JP2005247670A - Mn-Ni-Zn TYPE FERRITE - Google Patents
Mn-Ni-Zn TYPE FERRITE Download PDFInfo
- Publication number
- JP2005247670A JP2005247670A JP2004064151A JP2004064151A JP2005247670A JP 2005247670 A JP2005247670 A JP 2005247670A JP 2004064151 A JP2004064151 A JP 2004064151A JP 2004064151 A JP2004064151 A JP 2004064151A JP 2005247670 A JP2005247670 A JP 2005247670A
- Authority
- JP
- Japan
- Prior art keywords
- mol
- ferrite
- less
- specific resistance
- massppm
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000859 α-Fe Inorganic materials 0.000 title claims abstract description 52
- 229910018605 Ni—Zn Inorganic materials 0.000 title claims abstract description 22
- 229910052796 boron Inorganic materials 0.000 claims abstract description 14
- 229910052801 chlorine Inorganic materials 0.000 claims abstract description 14
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 14
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 14
- 239000000654 additive Substances 0.000 claims description 14
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 11
- 230000000996 additive effect Effects 0.000 claims description 10
- 229910052742 iron Inorganic materials 0.000 abstract description 6
- 230000003247 decreasing effect Effects 0.000 abstract description 3
- 230000002542 deteriorative effect Effects 0.000 abstract 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 34
- 230000004907 flux Effects 0.000 description 24
- 230000002159 abnormal effect Effects 0.000 description 17
- 239000000203 mixture Substances 0.000 description 15
- 239000011162 core material Substances 0.000 description 14
- 238000010304 firing Methods 0.000 description 13
- 239000002994 raw material Substances 0.000 description 11
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 10
- 230000000694 effects Effects 0.000 description 10
- 239000012535 impurity Substances 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 10
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 9
- 229910052760 oxygen Inorganic materials 0.000 description 9
- 239000001301 oxygen Substances 0.000 description 9
- 239000011812 mixed powder Substances 0.000 description 8
- 239000000843 powder Substances 0.000 description 8
- 238000001816 cooling Methods 0.000 description 7
- 230000007423 decrease Effects 0.000 description 7
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 6
- 239000004372 Polyvinyl alcohol Substances 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 229920002451 polyvinyl alcohol Polymers 0.000 description 6
- 239000000696 magnetic material Substances 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- 239000013078 crystal Substances 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 4
- 239000005300 metallic glass Substances 0.000 description 4
- 238000000227 grinding Methods 0.000 description 3
- 229910052748 manganese Inorganic materials 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 3
- 230000002411 adverse Effects 0.000 description 2
- 238000001354 calcination Methods 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 238000004663 powder metallurgy Methods 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000002040 relaxant effect Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
Landscapes
- Compounds Of Iron (AREA)
- Magnetic Ceramics (AREA)
- Soft Magnetic Materials (AREA)
Abstract
Description
本発明は、比抵抗が高く、保磁力が小さく、なおかつ、残留磁束密度に対する飽和磁束密度の比(残留磁束密度/飽和磁束密度)である角形比の大きいMn−Ni−Zn系フェライトに関するものである。 The present invention relates to an Mn-Ni-Zn ferrite having a high square resistance, a high specific resistance, a small coercive force, and a ratio of a saturation magnetic flux density to a residual magnetic flux density (residual magnetic flux density / saturation magnetic flux density). is there.
例えば、スイッチング電源回路では、マグアンプとして、またノイズを抑制するために、可飽和コアがしばしば用いられている。この可飽和コア用の材料には、高飽和磁束密度かつ低損失、そして何よりも角形比が大きいことが求められる。ここで、角形比とは、残留磁束密度を飽和磁束密度で除したものである。可飽和コアは、その素材において、インダクタンスの変化を急激にするような特性が求められる。前記した角形比が小さくなると、インダクタンスの変化が小さくなるため、可飽和コアの用途には角形比が大きいものが好適である。 For example, in a switching power supply circuit, a saturable core is often used as a mag amplifier and to suppress noise. This saturable core material is required to have a high saturation magnetic flux density, a low loss, and above all a large squareness ratio. Here, the squareness ratio is obtained by dividing the residual magnetic flux density by the saturation magnetic flux density. The saturable core is required to have such characteristics that the inductance changes rapidly in the material. As the squareness ratio becomes smaller, the change in inductance becomes smaller. Therefore, a saturable core having a large squareness ratio is suitable.
