後、急冷された部分に相当するものとして、180℃/sの冷却速度で室温まで冷却したものの最大引張強度をTSmax、金型内で徐冷された部分に相当するものとして、30℃/sの冷却速度で室温まで冷却したものの最大引張強度をTSminとし、TSmin/TSmaxの値を求め、この値を評価するのが定量的であり好適である。   As the evaluation method, the steel sheet was heated to 920 ° C. and then cooled to room temperature at a cooling rate of 180 ° C./s, and the maximum tensile strength of the steel plate was gradually cooled in the mold. It is quantitative and preferable that the maximum tensile strength of what is cooled to room temperature at a cooling rate of 30 ° C./s is TSmin, the value of TSmin / TSmax is obtained, and this value is evaluated. is there.

あるいは、成形後の部材のビッカース硬さ(荷重10kgf)を測定し、金型内で冷却された部分の内、最大の硬さをHvmax、最小の硬さをHvminとした時に、Hvmin/Hvmaxの値を求め、この値を評価してもよい。 Alternatively, when the Vickers hardness (load 10 kgf) of the molded member is measured and the maximum hardness is Hv max and the minimum hardness is Hv min among the parts cooled in the mold, Hv min A value of / Hv max may be obtained and this value may be evaluated.

鋼板の加熱方法としては、加熱炉中に装入する方法、高周波誘導加熱による方法のいずれでも構わない。また、本部材を作製する熱間プレス成形方法としては、深絞り成形、張出成形、伸びフランジ成形、曲げ変形、あるいは、これら変形モードが複合した方法のいずれでも構わない。   As a method for heating the steel sheet, either a method of charging in a heating furnace or a method by high frequency induction heating may be used. The hot press forming method for producing this member may be any of deep drawing, overhang forming, stretch flange forming, bending deformation, or a method in which these deformation modes are combined.

次に、本発明を実施例により詳細に説明する。   Next, the present invention will be described in detail with reference to examples.

表1に示す成分を有する板厚1.4mmの鋼板A〜Hを、加熱および熱間プレス金型内の冷却を模擬するために、熱履歴シミュレーターを用いて加熱温度および冷却速度を様々に変化させる実験を行い、各条件での組織、材質を測定した。材質はJIS5号試験片を用いて評価した。   In order to simulate heating and cooling in a hot press die, steel plates A to H having the components shown in Table 1 were varied in heating temperature and cooling rate using a thermal history simulator. The structure and the material under each condition were measured. The material was evaluated using a JIS No. 5 test piece.

また、実際に鋼板を920℃に加熱し、ハット形状の金型(長さ:300mm、断面一辺の長さ:約50mm)を用いて熱間プレス試験を行い、次いで、部材とほぼ同一の強度を有する鋼板で残辺に蓋をした試験材を作製し、上部から重錘を落とし、試験材の圧潰形状と吸収エネルギーを測定する実験を行った。試験材が蛇腹状に潰れて衝撃エネルギーを十分に吸収したものを○と判定した。   In addition, the steel sheet was actually heated to 920 ° C., a hot press test was performed using a hat-shaped mold (length: 300 mm, length of one side of the cross section: about 50 mm), and then the strength almost the same as that of the member. The test material which covered the remainder with the steel plate which has this was produced, the weight was dropped from the upper part, and the experiment which measured the crush shape and absorbed energy of a test material was done. A test material that was crushed into a bellows shape and sufficiently absorbed impact energy was judged as ◯.

本発明の部材の衝撃吸収エネルギーは、強度の不均一性が大きい同一TSmaxの部材の衝撃吸収エネルギーと比較して20%以上大きかった。   The impact absorption energy of the member of the present invention was 20% or more larger than the impact absorption energy of the member of the same TSmax having a large non-uniform strength.

強度均一性は以下の評価により求めた。すなわち、鋼板を920℃に加熱した後、急冷された部分に相当するものとして、180℃/sの冷却速度で室温まで冷却したものの最大引張強度をTSmax、金型内で徐冷された部分に相当するものとして、30℃/sの冷却速度で室温まで冷却したものの最大引張強度をTSminとし、TSmin/TSmaxの値を求めた。結果を、表2に示す。   The strength uniformity was determined by the following evaluation. That is, the steel sheet was heated to 920 ° C and then cooled to room temperature at a cooling rate of 180 ° C / s, corresponding to the rapidly cooled portion, and the maximum tensile strength was TSmax, which was gradually cooled in the mold. Correspondingly, the maximum tensile strength of what was cooled to room temperature at a cooling rate of 30 ° C./s was defined as TSmin, and the value of TSmin / TSmax was determined. The results are shown in Table 2.

