JP2005248313A - Extremely-low-carbon steel sheet excellent in spot weldability - Google Patents

Extremely-low-carbon steel sheet excellent in spot weldability Download PDF

Info

Publication number
JP2005248313A
JP2005248313A JP2004064473A JP2004064473A JP2005248313A JP 2005248313 A JP2005248313 A JP 2005248313A JP 2004064473 A JP2004064473 A JP 2004064473A JP 2004064473 A JP2004064473 A JP 2004064473A JP 2005248313 A JP2005248313 A JP 2005248313A
Authority
JP
Japan
Prior art keywords
steel sheet
carbon steel
spot weldability
ultra
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004064473A
Other languages
Japanese (ja)
Other versions
JP4464714B2 (en
Inventor
Hiroyuki Tanahashi
浩之 棚橋
Katsuhiro Sasai
勝浩 笹井
Manabu Takahashi
学 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2004064473A priority Critical patent/JP4464714B2/en
Publication of JP2005248313A publication Critical patent/JP2005248313A/en
Application granted granted Critical
Publication of JP4464714B2 publication Critical patent/JP4464714B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a steel sheet which is excellent in spot weldability without worsening its formability. <P>SOLUTION: The extremely-low-carbon steel sheet comprises, by mass%, 0.0005-0.003% C, ≤0.1% Si, ≤0.5% Mn, ≤0.05% P, ≤0.02% S, ≤0.01% Al, ≤0.005% N, 0.001-0.01% O (oxygen), La and/or Ce, provided that the total amount of La and/or Ce satisfies the relation: La+Ce≥S/4, and the balance being Fe and unavoidable impurities. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、自動車などの輸送機器や家電製品のように、組み立てにスポット溶接を用いる用途において優位性を発揮する成形用鋼板に関するものである。   The present invention relates to a forming steel sheet that exhibits superiority in applications that use spot welding for assembly, such as transportation equipment such as automobiles and home appliances.

自動車などの輸送機器や家電製品には、プレス成形された部品を、スポット溶接を用いて組み立てる工程が用いられることが多い。この場合、プレス成形性と価格の点から、素材には、成形性に優れた鋼板が採用されるのが一般的である。中でも、デザインの良し悪しが市場での評価に大きな比重を占める自動車ボディなどにおいては、単純ではない形状への成形性にも適応出来る極低炭素鋼板が広く用いられている。   For transportation equipment such as automobiles and home appliances, a process of assembling press-molded parts using spot welding is often used. In this case, from the viewpoint of press formability and cost, it is common to use a steel plate having excellent formability as the material. Above all, ultra low carbon steel sheets that can be applied to formability to a simple shape are widely used in automobile bodies and the like where the quality of design occupies a large specific gravity for evaluation in the market.

一方、そうした分野においても、部位によっては板厚を薄くすることによる軽量化や、衝突時の剛性を得る目的の達成のために、強度の高い鋼板を用いることが、同時に行われる。   On the other hand, even in such a field, depending on the part, in order to achieve the purpose of reducing the weight by reducing the plate thickness and achieving the purpose of obtaining the rigidity at the time of collision, the use of a high strength steel plate is simultaneously performed.

このように、自動車を例にとっても、用いられる鋼板として、極低炭素鋼板のような軟質材から高強度鋼板まで幅広い強度の材料が並存し、かつ、組み立て工程の効率を高めるために、どの(強度の)鋼板も同じような条件で組み立てのためのスポット溶接が可能であることが強く求められている。   In this way, even in the case of automobiles, as a steel plate used, a wide range of materials from soft materials such as ultra-low carbon steel plates to high-strength steel plates coexist, and in order to increase the efficiency of the assembly process, There is a strong demand for steel sheets of high strength to be capable of spot welding for assembly under similar conditions.

極低炭素鋼板と、高強度鋼板または低炭素鋼板を比較すると、極低炭素鋼板のスポット溶接性には問題点のあることが従来指摘されている。   It has been pointed out that there is a problem with spot weldability of ultra-low carbon steel sheets when comparing ultra-low carbon steel sheets with high-strength steel sheets or low-carbon steel sheets.

例えば、適正強度を得るために必要な電流量が、上記の他の鋼板に比べて大きいため、電流ケーブルなどへの負荷が大きく、寿命が短くなることなどが知られている。   For example, it is known that the amount of current required to obtain an appropriate strength is larger than that of the other steel plates described above, so that the load on the current cable or the like is large and the life is shortened.

これは、極低炭素鋼板が他の鋼板に比べて軟質であることに起因する。すなわち、両者を比較すると、極低炭素鋼板では、溶接時の鋼板と溶接電極との接触面積が相対的に大きく、同じ電流量に対して電流密度が低くなる。その結果、同じ電流量で溶融させ得る体積(溶接後はナゲットと呼ばれる)が減少するので、溶接強度が低下する。そこで、これを補って適正な溶接強度(ナゲット径)を得ようとすると、大きな電流量が必要となる。   This is because the ultra-low carbon steel plate is softer than other steel plates. That is, when both are compared, in the ultra-low carbon steel plate, the contact area between the steel plate and the welding electrode during welding is relatively large, and the current density is low for the same amount of current. As a result, the volume that can be melted with the same amount of current (called a nugget after welding) decreases, so the welding strength decreases. Therefore, if an attempt is made to compensate for this and obtain an appropriate welding strength (nugget diameter), a large amount of current is required.