そのために、この種の用途には、上記の諸特性を満足する非晶質金属磁性材料が主に用いられている。
しかしながら、この非晶質金属磁性材料には大きな欠点が2つある。まず、その材質および製造方法に起因してコストが高くなる点、そして金属であるために、比抵抗がμΩ・mオーダーと非常に低くなる点である。
Therefore, amorphous metal magnetic materials that satisfy the above-mentioned characteristics are mainly used for this type of application.
However, this amorphous metal magnetic material has two major drawbacks. First, the cost is increased due to the material and the manufacturing method, and because it is a metal, the specific resistance is very low on the order of μΩ · m.
この点、酸化物磁性材料であるフェライトは、非晶質金属磁性材料と比較すると、飽和磁束密度の点では劣るものの、安価に製造でき、また比抵抗に関しては少なくとも103倍以上高い値を持つ。 In this regard, ferrite, which is an oxide magnetic material, is inferior in terms of saturation magnetic flux density compared to amorphous metal magnetic material, but can be manufactured at low cost, and has a specific resistance that is at least 10 3 times higher. .
特に、フェライトの中でもNi-Znフェライトは高い角形比を持ち、同時に比抵抗が105Ω・mと非常に高い材質である。しかし、Ni-Znフェライトは、非晶質金属磁性材料ほどではないが、原料のNiOが高価でかつ価格変動が激しいことが問題となる。 In particular, among ferrites, Ni-Zn ferrite has a high squareness ratio and at the same time has a very high specific resistance of 10 5 Ω · m. However, although Ni-Zn ferrite is not as much as an amorphous metal magnetic material, NiO as a raw material is problematic because it is expensive and the price fluctuates severely.
一方、Mn-Znフェライトは、Ni-Znフェライトと比較して、高い飽和磁束密度に加えて、小さい保磁力を有する。また、原料となるMnOの価格も、NiOと比較して、安価である利点もある。しかし、従来のMn-Znフェライトは、正の磁気異方性を持つFe2+量を多く含有するため、残留磁束密度が小さく、角形比は高々0.3程度である。同時に、Fe3+およびFe2+間での電子の授受が起こりやすく、結果として比抵抗が0.1Ω・mオーダーにまで低下してしまうという問題点がある。 On the other hand, Mn-Zn ferrite has a small coercive force in addition to a high saturation magnetic flux density as compared with Ni-Zn ferrite. Moreover, the price of MnO used as a raw material is also advantageous compared to NiO. However, the conventional Mn—Zn ferrite contains a large amount of Fe 2+ having positive magnetic anisotropy, so that the residual magnetic flux density is small and the squareness ratio is about 0.3 at most. At the same time, electrons are easily exchanged between Fe 3+ and Fe 2+ , resulting in a problem that the specific resistance is reduced to the order of 0.1 Ω · m.
この問題点を解決する手段として、Mn-Znフェライト中に含まれるFe2+量を減らすことで比抵抗を上昇させる、というものがある。すなわち、Fe2O3成分を50mol%未満としてFe2+含有量を減らし比抵抗を高めることが、特許文献1〜3において提案されている。 As a means for solving this problem, there is a method of increasing the specific resistance by reducing the amount of Fe 2+ contained in the Mn-Zn ferrite. That is, Patent Documents 1 to 3 propose to reduce the Fe 2+ content and increase the specific resistance by setting the Fe 2 O 3 component to less than 50 mol%.
しかし、これらの文献に記載されたMn-Znフェライトは、高抵抗化、高透磁率化もしくは低損失化のいずれかに主眼が置かれたものである。すなわち、これらの文献中には、角形比はおろか残留磁束密度に関する記述は全くない。しかも、実際に製造した場合に、比抵抗の低下並びにその他磁気特性の劣化をまねくことがあり、従って角形比の大きなMn−Znフェライトを安定して得ることが困難であった。 However, the Mn-Zn ferrites described in these documents are mainly focused on either increasing the resistance, increasing the permeability, or reducing the loss. That is, in these documents, there is no description regarding the residual magnetic flux density as well as the squareness ratio. Moreover, when actually manufactured, it may lead to a decrease in specific resistance and deterioration of other magnetic characteristics, and thus it is difficult to stably obtain Mn-Zn ferrite having a large squareness ratio.