このTSmin/TSmaxが1に近いほど部材の強度均一性が高いことを示し、この値が0.80以上のものは上述の圧潰試験において蛇腹状の圧潰形態を示し、また、衝撃吸収エネルギーが高いことを示していた。   The closer this TSmin / TSmax is to 1, the higher the strength uniformity of the member is. The value of 0.80 or more indicates a bellows-like crushing form in the above crushing test, and the impact absorption energy is high. It showed that.

なお、強度均一性の評価方法としては、成形した部材のビッカース硬さ(荷重10kgf)硬さを測定し、金型内で冷却された部分の内、最大の硬さをHvmax、最小の硬さをHvminとした時に、Hvmin/Hvmaxの値を求め、この値を評価してもよい。 In addition, as a method for evaluating the strength uniformity, the Vickers hardness (load 10 kgf) of the molded member is measured, and the maximum hardness among the parts cooled in the mold is Hv max and the minimum hardness is measured. When the thickness is Hv min , a value of Hv min / Hv max may be obtained and this value may be evaluated.

No.6とNo.7は、C成分および[%Mn]+2×[%Mo+%Cr]+0.5×[%Cu+%Ni]+300×[%B]値が本発明の範囲外であるために、徐冷却時にフェライトが形成し、部材中の強度不均一性が大きく、圧潰形態も悪く、十分な衝撃エネルギーの吸収が得られなかった例である。   No. 6 and no. No. 7 has a C component and [% Mn] + 2 × [% Mo +% Cr] + 0.5 × [% Cu +% Ni] + 300 × [% B] values that are outside the scope of the present invention. Is formed, the strength non-uniformity in the member is large, the crushing form is also bad, and sufficient impact energy cannot be absorbed.

No.9は、成分は適正範囲内であったにもかかわらず、鋼板の加熱温度がAc3温度以下であったために、600MPaの強度が得られなかった例である。No.10は、成分は適正範囲内であったにもかかわらず、熱間プレス開始温度がAr3温度以下であったために、600MPa以上の強度が得られなかった例である。 No. No. 9 is an example in which the strength of 600 MPa was not obtained because the heating temperature of the steel sheet was not more than the Ac 3 temperature even though the components were within the appropriate range. No. No. 10 is an example in which the strength of 600 MPa or more could not be obtained because the hot press start temperature was not higher than the Ar 3 temperature even though the components were within the appropriate range.

Figure 2005248320
Figure 2005248320

Figure 2005248320
Figure 2005248320

前述したように、本発明は、部材中の強度均一性に優れるTSで600MPaから1200MPa級の高強度を有する自動車用の構造用部材、補強用部材、足廻り用部材を容易かつ安価に提供でき、さらに、熱間プレス法を利用するために、冷間プレス法では成形が困難であった複雑形状の部材の製造も可能である。したがって、本発明は、産業上の利用可能性が極めて高いものである。   As described above, the present invention can easily and inexpensively provide a structural member, a reinforcing member, and a suspension member for automobiles having high strength of 600 MPa to 1200 MPa with TS having excellent strength uniformity in the member. Furthermore, since the hot press method is used, it is possible to manufacture a member having a complicated shape, which is difficult to form by the cold press method. Therefore, the present invention has extremely high industrial applicability.

本発明鋼(鋼D)と比較鋼(鋼H)を、920℃で5分加熱後、0.1〜180℃/sの冷却速度で室温まで冷却した時の鋼板の硬さを示す図である(180℃/sと30℃/s冷却後の硬さを比較すると、比較鋼に比べて本発明鋼では硬さの変化が大きく抑制されている。)。It is a figure which shows the hardness of a steel plate when this invention steel (steel D) and a comparative steel (steel H) are cooled to room temperature with the cooling rate of 0.1-180 degreeC / s after heating at 920 degreeC for 5 minutes. Yes (when the hardness after cooling at 180 ° C./s and 30 ° C./s is compared, the change in hardness is greatly suppressed in the steel of the present invention compared to the comparative steel).