こうした問題点を解決するための技術が幾つか知られている。   Several techniques are known for solving these problems.

例えば、特許文献1には、所定の化学成分を有し、その表層部に特定の条件を満たす炭素濃化層を具備した極低炭素鋼板が開示されている。特許文献2には、鋼成分のうち、ホウ素(B)と窒素(N)を特定の条件下に置くことで、溶接部の静的強度を確保する技術が提示されている。また、めっき鋼板に関してではあるが、特許文献3には、その表面にニッケル(Ni)の酸化物層を有することで、スポット溶接性を向上させた鋼板が提案されている。   For example, Patent Document 1 discloses an ultra-low carbon steel sheet having a predetermined chemical component and having a carbon enriched layer that satisfies a specific condition in the surface layer portion. Patent Document 2 proposes a technique for ensuring the static strength of a welded portion by placing boron (B) and nitrogen (N) among steel components under specific conditions. Further, although related to the plated steel sheet, Patent Document 3 proposes a steel sheet that has a nickel (Ni) oxide layer on its surface to improve spot weldability.

こうした先行技術は、何れも高い工業的な価値を有し、一定の効果が得られるものと考えられるが、必ずしも十分とは言えないところがある。特許文献1の技術では、炭素濃化層の形成のために浸炭を行う工程が必要であり、それによる製造コストの上昇が懸念される。また、浸炭によって機械的性質が影響を受け、成形性が劣化することも考えられる。   All of these prior arts have high industrial value and are considered to be able to obtain a certain effect, but are not necessarily sufficient. In the technique of Patent Document 1, a process of carburizing is necessary for the formation of the carbon enriched layer, and there is a concern about an increase in manufacturing cost. It is also conceivable that the mechanical properties are affected by carburization and the moldability is deteriorated.

特許文献2の鋼板は、ホウ素を0.0010〜0.0030質量%含有することを必須としたものであり、それによって損なわれる伸びなどの成形性の低下は、用途によっては無視出来ない。一方、特許文献3による提案は、ニッケル酸化物層を生成させるために、まずニッケルめっきを施し、次いで、該層を陽極酸化などの方法で酸化させるものであるから、相当の製造コスト高が予想され、適用可能な用途が限定されることが考えられる。   The steel sheet of Patent Document 2 essentially contains boron in an amount of 0.0010 to 0.0030% by mass, and a decrease in formability such as elongation that is impaired thereby cannot be ignored depending on the application. On the other hand, the proposal according to Patent Document 3 is intended to produce a nickel oxide layer by first performing nickel plating and then oxidizing the layer by a method such as anodic oxidation. It is conceivable that applicable applications are limited.

特開平7−197187号公報JP 7-197187 A 特開平10−8195号公報Japanese Patent Laid-Open No. 10-8195 特開平1−119651号公報JP-A-1-119651

このように、新たな工程の追加など、製造コストの上昇要因を伴わず、かつ、極低炭素鋼板本来の優れた成形性の低下への懸念もない解決方法は見出されておらず、渇望されている。   In this way, no solution has been found that does not involve an increase in manufacturing costs, such as the addition of new processes, and there is no concern about the deterioration of the excellent formability inherent in ultra-low carbon steel sheets. Has been.

本発明は、こうした状況に鑑み為されたもので、極低炭素鋼板としての優れた成形性を損なうことなく、スポット溶接性に優れた鋼板を提供するものである。   This invention is made | formed in view of such a condition, and provides the steel plate excellent in spot weldability, without impairing the outstanding formability as an ultra-low carbon steel plate.

本発明者らは、スポット溶接時に溶接電極が被溶接材(鋼板)に及ぼす変形の過程を詳細に調査した。目標溶接位置近傍の鋼板表面および鋼板内部に極細径の熱電対を配し、溶接条件(電流値、通電サイクル数、電極間加圧力など)を変化させた実験を精度よく行い、鋼板の(電極による)変形と形成されるナゲット径の関係などを様々な着眼点から検討した。   The present inventors investigated in detail the process of the deformation | transformation which a welding electrode exerts on a to-be-welded material (steel plate) at the time of spot welding. An extremely thin thermocouple was placed on the surface of the steel plate in the vicinity of the target welding position and on the inside of the steel plate, and experiments with varying welding conditions (current value, number of energization cycles, pressure between electrodes, etc.) were conducted with high accuracy. The relationship between deformation and the nugget diameter formed was examined from various viewpoints.

その結果、鋼板の変形量に最も影響するのは、フェライト相からオーステナイト相への変態が起こる温度の直前であり、その温度域での変形に対する抗力を高めることができれば、問題を解決出来るのではないかと言う着想に至った。   As a result, it is immediately before the temperature at which the transformation from the ferrite phase to the austenite phase occurs that most affects the deformation amount of the steel sheet, and if the resistance to deformation in that temperature range can be increased, the problem can not be solved. I came up with the idea of being there.