さらに、特許文献3に示された実施例は、非常に低い酸素濃度雰囲気下で焼成が行われるために、
a)焼成炉の厳密なシールおよび雰囲気制御
b)(工業用窒素は最低でも1〜20体積ppmの酸素を含むため)純窒素の使用
が要求される。これらの規制は、工業化を考えた際に、製造効率およびコストの両面において問題となる。
a) Strict sealing of firing furnace and atmosphere control b) The use of pure nitrogen is required (since industrial nitrogen contains at least 1-20 ppm by volume of oxygen). These regulations are problematic in terms of both production efficiency and cost when considering industrialization.
本発明は、上記の問題を有利に解決するものであり、Fe2O3成分を50mol%未満としてFe2+含有量を減少させ、さらに、NiOを適量添加することで、比抵抗の低下並びにその他磁気特性の劣化をまねくことなしに角形比の大幅な増加を実現した、Mn−Ni−Zn系フェライトを提供しようとするものである。 The present invention advantageously solves the above-mentioned problems, and reduces Fe 2+ content by reducing the Fe 2 O 3 component to less than 50 mol%, and further adding a proper amount of NiO, thereby reducing specific resistance and Another object of the present invention is to provide an Mn-Ni-Zn-based ferrite that realizes a significant increase in squareness ratio without causing deterioration of magnetic characteristics.
さて、発明者らは、Fe2O3成分を50mol%未満としてFe2+含有量を減少させたMn−Ni−Zn系フェライトにおいて、大きな比抵抗や優れた磁気特性が安定して得られない原因について検討したところ、フェライトの製造過程における異常粒成長が関係していることを見出した。すなわち、異常粒成長とは、何らかの原因により局部的に粒成長のバランスが崩れた際に起こる、特に粉末冶金法を用いた製造時にしばしば見られる現象である。この異常成長粒内には、不純物や格子欠陥等の磁壁の移動を大きく妨げる物質が混入するため、保磁力を上昇させる。同時に、結晶粒界形成が不十分になることから、比抵抗は低下し、その他の磁気特性についても大きく劣化するのである。 Now, in the Mn-Ni-Zn ferrite in which the Fe 2+ content is reduced by making the Fe 2 O 3 component less than 50 mol%, large specific resistance and excellent magnetic properties cannot be stably obtained. When the cause was examined, it was found that abnormal grain growth was involved in the ferrite production process. In other words, abnormal grain growth is a phenomenon that occurs when the grain growth balance is locally lost for some reason, and is often observed particularly during production using powder metallurgy. In this abnormally grown grain, a substance that greatly impedes the movement of the domain wall such as impurities and lattice defects is mixed, so that the coercive force is increased. At the same time, since the formation of crystal grain boundaries becomes insufficient, the specific resistance is lowered, and other magnetic characteristics are greatly deteriorated.
さらに、発明者らは、フェライトの原料、中でも主原料であるFe2O3の大半が製鉄の際に発生するスケールに依存していることに着目し、スケール由来のFe2O3原料と上記異常成長粒との関連を調査した。その結果、鉄鋼(スケール)中に不可避に混入するP、B、SおよびClという不純物が含有された、フェライトは、異常粒成長を誘発し、結果として軟磁性フェライトの磁気特性や比抵抗等の諸特性に対して重大な悪影響を及ばすことが、新たに判明した。 Furthermore, the inventors pay attention to the fact that most of the raw material of ferrite, especially the main raw material Fe 2 O 3 depends on the scale generated during iron making, and the scale-derived Fe 2 O 3 raw material and the above-mentioned The relationship with abnormally grown grains was investigated. As a result, ferrite containing P, B, S and Cl impurities inevitably mixed in steel (scale) induces abnormal grain growth, resulting in the magnetic properties and resistivity of soft magnetic ferrite. It has been newly found that it has a serious adverse effect on various properties.
すなわち、上記した特許文献1または3に記載された技術では、かような不純物についての規制は何ら行われていないため、これら文献に開示の技術内容に従うだけでは、同文献に記載された望ましい特性を持つMn−Zn系フェライトの製造は、実際上困難であったのである。また、特許文献2に記載の技術では、Pについて制限されているが、その他の不純物については何ら触れられていない。 That is, in the technique described in Patent Document 1 or 3 described above, since there is no restriction on such impurities, the desired characteristics described in the same document can be obtained only by following the technical contents disclosed in these documents. Production of Mn-Zn ferrite having the above has been difficult in practice. Further, in the technique described in Patent Document 2, although P is limited, other impurities are not mentioned at all.