Claims (8)

質量%で、
C:0.05%以下、
Si:1.5%以下、
Mn:1.0〜5.0%、
Mo:1.0%以下、
Cr:10.0%以下、
Cu:1.0%以下、
Ni:1.0%以下、
B:0.005%以下、
P:0.2%以下、
S:0.1%以下、
N:0.02%以下
を含有し、残部がFeおよび不可避不純物からなり、さらに、[%Mn]+2×[%Mo+%Cr]+0.5×[%Cu+%Ni]+300×[%B]が1.8以上を満たす鋼板をAc3温度以上に加熱し、次いで、Ar3以上の温度で熱間プレス成形を開始することを特徴とする部材内の強度均一性に優れる600〜1000MPa級自動車用高強度部材の製造方法。
% By mass
C: 0.05% or less,
Si: 1.5% or less,
Mn: 1.0 to 5.0%
Mo: 1.0% or less,
Cr: 10.0% or less,
Cu: 1.0% or less,
Ni: 1.0% or less,
B: 0.005% or less,
P: 0.2% or less,
S: 0.1% or less,
N: not more than 0.02%, the balance being Fe and inevitable impurities, [% Mn] + 2 × [% Mo +% Cr] + 0.5 × [% Cu +% Ni] + 300 × [% B] A 600 to 1000 MPa class automobile excellent in strength uniformity within a member, characterized in that a steel sheet satisfying a value of 1.8 or more is heated to an Ac 3 temperature or higher and then hot press forming is started at a temperature of Ar 3 or higher. Method for manufacturing high strength members.
前記成分に加えて、下記a群、b群の1群または2群を含むことを特徴とする請求項1記載の部材内の強度均一性に優れる600〜1000MPa級自動車用高強度部材の製造方法。
a群:Nb、Ti、V、Ta、Alのうち1種または2種以上の合計を0.001〜0.2質量%。
b群:Ca、Mg、Zr、REMのうち1種または2種以上を合計で0.001〜0.01質量%。
The method for producing a high-strength member for a 600 to 1000 MPa class automobile having excellent strength uniformity in the member according to claim 1, wherein in addition to the components, one or two of the following groups a and b are included. .
Group a: 0.001 to 0.2% by mass of one or more of Nb, Ti, V, Ta, and Al.
Group b: 0.001 to 0.01% by mass in total of one or more of Ca, Mg, Zr, and REM.
アルミ系または亜鉛系めっきが施されている鋼板を使用することを特徴とする請求項1または2記載の部材内の強度均一性に優れる600〜1000MPa級自動車用高強度部材の製造方法。   3. A method for producing a high strength member for a 600 to 1000 MPa class automobile having excellent strength uniformity in the member according to claim 1 or 2, wherein the steel plate is subjected to aluminum or zinc plating. 請求項1〜3のいずれか1項に記載の製造方法により製造した部材であって、部材中の最小硬さ部および最大硬さ部がベイナイト組織であることを特徴とする部材内の強度均一性に優れる600〜1000MPa級自動車用高強度部材。   It is the member manufactured by the manufacturing method of any one of Claims 1-3, Comprising: The minimum hardness part in a member and the maximum hardness part are bainite structures, The intensity | strength uniformity in the member 600-1000 MPa class high-strength member for automobiles with excellent properties. 質量%で、
C:0.07%以下、
Si:1.5%以下、
Mn:1.0〜5.0%、
Mo:1.0%以下、
Cr:10.0%以下、
Cu:1.0%以下、
Ni:1.0%以下、
B:0.005%以下、
P:0.2%以下、
S:0.1%以下、
N:0.02%以下
を含有し、残部がFeおよび不可避不純物からなり、さらに、[%Mn]+2×[%Mo+%Cr]+0.5×[%Cu+%Ni]+300×[%B]が1.8以上を満たす鋼板をAc3温度以上に加熱し、次いで、Ar3以上の温度で熱間プレス成形を開始することを特徴とする部材内の強度均一性に優れる600〜1200MPa級自動車用高強度部材の製造方法。
% By mass
C: 0.07% or less,
Si: 1.5% or less,