その手段としては、プレス成形が行われる温度、すなわち、室温での機械的性質に全く影響を与えないか、殆ど影響を与えないものでなければならないという制約から、極めて微細な酸化物などの微細物質を分散させておくことが有効ではないかと考え、該微細物質を鋼板中で形成させる方法も含めて実験を繰り返した。   As a means for this, the temperature at which the press molding is performed, that is, the mechanical properties at room temperature, should not be affected at all, or it should be hardly affected. We thought that it would be effective to disperse the substance, and repeated the experiment including a method of forming the fine substance in the steel sheet.

その結果、アルミニウム(Al)量を低く抑えた上で、ランタン(La)とセリウム(Ce)の1種または2種を含有させ、なおかつ、LaとCeの1種または2種の合計量を硫黄(S)量に対して所定の関係にすることによって、機械的性質を何ら損なうことなくスポット溶接性を改善できることを見出した。   As a result, while keeping the amount of aluminum (Al) low, one or two of lanthanum (La) and cerium (Ce) are contained, and the total amount of one or two of La and Ce is sulfur. It has been found that by making a predetermined relationship to the amount of (S), spot weldability can be improved without any loss of mechanical properties.

さらに、実験による最適化を推し進めて完成させた本発明の要旨は、次の通りである。   Further, the gist of the present invention which has been completed through the optimization by experiments is as follows.

(1)質量%にて、
C :0.0005〜0.003%、
Si≦0.1%、
Mn≦0.5%、
P ≦0.05%、
S ≦0.02%、
Al≦0.01%、
N ≦0.005%、
O(酸素):0.001〜0.01%を含有し、さらに
LaとCeの1種または2種の合計が、La+Ce≧S/4を満たすように含有し、残部がFeおよび不可避不純物からなることを特徴とするスポット溶接性に優れた極低炭素鋼板。
(2)さらに
Ti:0.01〜0.1%、
Nb:0.002〜0.01%、
の一方、または、双方を含有することを特徴とする前記(1)に記載のスポット溶接性に優れた極低炭素鋼板。
(3)さらに
B :0.0005〜0.0020%
を含有することを特徴とする前記(1)または(2)に記載のスポット溶接性に優れた極低炭素鋼板。
(1) In mass%,
C: 0.0005 to 0.003%,
Si ≦ 0.1%,
Mn ≦ 0.5%,
P ≦ 0.05%,
S ≦ 0.02%,
Al ≦ 0.01%,
N ≦ 0.005%,
O (oxygen): 0.001 to 0.01% is contained, and further one or two of La and Ce are contained so as to satisfy La + Ce ≧ S / 4, and the balance is Fe and inevitable impurities. An ultra-low carbon steel sheet with excellent spot weldability.
(2) Further, Ti: 0.01 to 0.1%,
Nb: 0.002 to 0.01%,
One or both of these, The ultra-low carbon steel plate excellent in the spot weldability as described in said (1) characterized by the above-mentioned.
(3) Further, B: 0.0005 to 0.0020%
The ultra-low carbon steel sheet excellent in spot weldability as described in (1) or (2) above.

本発明によって、従来の極低炭素鋼板と成形性が同等であり、かつ、スポット溶接性にも優れた極低炭素鋼板を得ることが出来る。また、そのために新たな工程の追加なども必要としないので、製造コストに与える影響も極めて小さい。   According to the present invention, an ultra-low carbon steel sheet having the same formability as a conventional ultra-low carbon steel sheet and excellent in spot weldability can be obtained. Moreover, since no new process is required for this purpose, the influence on the manufacturing cost is extremely small.

鋼中に極めて微細な物質を分散させることを狙って様々な実験を行った。脱酸工程で生成される酸化物や、鋼板の熱延、巻取り工程で析出する炭窒化物などを幅広く検討した。そうした取り組みを経て本発明は完成されたものであり、以下に、その限定理由について述べる。なお、%は質量%を意味する。   Various experiments were conducted with the aim of dispersing extremely fine substances in the steel. We have extensively studied oxides produced in the deoxidation process, hot rolling of steel sheets, and carbonitrides precipitated in the winding process. The present invention has been completed through such efforts, and the reasons for limitation will be described below. In addition,% means the mass%.

C:0.0005〜0.003%
Cは鋼板の成形性を決定する最も重要な元素である。優れた成形性を得るには0.003%以下とする必要があり、一方、0.0005%未満にするには、製鋼工程に過大な負荷をかけることになるので、0.0005%を下限とする。
C: 0.0005 to 0.003%
C is the most important element that determines the formability of the steel sheet. In order to obtain excellent formability, it is necessary to be 0.003% or less. On the other hand, if it is less than 0.0005%, an excessive load is applied to the steel making process, so 0.0005% is the lower limit. And

Si≦0.1%
Siは固溶強化元素として微量添加することが出来る。しかし、0.1%を越えて添加すると、成形性の劣化が問題となる。そこで、0.1%以下、好ましくは0.05%以下とする。下限値は特に定めないが、0.003%未満では、その添加効果が乏しいので、0.003%以上とすることが好ましい。
Si ≦ 0.1%
Si can be added in a small amount as a solid solution strengthening element. However, when it exceeds 0.1%, deterioration of moldability becomes a problem. Therefore, it is set to 0.1% or less, preferably 0.05% or less. The lower limit is not particularly defined, but if it is less than 0.003%, the effect of addition is poor, and therefore it is preferably made 0.003% or more.