本発明は、上記の知見に立脚するものである。
すなわち、本発明の要旨構成は次のとおりである。
(1)Fe2O3:45.0mol%以上50.0mol%未満、
NiO:0.1mol%以上5.0mol%以下、
ZnO:3.0mol%以上15.5mol%未満および
MnO:残部
を基本成分とし、
フェライト中に含まれるP、B、SおよびClが、
P:50massppm未満、
B:20massppm未満、
S:30massppm未満および
Cl:50massppm未満
であることを特徴とするMn−Ni−Zn系フェライト。
The present invention is based on the above findings.
That is, the gist configuration of the present invention is as follows.
(1) Fe 2 O 3 : 45.0 mol% or more and less than 50.0 mol%,
NiO: 0.1 mol% or more and 5.0 mol% or less,
ZnO: 3.0 mol% or more and less than 15.5 mol% and
MnO: The balance is the basic component,
P, B, S and Cl contained in the ferrite are
P: less than 50 massppm,
B: Less than 20 massppm
S: less than 30 massppm and
Cl: Mn-Ni-Zn ferrite characterized by being less than 50 massppm.
(2)前記フェライト中に、添加物としてさらに
CaO:0.005〜0.200mass%および
SiO2:0.001〜0.050mass%
のうちから選んだ1種または2種を含有する上記(1)に記載のMn−Ni−Zn系フェライト。
(2) In the ferrite, as an additive
CaO: 0.005-0.200 mass% and
SiO 2 : 0.001 to 0.050 mass%
The Mn-Ni-Zn ferrite according to (1) above, which contains one or two selected from the above.
(3)前記フェライト中に、添加物としてさらに
ZrO2:0.005〜0.100mass%、
Ta2O5:0.005〜0.100mass%、
HfO2:0.005〜0.100mass%および
Nb2O5:0.005〜0.100mass%
のうちから選んだ1種または2種以上を含有する上記(1)または(2)に記載のMn−Ni−Zn系フェライト。
(3) In the ferrite, as an additive
ZrO 2 : 0.005 to 0.100 mass%,
Ta 2 O 5 : 0.005 to 0.100 mass%,
HfO 2 : 0.005 to 0.100 mass% and
Nb 2 O 5 : 0.005 to 0.100 mass%
The Mn—Ni—Zn ferrite according to (1) or (2) above, which contains one or more selected from among the above.
本発明のMn−Ni−Zn系フェライトは、上記の構成によって、従来実現されなかったJIS C4003に規定されたH種絶縁を満たすキュリー温度180℃以上、並びに室温(23℃)における比抵抗が30Ω・m以上かつ保磁力が20.0A/m以下であり、しかも角形比が0.70以上という、優れた特性を有するものとなる。 The Mn—Ni—Zn ferrite of the present invention has a specific resistance of 30Ω at a Curie temperature of 180 ° C. or higher and a room temperature (23 ° C.) satisfying the H-class insulation defined in JIS C4003, which has not been realized in the past. -It has excellent characteristics such as m or more, coercive force of 20.0 A / m or less, and squareness ratio of 0.70 or more.
本発明によれば、キュリー温度を180℃以上に保持したまま、室温(23℃)での比抵抗が高くて保磁力が小さく、かつ角形比を大きくした、Mn−Ni−Zn系フェライトを提供することができる。 According to the present invention, there is provided an Mn-Ni-Zn-based ferrite having a high specific resistance at room temperature (23 ° C), a small coercive force, and a large squareness ratio while maintaining the Curie temperature at 180 ° C or higher. can do.
このフェライトに、CaO、SiO2の1種または2種を適量添加して粒界偏析の効果を利用することによって、さらなる比抵抗の上昇および保磁力の低下を、それぞれ達成することができる。さらに、これらを組み合わせて添加することにより、上記の効果を併せた効果が得られる。 A further increase in specific resistance and a decrease in coercive force can be achieved by adding an appropriate amount of one or two of CaO and SiO 2 to this ferrite and utilizing the effect of grain boundary segregation. Furthermore, the effect which combined said effect is acquired by adding combining these.