Mn: 1.0 to 5.0%
Mo: 1.0% or less,
Cr: 10.0% or less,
Cu: 1.0% or less,
Ni: 1.0% or less,
B: 0.005% or less,
P: 0.2% or less,
S: 0.1% or less,
N: not more than 0.02%, the balance being Fe and inevitable impurities, [% Mn] + 2 × [% Mo +% Cr] + 0.5 × [% Cu +% Ni] + 300 × [% B] A 600 to 1200 MPa class automobile excellent in strength uniformity within a member, characterized in that a steel sheet satisfying a value of 1.8 or more is heated to an Ac 3 temperature or more and then hot press forming is started at a temperature of Ar 3 or more. Method for manufacturing high strength members.
前記成分に加えて、下記a群、b群の1群または2群を含むことを特徴とする請求項5記載の部材内の強度均一性に優れる600〜1200MPa級自動車用高強度部材の製造方法。
a群:Nb、Ti、V、Ta、Alのうち1種または2種以上の合計を0.001〜0.2質量%。
b群:Ca、Mg、Zr、REMのうち1種または2種以上を合計で0.001〜0.01質量%。
The method for producing a high-strength member for a 600 to 1200 MPa class automobile having excellent strength uniformity in the member according to claim 5, wherein in addition to the components, one or two of the following groups a and b are included. .
Group a: 0.001 to 0.2% by mass of one or more of Nb, Ti, V, Ta, and Al.
Group b: 0.001 to 0.01% by mass in total of one or more of Ca, Mg, Zr, and REM.
アルミ系または亜鉛系めっきが施されている鋼板を使用することを特徴とする請求項5または6記載の部材内の強度均一性に優れる600〜1200MPa級自動車用高強度部材の製造方法。   The method for producing a 600 to 1200 MPa class high strength member for automobiles excellent in strength uniformity in the member according to claim 5 or 6, wherein the steel plate is subjected to aluminum or zinc plating. 請求項5〜7のいずれか1項に記載の製造方法により製造した部材であって、部材中の最小硬さ部および最大硬さ部がベイナイト組織とマルテンサイト組織の混合組織からなることを特徴とする部材内の強度均一性に優れる600〜1200MPa級自動車用高強度部材。   It is the member manufactured by the manufacturing method of any one of Claims 5-7, Comprising: The minimum hardness part and maximum hardness part in a member consist of a mixed structure of a bainite structure and a martensitic structure. A high-strength member for a 600 to 1200 MPa class automobile having excellent strength uniformity in the member.
JP2004324780A 2004-02-06 2004-11-09 600-1200 MPa class high-strength member for automobiles with excellent strength uniformity in the member and method for producing the same Active JP4452157B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004324780A JP4452157B2 (en) 2004-02-06 2004-11-09 600-1200 MPa class high-strength member for automobiles with excellent strength uniformity in the member and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004030963 2004-02-06
JP2004324780A JP4452157B2 (en) 2004-02-06 2004-11-09 600-1200 MPa class high-strength member for automobiles with excellent strength uniformity in the member and method for producing the same