Mn≦0.5%
Mnは強化元素、脱酸元素として添加出来る。しかし、0.5%を越えて添加すると、延性の低下をもたらすので、0.5%以下とする。Mnの下限は特に定めないが、0.02%未満ではその添加効果が乏しいので、0.02%以上とすることが好ましい。
Mn ≦ 0.5%
Mn can be added as a strengthening element or a deoxidizing element. However, if added over 0.5%, the ductility is lowered, so the content is made 0.5% or less. The lower limit of Mn is not particularly defined, but if less than 0.02%, the effect of addition is poor, so 0.02% or more is preferable.

P≦0.05%
Pは不純物であり、粒界に偏析したPは粒界脆化の原因となる。また、Pは二次加工割れの原因となる元素でもある。但し、0.05%以下ならば許容できる範囲である。
P ≦ 0.05%
P is an impurity, and P segregated at the grain boundary causes grain boundary embrittlement. P is also an element that causes secondary processing cracks. However, 0.05% or less is an acceptable range.

S≦0.02%
Sは不純物であり、多すぎると熱間圧延時の割れを引き起こすばかりでなく、延性の劣化を招くので極力低減させるべきであるが、0.02%以下ならば許容範囲である。
S ≦ 0.02%
S is an impurity, and if it is too much, it not only causes cracking during hot rolling, but also causes deterioration of ductility, so it should be reduced as much as possible, but it is acceptable if it is 0.02% or less.

Al≦0.01%
Alは脱酸元素として使用出来るが、実施例の中で述べるように、0.01%超ではスポット溶接性の改善効果が認められないので、0.01%以下とする。Alの下限は特に定めない。脱酸元素として添加しない方法も許容される。
Al ≦ 0.01%
Al can be used as a deoxidizing element. However, as described in the Examples, if it exceeds 0.01%, no effect of improving spot weldability is observed, so 0.01% or less. There is no particular lower limit for Al. A method of not adding it as a deoxidizing element is also acceptable.

N≦0.005%
不純物であるNは、C同様に固溶状態で存在すると、鋼板の成形性を劣化させる元素であるので、その含有量は0.005%以下とする。
N ≦ 0.005%
N, which is an impurity, is an element that deteriorates the formability of a steel sheet when it exists in a solid solution state as in C, and therefore its content is set to 0.005% or less.

O:0.001〜0.01%
Oは酸化物形成には必須の元素である。スポット溶接性の改善効果は0.001%以上で認められ、一方、0.01%を越えると、粗大化した酸化物に起因した表面キズの発生が避けられない。こうした理由から、Oの含有量は、0.001〜0.01%とする。
O: 0.001 to 0.01%
O is an essential element for oxide formation. The effect of improving spot weldability is recognized at 0.001% or more. On the other hand, when it exceeds 0.01%, the occurrence of surface scratches due to coarse oxides is inevitable. For these reasons, the O content is set to 0.001 to 0.01%.

La+Ce≧S/4
LaとCeは、ともに酸化物、あるいは、それらを包含した介在物として鋼中に存在し、スポット溶接性を改善する中心的な役割を果たすものと考えられる。しかし、LaとCeの1種または2種を単に含有していればよいというのではなく、後述の実施例で示すように、Sとの関係において、上記の関係式を満たす場合に、その効果が顕著であることがわかった。
La + Ce ≧ S / 4
La and Ce are both present in the steel as oxides or inclusions containing them, and are considered to play a central role in improving spot weldability. However, it does not have to contain only one or two of La and Ce, but as shown in the examples described later, the effect is obtained when the above relational expression is satisfied in relation to S. Was found to be prominent.

その理由は必ずしも明らかではないが、含有されているLaやCeのうち、硫化物(それらを包含した介在物も含む)の形成に消費されなかったLaとCeによって形成された酸化物が、スポット溶接性の改善に本質的に寄与しているのではないかと推定することが出来る。   The reason is not necessarily clear, but among the contained La and Ce, oxides formed by La and Ce that are not consumed for the formation of sulfides (including inclusions including them) are spots. It can be estimated that it contributes essentially to the improvement of weldability.

LaおよびCeはミッシュメタルを原料として溶鋼中に添加することが望ましい。各々の純物質原料を用いて添加することも可能であるが、製造コストをいたずらに高めるだけであり好ましくない。こうした考え方から、LaおよびCeの1種または2種の単独での添加量は敢えて限定せず、両元素の1種または2種の合計とS量の関係を規定した。   La and Ce are desirably added to molten steel using Misch metal as a raw material. Although it is possible to add each of the pure substance raw materials, it is not preferable because it only increases the manufacturing cost. From such an idea, the amount of La or Ce added alone or two of them was not specifically limited, and the relationship between the total amount of one or two elements and the amount of S was defined.