また、本発明のフェライトは、不純物量に制限を加え、異常粒成長の発生や、雰囲気の変動に伴う特性劣化を抑制している。そのため、その製造時に粉末冶金的な手法を用いることができ、さらに焼成の際の冷却時に、例えば酸素を1〜20体積ppm含む工業用の窒素を用いることが可能であるから、従来に比べ大幅な製造コストの削減および異常粒成長を抑制した、安定した製造が実現される。 Further, the ferrite of the present invention limits the amount of impurities and suppresses the occurrence of abnormal grain growth and the deterioration of characteristics due to the change in atmosphere. Therefore, it is possible to use a powder metallurgy method during the production, and furthermore, it is possible to use, for example, industrial nitrogen containing 1 to 20 ppm by volume of oxygen at the time of cooling during firing. Therefore, stable production with reduced production cost and abnormal grain growth is realized.
以下、本発明を具体的に説明する。
まず、本発明において、基本成分を上記の範囲に限定した理由について説明する。なお、本発明における基本成分組成は、含まれるFeおよびMnをすべてFe2O3およびMnOとして換算した場合のものである。
The present invention will be specifically described below.
First, the reason why the basic component is limited to the above range in the present invention will be described. In addition, the basic component composition in the present invention is a case where all Fe and Mn contained are converted as Fe 2 O 3 and MnO.
Fe2O3:45.0mol%以上50.0mol%未満
基本成分のうち、Fe2O3は過剰に含まれた場合Fe2+量が増加し、それによりMn−Zn系フェライトの比抵抗が低下し、また角形比が低下する。これを避けるために、Fe2O3量を50.0mol%未満に抑える必要がある。しかしながら、少なすぎると、今度は保磁力の上昇およびキュリー温度の低下を招くため、最低でも45.0mol%は含有することとした。
Fe 2 O 3 : 45.0 mol% or more and less than 50.0 mol% Among the basic components, Fe 2 O 3 increases the amount of Fe 2+ when it is excessively contained, which decreases the specific resistance of Mn-Zn ferrite. In addition, the squareness ratio decreases. In order to avoid this, the amount of Fe 2 O 3 needs to be suppressed to less than 50.0 mol%. However, if the amount is too small, this causes an increase in coercive force and a decrease in Curie temperature. Therefore, the minimum content is 45.0 mol%.
NiO:0.1mol%以上5.0mol%以下
NiOの固溶により、Mn-Znフェライトの負の磁気異方性エネルギーが増大して残留磁束密度が上昇する結果、室温(23℃)での角形比を上昇する効果がある。そこで、NiOは最低でも0.1mol%以上含有することとする。しかし、適正量よりも多い場合、過度に磁気異方性が増大して保磁力の上昇を招くため、5.0mol%以下の範囲内に収める事とする。
NiO: 0.1 mol% or more and 5.0 mol% or less
The solid solution of NiO increases the negative magnetic anisotropy energy of Mn-Zn ferrite and increases the residual magnetic flux density. As a result, it has the effect of increasing the squareness ratio at room temperature (23 ° C). Therefore, NiO is contained at least 0.1 mol% or more. However, if the amount is larger than the appropriate amount, the magnetic anisotropy increases excessively and the coercive force is increased, so that the amount is within the range of 5.0 mol% or less.
ZnO:3.0mol%以上15.5mol%未満
ZnOは、その固溶に伴い保磁力を低下することができ、そのためには、最低でも3.0mol%は含有するものとする。しかし、含有量が適正な値より多い場合には、キュリー温度が低下し、JIS規定のH種絶縁を満たさなくなる。そのため、15.5mol%未満とする。
ZnO: 3.0mol% or more and less than 15.5mol%
ZnO can lower the coercive force with its solid solution, and for that purpose, it should contain at least 3.0 mol%. However, if the content is higher than the appropriate value, the Curie temperature is lowered and the JIS-standard H-type insulation is not satisfied. Therefore, it is less than 15.5 mol%.
MnO:残部
本発明はMn−Ni−Znフェライトであり、主成分組成の残部はMnOである必要がある。その理由は、MnOを含有することにより、高飽和磁束密度、低損失および高透磁率等の良好な磁気特性が得られる為である。
MnO: balance The present invention is Mn-Ni-Zn ferrite, and the balance of the main component composition needs to be MnO. The reason is that by containing MnO, good magnetic properties such as high saturation magnetic flux density, low loss, and high magnetic permeability can be obtained.