Publications (2)

Publication Number Publication Date
JP2005248320A true JP2005248320A (en) 2005-09-15
JP4452157B2 JP4452157B2 (en) 2010-04-21

Family

ID=35029079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004324780A Active JP4452157B2 (en) 2004-02-06 2004-11-09 600-1200 MPa class high-strength member for automobiles with excellent strength uniformity in the member and method for producing the same

Country Status (1)

Country Link
JP (1) JP4452157B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007154257A (en) * 2005-12-05 2007-06-21 Sumitomo Metal Ind Ltd Tailored blank material for hot press, hot press member and its production method
JP2011143430A (en) * 2010-01-13 2011-07-28 Sumitomo Metal Ind Ltd Method of manufacturing tailored blank, and steel plate for tailored blank
WO2012157581A1 (en) 2011-05-13 2012-11-22 新日本製鐵株式会社 Hot stamp molded article, method for producing hot stamp molded article, energy absorbing member, and method for producing energy absorbing member
JPWO2016103682A1 (en) * 2014-12-25 2017-09-07 新日鐵住金株式会社 Panel-shaped molded product and method for producing panel-shaped molded product
RU2659549C2 (en) * 2014-01-06 2018-07-02 Ниппон Стил Энд Сумитомо Метал Корпорейшн Hot-formed member and process for its manufacturing
JP2019506297A (en) * 2015-12-22 2019-03-07 ポスコPosco Hot press-formed product with excellent corrosion resistance and method for producing the same
WO2019069938A1 (en) 2017-10-02 2019-04-11 新日鐵住金株式会社 Hot-stamp molded article, hot-stamp steel sheet, and methods for producing these
US10774405B2 (en) 2014-01-06 2020-09-15 Nippon Steel Corporation Steel and method of manufacturing the same
JPWO2020235599A1 (en) * 2019-05-23 2020-11-26
KR20210117316A (en) 2019-04-01 2021-09-28 닛폰세이테츠 가부시키가이샤 Hot stamped article and manufacturing method thereof
KR20210124324A (en) 2019-04-01 2021-10-14 닛폰세이테츠 가부시키가이샤 Hot stamped products and steel sheets for hot stamping, and manufacturing method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7235621B2 (en) 2019-08-27 2023-03-08 株式会社神戸製鋼所 Steel plate for low-strength hot stamping, hot stamped parts, and method for manufacturing hot stamped parts

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007154257A (en) * 2005-12-05 2007-06-21 Sumitomo Metal Ind Ltd Tailored blank material for hot press, hot press member and its production method
JP2011143430A (en) * 2010-01-13 2011-07-28 Sumitomo Metal Ind Ltd Method of manufacturing tailored blank, and steel plate for tailored blank
US10023925B2 (en) 2011-05-13 2018-07-17 Nippon Steel & Sumitomo Metal Corporation Hot stamped article, method of producing hot stamped article, energy absorbing member, and method of producing energy absorbing member
WO2012157581A1 (en) 2011-05-13 2012-11-22 新日本製鐵株式会社 Hot stamp molded article, method for producing hot stamp molded article, energy absorbing member, and method for producing energy absorbing member
JP5556961B2 (en) * 2011-05-13 2014-07-23 新日鐵住金株式会社 Hot stamp molded article, hot stamp molded article manufacturing method, energy absorbing member, and energy absorbing member manufacturing method
TWI452148B (en) * 2011-05-13 2014-09-11 Nippon Steel & Sumitomo Metal Corp Hot stamped product, method for manufacturing the hot stamped product, energy absorption member, and method for manufacturing the energy absorption member
EP2708613A4 (en) * 2011-05-13 2015-05-13 Nippon Steel & Sumitomo Metal Corp Hot stamp molded article, method for producing hot stamp molded article, energy absorbing member, and method for producing energy absorbing member
KR20170090517A (en) * 2011-05-13 2017-08-07 신닛테츠스미킨 카부시키카이샤 Hot stamp molded article, method for producing hot stamp molded article, energy absorbing member, and method for producing energy absorbing member
KR102059052B1 (en) * 2011-05-13 2019-12-24 닛폰세이테츠 가부시키가이샤 Hot stamp molded article, method for producing hot stamp molded article, energy absorbing member, and method for producing energy absorbing member
US10774405B2 (en) 2014-01-06 2020-09-15 Nippon Steel Corporation Steel and method of manufacturing the same
US10266911B2 (en) 2014-01-06 2019-04-23 Nippon Steel & Sumitomo Metal Corporation Hot-formed member and manufacturing method of same
RU2659549C2 (en) * 2014-01-06 2018-07-02 Ниппон Стил Энд Сумитомо Метал Корпорейшн Hot-formed member and process for its manufacturing
JPWO2016103682A1 (en) * 2014-12-25 2017-09-07 新日鐵住金株式会社 Panel-shaped molded product and method for producing panel-shaped molded product
JP2019506297A (en) * 2015-12-22 2019-03-07 ポスコPosco Hot press-formed product with excellent corrosion resistance and method for producing the same
WO2019069938A1 (en) 2017-10-02 2019-04-11 新日鐵住金株式会社 Hot-stamp molded article, hot-stamp steel sheet, and methods for producing these
KR20200047634A (en) 2017-10-02 2020-05-07 닛폰세이테츠 가부시키가이샤 Hot stamped molded products and hot stamped steel sheet and their manufacturing method
US11565299B2 (en) 2017-10-02 2023-01-31 Nippon Steel Corporation Hot stamped product, steel sheet for hot stamp, and manufacturing method thereof
KR20210117316A (en) 2019-04-01 2021-09-28 닛폰세이테츠 가부시키가이샤 Hot stamped article and manufacturing method thereof
KR20210124324A (en) 2019-04-01 2021-10-14 닛폰세이테츠 가부시키가이샤 Hot stamped products and steel sheets for hot stamping, and manufacturing method thereof
JPWO2020235599A1 (en) * 2019-05-23 2020-11-26
WO2020235599A1 (en) * 2019-05-23 2020-11-26 日本製鉄株式会社 Hot stamp molded body, and method for producing same
JP7295457B2 (en) 2019-05-23 2023-06-21 日本製鉄株式会社 HOT STAMP MOLDED PRODUCT AND METHOD FOR MANUFACTURING THE SAME