一方、La+Ceの量が0.02%超となると、酸化物同士が合体粗大化することで表面キズの発生が懸念されるので、0.02%を上限とするのが好ましい。   On the other hand, if the amount of La + Ce exceeds 0.02%, the oxides are coalesced and coarsened, which may cause surface scratches. Therefore, the upper limit is preferably 0.02%.

Ti:0.01〜0.1%
TiはC、N、およびSと析出物を形成してそれらの元素を固定し、成形性を向上させる働きをする。その効果は、0.01%以上の添加で認められる。一方、過剰な添加はコストの上昇に繋がるので、0.1%以下、好ましくは0.07%以下がよい。
Ti: 0.01 to 0.1%
Ti forms precipitates with C, N, and S to fix those elements and to improve the formability. The effect is recognized by addition of 0.01% or more. On the other hand, excessive addition leads to an increase in cost, so 0.1% or less, preferably 0.07% or less is good.

Nb:0.002〜0.01%
Nbも、Tiと同様、C、N、およびSを析出物として固定し、成形性の向上に寄与する。その効果の発現には、少なくとも0.002%が必要であるが、0.01%を超えると再結晶温度の上昇が著しくなり、特に、冷延鋼板において適切な製造範囲を狭くして好ましくない。従って、上記の範囲に限定する。
Nb: 0.002 to 0.01%
Nb, as well as Ti, fixes C, N, and S as precipitates and contributes to improvement of formability. At least 0.002% is necessary for the expression of the effect, but if it exceeds 0.01%, the recrystallization temperature rises remarkably. . Therefore, it is limited to the above range.

B:0.0005〜0.0020%
Bは鋼板の二次加工割れを防止するために、必要に応じて添加する。その効果は0.0005%未満では認められず、0.0020%超添加しても飽和するので、0.0005〜0.0020%に限定する。
B: 0.0005 to 0.0020%
B is added as necessary to prevent secondary cracking of the steel sheet. The effect is not recognized if it is less than 0.0005%, and is saturated even if added over 0.0020%, so it is limited to 0.0005 to 0.0020%.

なお、本発明において上記以外の成分はFeであるが、スクラップなど、溶解原料から混入する不可避な不純物の含有は許容される。   In the present invention, the component other than the above is Fe, but the inclusion of inevitable impurities such as scrap mixed from the melting raw material is allowed.

また、以下では、冷延鋼板を用いた実施例についてのみ説明するが、本発明は、冷延鋼板に限定されるものではなく、熱延鋼板についても適用出来る。   Moreover, although only the Example using a cold-rolled steel plate is demonstrated below, this invention is not limited to a cold-rolled steel plate, It can apply also to a hot-rolled steel plate.

優れた成形性を得るための製造方法について述べる。   A manufacturing method for obtaining excellent moldability will be described.

再加熱温度:1000〜1200℃
スラブの再加熱温度は、圧延負荷を軽減する目的から導かれる下限値と、加熱によって結晶粒径が粗大化するのを抑制するための上限値を考慮して決定されなければならない。この温度が1000℃未満では、圧延に要する負荷が大きくなり、圧延機の能力によっては、スラブ幅が制約を受けざるを得ない可能性が生まれる。
Reheating temperature: 1000-1200 ° C
The reheating temperature of the slab must be determined in consideration of a lower limit value derived from the purpose of reducing the rolling load and an upper limit value for suppressing the crystal grain size from being coarsened by heating. If this temperature is less than 1000 ° C., the load required for rolling becomes large, and depending on the capability of the rolling mill, there is a possibility that the slab width must be restricted.

一方、1200℃を越えると圧延開始前の粒径が粗大になり過ぎ、高いr値を得るのに有利な仕上げ熱延後の細粒化の達成が難しくなる。従って、スラブ加熱温度は1000℃以上、1200℃以下とする。   On the other hand, if the temperature exceeds 1200 ° C., the particle size before the start of rolling becomes too coarse, and it becomes difficult to achieve fine graining after hot rolling that is advantageous for obtaining a high r value. Therefore, the slab heating temperature is set to 1000 ° C. or more and 1200 ° C. or less.

熱間圧延率は特に限定する必要はないが、より均一な組織を得る目的から、60〜95%とすることが望ましい。   The hot rolling rate is not particularly limited, but is preferably 60 to 95% for the purpose of obtaining a more uniform structure.

仕上げ圧延温度:900〜980℃
仕上げ圧延は、出来る限りオーステナイト域で行う必要がある。フェライトを含む温度域で圧延されると、加工組織が残留しやすく、成形性の劣化に繋がるからである。そのためには、仕上げ圧延温度は900℃以上とする必要がある。一方、980℃超では、熱延板粒径が粗大化しやすい。そこで、980℃以下とする必要がある。
Finish rolling temperature: 900-980 ° C
It is necessary to perform finish rolling in the austenite region as much as possible. This is because if the rolling is performed in a temperature range including ferrite, the processed structure tends to remain, which leads to deterioration of formability. For this purpose, the finish rolling temperature needs to be 900 ° C. or higher. On the other hand, if it exceeds 980 ° C., the hot-rolled plate particle size tends to be coarse. Therefore, it is necessary to set the temperature to 980 ° C. or lower.