P:50massppm未満、B:20massppm未満、S:30massppm未満およびCl:50massppm未満
P,B,SおよびClは、いずれも原料酸化鉄中に不可避に含まれる成分である。これらの含有がごく微量であれば問題はないが、ある一定量以上含まれる場合にはフェライトの異常粒成長を誘発し、得られるフェライトの諸特性に重大な悪影響を及ぼす。上記換算後のFe2O3含有量が50mol%未満の組成になるフェライトは、同含有量が50mol%以上のものに比べて、結晶の粒成長が進行しやすく、そのため異常粒成長が発生しやすくなる。従って、異常粒成長を抑制するために、P、B、SおよびClの含有量をそれぞれ50,20,30および50ppm未満に制限する必要があり、この制限を受けることで、はじめて角形比と保磁力との高度の両立を達成することができる。
P: less than 50 massppm, B: less than 20 massppm, S: less than 30 massppm and Cl: less than 50 massppm P, B, S and Cl are all components inevitably contained in the raw iron oxide. If these contents are very small, there is no problem, but if they are contained in a certain amount or more, abnormal grain growth of the ferrite is induced, and the various properties of the obtained ferrite are seriously adversely affected. Ferrite with a composition with a Fe 2 O 3 content of less than 50 mol% after the above conversion is more likely to cause crystal grain growth than that with a content of 50 mol% or more, thus causing abnormal grain growth. It becomes easy. Therefore, in order to suppress abnormal grain growth, it is necessary to limit the contents of P, B, S and Cl to less than 50, 20, 30 and 50 ppm, respectively. A high degree of compatibility with magnetic force can be achieved.
なお、P、B、SおよびClの含有量を上記の範囲に抑制するには、例えば原料となるFe2O3、MnO、ZnO等に関して、これら不純物含有量の少ない、高純度原料を用いる必要がある。また、ボールミル等の混合粉砕時に用いる媒体についても、磨耗による混入の恐れがあるため、これら不純物含有量の少ないものを用いることが望ましい。 In order to suppress the contents of P, B, S and Cl within the above ranges, it is necessary to use a high-purity raw material having a small impurity content, for example, with respect to Fe 2 O 3 , MnO, ZnO or the like used as the raw material. There is. Further, the medium used for mixing and grinding such as a ball mill may be mixed due to wear, and therefore it is desirable to use a medium having a small content of these impurities.
CaO:0.005〜0.200mass%およびSiO2:0.001〜0.050mass%のうちから選んだ1種または2種
CaOおよびSiO2はいずれも、結晶粒界に偏析することによりフェライトの電気抵抗を高める効果があり、また粒成長時の粒界の移動速度を緩和させて粒内残留空孔を減らし、保磁力を低下させる効果がある。これらの効果を得るには、CaO:0.005mass%以上およびSiO2:0.001mass%以上の添加が必要である。反対に多量に添加し過ぎた場合には、フェライト粒内の異常粒成長を誘発し比抵抗の低下と保磁力の上昇をまねくことになる。そこで、上限はCaO:0.200mass%、SiO2:0.050mass%とすることが望ましい。
CaO: 0.005~0.200mass% and SiO 2: chose from among the 0.001~0.050mass% 1 alone or in combination of two or
Both CaO and SiO 2 have the effect of increasing the electrical resistance of ferrite by segregating at the grain boundaries, and also reducing the residual vacancies in the grains by relaxing the moving speed of the grain boundaries during grain growth. Has the effect of lowering. In order to obtain these effects, it is necessary to add CaO: 0.005 mass% or more and SiO 2 : 0.001 mass% or more. On the other hand, if too much is added, abnormal grain growth in the ferrite grains is induced, leading to a decrease in specific resistance and an increase in coercive force. Therefore, it is desirable that the upper limit is CaO: 0.200 mass% and SiO 2 : 0.050 mass%.
ZrO2:0.005〜0.100mass%、Ta2O5:0.005〜0.100mass%、HfO2:0.005〜0.100mass%およびNb2O5:0.005〜0.100mass%のうちから選んだ1種または2種以上
また、添加物として、ZrO2,Ta205,HfO2およびNb2O5を1種または2種以上添加しても良いものとする。これらの物質はいずれも、高い融点を持つ化合物であり、Mn−Ni−Zn系フェライトに添加した場合には結晶粒を小さくする働きを持ち、そのため比抵抗を上昇させ、同時に保磁力を低下させる。しかし、添加量が適正な値よりも少ない場合には効果が得られず、また多量の場合には異常粒発生による比抵抗の低下と保磁力の上昇をまねく。そのため、それぞれ上記の範囲内に収めることが望ましい。
One or more selected from ZrO 2 : 0.005 to 0.100 mass%, Ta 2 O 5 : 0.005 to 0.100 mass%, HfO 2 : 0.005 to 0.100 mass% and Nb 2 O 5 : 0.005 to 0.100 mass% As additives, ZrO 2 , Ta 2 0 5 , HfO 2 and Nb 2 O 5 may be added singly or in combination. All of these substances are compounds having a high melting point, and when added to Mn-Ni-Zn ferrite, they have a function of reducing crystal grains, thereby increasing specific resistance and simultaneously reducing coercive force. . However, when the added amount is less than the appropriate value, the effect cannot be obtained, and when the added amount is large, the specific resistance decreases and the coercive force increases due to the generation of abnormal grains. For this reason, it is desirable that each be within the above range.