Also Published As

Publication number Publication date
JP4452157B2 (en) 2010-04-21

Similar Documents

Publication Publication Date Title
JP4956998B2 (en) High-strength hot-dip galvanized steel sheet with excellent formability and method for producing the same
JP4214006B2 (en) High strength steel sheet with excellent formability and method for producing the same
JP4461112B2 (en) High strength steel plate with excellent workability
KR101626233B1 (en) High strength cold rolled steel sheet with high yield ratio and method for producing the same
JP2010275627A (en) High-strength steel sheet and high-strength hot-dip galvanized steel sheet having excellent workability, and method for producing them
JP2011184757A (en) Method for manufacturing high-strength steel sheet
JP5662903B2 (en) High-strength steel sheet with excellent formability, warm working method, and warm-worked automotive parts
KR20070061859A (en) High strength thin steel plate excellent in elongation and bore expanding characteristics and method for production thereof
JP5521444B2 (en) High-strength cold-rolled steel sheet with excellent workability and method for producing the same
KR20130121940A (en) High-strength cold-rolled steel sheet having excellent processability and high yield ratio, and method for producing same
JP4427462B2 (en) Steel member for vehicle and method for manufacturing the same
WO2012060294A1 (en) High-strength cold-rolled steel sheet having excellent deep-drawability and bake hardenability, and method for manufacturing same
JP2007231369A (en) High-strength cold rolled steel, high-strength hot dip galvanized steel sheet and high-strength galvannealed steel sheet having excellent formability and weldability, method for producing high-strength cold rolled steel sheet, method for producing high-strength hot dip galvanized steel sheet and method for producing high-strength galvannealed steel sheet
JP5394306B2 (en) High-strength steel plate with excellent plating properties and manufacturing method thereof
JP2011068979A (en) Partially tempered and softened steel sheet and press-formed part using the steel sheet
JP4452157B2 (en) 600-1200 MPa class high-strength member for automobiles with excellent strength uniformity in the member and method for producing the same
JP4211520B2 (en) High strength and high ductility galvanized steel sheet with excellent aging resistance and method for producing the same
JP4772431B2 (en) Manufacturing method of hot-dip galvanized high-strength steel sheet with excellent elongation and hole expansion
JP4525383B2 (en) Low yield ratio high strength steel sheet with excellent bake hardening characteristics and method for producing the same
JP2007077510A (en) High-strength high-ductility galvanized steel sheet excellent in aging resistance and its production method
JP4634885B2 (en) High strength thin steel sheet with excellent fatigue characteristics, paint bake hardening performance and room temperature aging resistance, and manufacturing method thereof
JP4085809B2 (en) Hot-dip galvanized cold-rolled steel sheet having an ultrafine grain structure and excellent stretch flangeability and method for producing the same
JP2008280577A (en) High strength hot dip galvanized steel sheet having excellent formability
JP2007138189A (en) High-strength steel sheet having superior workability, and manufacturing method therefor
JP4168750B2 (en) Method for producing hot-dip galvanized cold-rolled steel sheet with an ultrafine grain structure and excellent fatigue properties

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100119

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100129

R151 Written notification of patent or utility model registration

Ref document number: 4452157

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140205

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350