冷却速度:10〜80℃/秒
熱延後の鋼板は、結晶粒の粗大化を出来る限り抑制する目的で、速やかに冷却される必要がある。そのためには、10℃/秒以上の冷却速度が必要である。一方、冷却速度が80℃/秒を越えると、冷却帯内における鋼板の通板性や材質の不均一性が看過出来なくなるので、80℃/秒以下とする。
Cooling rate: The steel sheet after hot rolling at 10 to 80 ° C./second needs to be cooled quickly for the purpose of suppressing the coarsening of crystal grains as much as possible. For this purpose, a cooling rate of 10 ° C./second or more is necessary. On the other hand, if the cooling rate exceeds 80 ° C./second, the plate-passability and material non-uniformity of the steel plate in the cooling zone cannot be overlooked.

巻取り温度:400〜700℃
圧延された鋼板は冷却帯を経て巻き取られ、この過程で最終的な組織が作られる。優れた成形性を得るには、再結晶組織(一部、回復組織も許容される)とする必要があるから、400℃以上が必要である。一方、700℃を越えると、熱延スケールの成長が激しくなり、その後の酸洗工程の負荷を高める。そこで、700℃以下とする必要がある。
Winding temperature: 400-700 ° C
The rolled steel sheet is wound up through a cooling zone, and a final structure is formed in this process. In order to obtain excellent moldability, it is necessary to have a recrystallized structure (partially, a recovery structure is allowed), so 400 ° C. or higher is necessary. On the other hand, when it exceeds 700 ° C., the hot-rolled scale grows vigorously, increasing the load of the subsequent pickling process. Therefore, it is necessary to set the temperature to 700 ° C. or lower.

熱延鋼板として使用する場合には、形状矯正や、表面粗度の変更等を目的として、酸洗に続いてスキンパス圧延を施してもよい。   When used as a hot-rolled steel sheet, skin pass rolling may be performed following pickling for the purpose of shape correction, change in surface roughness, and the like.

冷間圧延率:60〜95%
高いr値を得るには、冷間圧延後の焼鈍(熱処理)によって、特定の集合組織を発達させる必要がある。そのためには、まず、冷間圧延においても特定方位の集合組織を発達させ、かつ、必要な量の歪を蓄積させておく必要がある。この条件を満たすためには、60〜95%の冷間圧延率が必要である。
Cold rolling rate: 60-95%
In order to obtain a high r value, it is necessary to develop a specific texture by annealing (heat treatment) after cold rolling. For this purpose, it is first necessary to develop a texture having a specific orientation in cold rolling and to accumulate a necessary amount of strain. In order to satisfy this condition, a cold rolling rate of 60 to 95% is required.

焼鈍温度:700〜890℃
高い成形性を得るには、均一な再結晶組織を得る必要がある。そのためには、700℃以上で焼鈍する必要がある。一方、該温度が890℃を越えると、結晶粒径が粗大になり過ぎて、成形後に肌荒れを起す原因となる。そのため、890℃を上限とする。
Annealing temperature: 700-890 ° C
In order to obtain high moldability, it is necessary to obtain a uniform recrystallized structure. For that purpose, it is necessary to anneal at 700 ° C. or higher. On the other hand, when the temperature exceeds 890 ° C., the crystal grain size becomes too large, which causes rough skin after molding. Therefore, the upper limit is 890 ° C.

焼鈍後にはスキンパス圧延を施してもよい。   Skin annealing may be performed after annealing.

以下に実施例を比較例と共に説明する。   Examples will be described below together with comparative examples.

表1に記載の化学成分を有する鋼a〜jを溶解鋳造した。1150℃に再加熱して熱間圧延し、4mmの熱延鋼板を得た。圧延率は87%、仕上げ温度は920〜930℃、巻き取り相当の熱処理として、630℃に1時間保持後炉冷した。次に、それらを酸洗し、冷延(冷延率85%)と800℃の焼鈍を施し、0.8mmの冷延鋼板とした。さらに、1%のスキンパス圧延を施した。   Steels a to j having chemical components described in Table 1 were melt cast. It was reheated to 1150 ° C. and hot-rolled to obtain a 4 mm hot-rolled steel sheet. The rolling rate was 87%, the finishing temperature was 920 to 930 ° C, and the heat treatment corresponding to winding was held at 630 ° C for 1 hour and then cooled in the furnace. Next, they were pickled, cold-rolled (cold rolling rate of 85%) and annealed at 800 ° C. to obtain 0.8 mm cold-rolled steel sheets. Furthermore, 1% skin pass rolling was performed.