なお、上記にて群れ毎に解説した添加物は、その群れ毎の単独添加でも上記のとおり有効であるが、さらに複数の群れの組み合わせにて添加する場合でも、同様に効果を発揮する。その際も、異常粒成長の発生および保持力の上昇を抑えるため、その添加物量は上記の範囲内に抑えることが望ましい。 In addition, although the additive demonstrated for every group above is effective as above-mentioned even if individual addition for every group is carried out, even when it adds by the combination of a some group, it demonstrates an effect similarly. Also in that case, in order to suppress the occurrence of abnormal grain growth and increase in holding power, it is desirable to suppress the amount of the additive within the above range.
次に、本発明のMn−Ni−Zn系フェライトの好適な製造方法について説明する。
まず、所定の比率となるように、Fe2O3、ZnO、NiOおよびMnO粉末を秤量し、これらを十分に混合した後に仮焼を行う。次に、得られた仮焼粉を粉砕する。さらに、上記した添加物を加える際は、それらを所定の比率で加え、仮焼粉と同時に粉砕を行う。この作業で、添加した成分の濃度に偏りがないように粉末の充分な均質化を行う必要がある。目標組成の粉末をポリビニルアルコール等の有機物バインダーを用いて造粒し、圧力を加えて成形後適宜の焼成条件の下で焼成を行う。
Next, a preferred method for producing the Mn—Ni—Zn ferrite of the present invention will be described.
First, Fe 2 O 3 , ZnO, NiO, and MnO powders are weighed so as to have a predetermined ratio, and after sufficient mixing, calcining is performed. Next, the obtained calcined powder is pulverized. Furthermore, when adding the above-mentioned additives, they are added at a predetermined ratio and pulverized simultaneously with the calcined powder. In this operation, it is necessary to sufficiently homogenize the powder so that the concentration of the added component is not biased. The powder of the target composition is granulated using an organic binder such as polyvinyl alcohol, and pressure is applied, followed by molding and firing under appropriate firing conditions.
ここで、本発明のMn−Ni−Zn系フェライトは、不純物量が制限されているため、粉末冶金的手法を用いた際に問題となる異常粒成長や、焼成時の雰囲気の変動に対しても、保磁力の上昇のような特性劣化を起こしにくい。そのため、上記のように、製造時に粉末冶金的な手法を用いることができ、さらに焼成の際の冷却時に、例えば酸素を1〜20体積ppm含む工業用の窒素を用いることが可能である。 Here, since the amount of impurities in the Mn-Ni-Zn ferrite of the present invention is limited, the abnormal grain growth that becomes a problem when using a powder metallurgical method and the fluctuation of the atmosphere during firing are considered. However, it is difficult to cause characteristic deterioration such as an increase in coercive force. Therefore, as described above, a powder metallurgical technique can be used at the time of production, and industrial nitrogen containing, for example, 1 to 20 ppm by volume of oxygen can be used at the time of cooling during firing.
かくして得られたMn−Ni−Zn系フェライトは、Fe2+量が従来のMn−Znフェライトに比べ大きく減少している。そのため、従来のMn−Znフェライトの問題点であった低い比抵抗が、0.1Ω・mオーダーから約300倍の領域にまで上昇する。また、NiOを加えたことで、角形比が上昇している。 In the Mn-Ni-Zn ferrite thus obtained, the amount of Fe 2+ is greatly reduced as compared with the conventional Mn-Zn ferrite. Therefore, the low specific resistance, which has been a problem of the conventional Mn-Zn ferrite, rises from the order of 0.1 Ω · m to about 300 times. Moreover, the squareness ratio is increasing by adding NiO.