得られた冷延鋼板からJIS5号試験片を採取し、機械的性質を調査した。表2に機械的性質を示す。   A JIS No. 5 test piece was collected from the obtained cold-rolled steel sheet and examined for mechanical properties. Table 2 shows the mechanical properties.

一方、適正溶接電流の評価は、次のようにして行った。   On the other hand, the appropriate welding current was evaluated as follows.

まず、50×50mmの冷延鋼板を、2枚一組として複数組用意した。それらを30°の円錐載頭型4.5mmφ電極を用いて溶接した。通電時間、通電後の保持時間は、共に0.2秒(10サイクル)、加圧力は1.96kNに固定した。その上で、電流値を変化させ、図1に例示するような電流−ナゲット径曲線を各鋼について求めた。ナゲット径は、研磨、エッチングした溶接後断面の顕微鏡観察によって決定した。   First, a plurality of 50 × 50 mm cold-rolled steel sheets were prepared as one set. They were welded using a 30 ° conical headed 4.5 mmφ electrode. The energization time and the holding time after energization were both fixed at 0.2 seconds (10 cycles), and the applied pressure was fixed at 1.96 kN. Then, the current value was changed, and a current-nugget diameter curve as illustrated in FIG. 1 was obtained for each steel. The nugget diameter was determined by microscopic observation of a polished and etched cross section after welding.

ナゲット径が5√t(tは板厚、すなわち0.8mm)となる電流値を、各鋼の該曲線を使って求め、その値を適正電流値とした。   The current value at which the nugget diameter becomes 5√t (t is the plate thickness, that is, 0.8 mm) was obtained using the curve of each steel, and the value was determined as an appropriate current value.

適正電流値を表2に併せて示す。表2から明らかなように、本発明鋼は、成形性の指標である延性とr値に優れ、かつ、適正電流値も、比較鋼に比べて低くなっていることがわかる。   Appropriate current values are also shown in Table 2. As is apparent from Table 2, the steel of the present invention is excellent in ductility and r value, which are indicators of formability, and the appropriate current value is also lower than that of the comparative steel.

Figure 2005248313
Figure 2005248313

Figure 2005248313
Figure 2005248313

表3に記載の化学成分を有する鋼k〜zを溶解鋳造した。これらから、実施例1と同じ条件で0.8mmの冷延鋼板を得た。   Steels k to z having chemical components described in Table 3 were melt cast. From these, a 0.8 mm cold-rolled steel sheet was obtained under the same conditions as in Example 1.

JIS5号試験片による機械的性質の評価と、実施例1と同じ方法による溶接適正電流の決定を行った。その結果、何れの鋼でも、引張り強さは280〜295MPa、伸びは52%以上、r値は2.3以上を示し、優れた成形性を有することが明らかとなったが、適正電流には、鋼間に有意差が認められた。   Evaluation of mechanical properties by JIS No. 5 test piece and determination of appropriate welding current by the same method as in Example 1 were performed. As a result, in any steel, the tensile strength was 280 to 295 MPa, the elongation was 52% or more, the r value was 2.3 or more, and it was clear that the steel had excellent formability. There was a significant difference between the steels.

図2に、各鋼の適正電流値を、(La+Ce)−S/4に対して示す。図から明らかなように、本発明鋼の適正電流値は、比較鋼に比べて低電流側にあり、スポット溶接性に優れていることがわかる。   In FIG. 2, the appropriate electric current value of each steel is shown with respect to (La + Ce) -S / 4. As is apparent from the figure, the appropriate current value of the steel of the present invention is on the low current side as compared with the comparative steel, and it is understood that the spot weldability is excellent.

Figure 2005248313
Figure 2005248313

前述したように、本発明によれば成形性とスポット溶接性に優れた極低炭素鋼板を提供することが出来る。また、本発明によれば、極低炭素鋼板の製造コストは上昇しないので、本発明は、産業上の利用可能性が大きいものである。   As described above, according to the present invention, an ultra-low carbon steel sheet excellent in formability and spot weldability can be provided. Further, according to the present invention, the manufacturing cost of the ultra-low carbon steel sheet does not increase, so the present invention has a great industrial applicability.

適正電流値を求めるための電流−ナゲット径曲線の一例を示す図である。It is a figure which shows an example of the electric current-nugget diameter curve for calculating | requiring an appropriate electric current value. 各鋼の適正電流値を(La+Ce)−S/4に対して示す図である。It is a figure which shows the appropriate electric current value of each steel with respect to (La + Ce) -S / 4.

Claims (3)

質量%にて、
C :0.0005〜0.003%、
Si≦0.1%、
Mn≦0.5%、
P ≦0.05%、
S ≦0.02%、
Al≦0.01%、
N ≦0.005%、
O(酸素):0.001〜0.01%を含有し、さらに、
LaとCeの1種または2種の合計が、La+Ce≧S/4を満たすように含有し、残部がFeおよび不可避不純物からなることを特徴とするスポット溶接性に優れた極低炭素鋼板。
In mass%
C: 0.0005 to 0.003%,
Si ≦ 0.1%,
Mn ≦ 0.5%,
P ≦ 0.05%,
S ≦ 0.02%,
Al ≦ 0.01%,
N ≦ 0.005%,
O (oxygen): containing 0.001 to 0.01%,
An ultra-low carbon steel sheet excellent in spot weldability, characterized in that the total of one or two of La and Ce is contained so as to satisfy La + Ce ≧ S / 4, and the balance is composed of Fe and inevitable impurities.
さらに、
Ti:0.01〜0.1%、
Nb:0.002〜0.01%、
の一方、または、双方を含有することを特徴とする請求項1に記載のスポット溶接性に優れた極低炭素鋼板。
further,
Ti: 0.01 to 0.1%,
Nb: 0.002 to 0.01%,
One or both of these are contained, The ultra-low carbon steel plate excellent in spot weldability of Claim 1 characterized by the above-mentioned.
さらに、
B :0.0005〜0.0020%
を含有することを特徴とする請求項1または2に記載のスポット溶接性に優れた極低炭素鋼板。
further,
B: 0.0005 to 0.0020%
The ultra-low carbon steel plate excellent in spot weldability according to claim 1 or 2, characterized by comprising:
JP2004064473A 2004-03-08 2004-03-08 Extremely low carbon steel plate with excellent spot weldability Expired - Lifetime JP4464714B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004064473A JP4464714B2 (en) 2004-03-08 2004-03-08 Extremely low carbon steel plate with excellent spot weldability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004064473A JP4464714B2 (en) 2004-03-08 2004-03-08 Extremely low carbon steel plate with excellent spot weldability

Publications (2)

Publication Number Publication Date
JP2005248313A true JP2005248313A (en) 2005-09-15
JP4464714B2 JP4464714B2 (en) 2010-05-19

Family

ID=35029072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004064473A Expired - Lifetime JP4464714B2 (en) 2004-03-08 2004-03-08 Extremely low carbon steel plate with excellent spot weldability

Country Status (1)

Country Link
JP (1) JP4464714B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120298320A1 (en) * 2008-07-15 2012-11-29 Masafumi Miyazaki Low-carbon steel slab producing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120298320A1 (en) * 2008-07-15 2012-11-29 Masafumi Miyazaki Low-carbon steel slab producing method
US9149867B2 (en) 2008-07-15 2015-10-06 Nippon Steel & Sumitomo Metal Corporation Low-carbon steel slab producing method

Also Published As

Publication number Publication date
JP4464714B2 (en) 2010-05-19

Similar Documents

Publication Publication Date Title
KR102203836B1 (en) Cold-rolled high-strength steel sheet with excellent phosphorylation performance and formability and manufacturing method thereof
EP1675970B1 (en) A cold-rolled steel sheet having a tensile strength of 780 mpa or more an excellent local formability and a suppressed increase in weld hardness
JP6931396B2 (en) Hot-formed plated steel sheets with excellent impact characteristics, hot-formed members, and their manufacturing methods
EP2554699A1 (en) Steel sheet with high tensile strength and superior ductility and method for producing same
EP2589678A1 (en) High-strength steel sheet with excellent processability and process for producing same
US11299793B2 (en) Steel sheet having excellent resistance to liquid metal embrittlement cracks and method for manufacturing the same
JP2006070328A (en) High-strength thin steel sheet and manufacturing method therefor
EP3587610B1 (en) Hot-rolled and annealed ferritic stainless steel sheet, and method for manufacturing same
JP2023093564A (en) Hot-forming member
US20130160889A1 (en) High-strength electric resistance welded steel tube and production method therefor
JP6222040B2 (en) High formability and high strength cold-rolled steel sheet excellent in chemical conversion treatment and production method thereof
EP3647455A1 (en) Cold-rolled annealed dual-phase steel, steel plate, and manufacturing method therefor
CN109804092B (en) Cold-rolled steel sheet for flux-cored wire and method for manufacturing same
JP4833698B2 (en) High strength steel plate for die quench
JP5388577B2 (en) Steel plate for galvanization excellent in workability and manufacturing method thereof
JP2010133028A (en) Method for manufacturing high-strength low-specific gravity steel sheet excellent in ductility
WO2022165930A1 (en) Laser tailor-welded pre-plated steel plate and hot stamped member
KR101335826B1 (en) High-strength cold-rolled steel sheet excellent in weldability and process for production of same
JP4471688B2 (en) High strength low specific gravity steel plate excellent in ductility and method for producing the same
JP4464714B2 (en) Extremely low carbon steel plate with excellent spot weldability
CN113195774B (en) Plated steel sheet for thermoforming excellent in impact properties after thermoforming, thermoformed part, and method for producing same
US11674194B2 (en) Cold rolled steel sheet for flux-cored wire, and manufacturing method therefor
JP4432725B2 (en) Cr-containing high-strength cold-rolled steel sheet excellent in stretch flangeability and manufacturing method thereof
JPH05247540A (en) High strength cold-rolled steel sheet for deep drawing and its manufacture
EP4008800A1 (en) Steel sheet for hot forming, hot-formed member, and method for manufacturing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100219

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4464714

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140226

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350