含まれるFeおよびMnをすべてFe2O3およびMnOとして換算した場合に、Fe2O3,ZnO,NiOおよびMnOが表1に示す比率となるように秤量した各原料粉末を、ボールミルを用いて16時間混合した後、空気中で925℃および3時間の仮焼を行った。次に、ボールミルで12時間粉砕を行い、得られた混合粉にポリビニルアルコールを加えて造粒し、1.2ton/cm2の圧力をかけトロイダルコアを成形した。その後、この成形体を焼成炉に挿入して、最高温度1350℃で焼成を行い、焼成後の冷却の際には、1100℃から500℃までの温度範囲で酸素分圧10体積ppmを含む工業用窒素流中で行い、外径25mm、内径15mmおよび高さ5mmの焼結体コアを得た。
このようにして得られた各試料について、キュリー温度、室温での比抵抗および保磁力を測定し、また飽和磁束密度および残留磁束密度を測定して角形比を算出した。
得られた結果を表1に併記する。
When all the contained Fe and Mn are converted as Fe 2 O 3 and MnO, each raw material powder weighed so that Fe 2 O 3 , ZnO, NiO and MnO have the ratio shown in Table 1 is After mixing for 16 hours, calcination was performed in air at 925 ° C. for 3 hours. Next, it was pulverized with a ball mill for 12 hours, polyvinyl alcohol was added to the obtained mixed powder and granulated, and a toroidal core was formed by applying a pressure of 1.2 ton / cm 2 . After that, this molded body is inserted into a firing furnace and fired at a maximum temperature of 1350 ° C. When cooling after firing, an industrial containing oxygen partial pressure of 10 volume ppm in the temperature range from 1100 ° C to 500 ° C A sintered core having an outer diameter of 25 mm, an inner diameter of 15 mm and a height of 5 mm was obtained.
With respect to each sample thus obtained, the specific resistance and coercivity at the Curie temperature and room temperature were measured, and the squareness ratio was calculated by measuring the saturation magnetic flux density and the residual magnetic flux density.
The obtained results are also shown in Table 1.
なお、酸化鉄をはじめとする原料はすべて高純度なものを用いたため、P,B,S,Clの最終的な含有量は全ての試料でP,B,S,Clはそれぞれ5ppmであった。 In addition, since all the raw materials including iron oxide were used, the final contents of P, B, S, and Cl were 5 ppm each for all samples. .
同表に示したとおり、発明例である試料番号1−3、1−5、1−6および1−10では、キュリー温度が180℃以上、室温での比抵抗が30Ω・m以上かつ室温での保磁力が20.0A/m以下であり、しかも角形比が0.70以上という優れた特性を有している。 As shown in the table, Sample Nos. 1-3, 1-5, 1-6 and 1-10, which are invention examples, have a Curie temperature of 180 ° C. or higher, a specific resistance at room temperature of 30 Ω · m or higher and The coercive force is 20.0 A / m or less, and the squareness ratio is 0.70 or more.
これに対し、Fe2O3が50.0mol%以上の比較例(試料番号1-1、1-2)はいずれもFe2+を多く含むため、角形比と比抵抗が大幅に低下している。反対に、Fe2O3が不足した比較例(試料番号1-11)では、キュリー温度の低下と保磁力の上昇が見られる。 On the other hand, since the comparative examples (sample numbers 1-1 and 1-2) in which Fe 2 O 3 is 50.0 mol% or more contain a large amount of Fe 2+ , the squareness ratio and the specific resistance are greatly reduced. On the contrary, in the comparative example (sample number 1-11) in which Fe 2 O 3 is insufficient, the Curie temperature is lowered and the coercive force is increased.
また、NiOを含まない比較例(試料番号1-4)では、残留磁束密度の値が低いことから、室温での角形比が0.70未満である。反対にNiOを多量に含む比較例(試料番号1-7)では、負の結晶磁気異方性エネルギーが過度に増大することにより、保磁力が大幅に上昇している。
一方、ZnOに着目すると、ZnOを発明範囲より多量に含む比較例(試料番号1-8)では、キュリー温度が180℃未満であり、実用上問題がある。反対にZnOが不足した比較例(試料番号1-9)では、保磁力が上昇している。
Moreover, in the comparative example (sample number 1-4) which does not contain NiO, since the value of residual magnetic flux density is low, the squareness ratio at room temperature is less than 0.70. On the contrary, in the comparative example (sample number 1-7) containing a large amount of NiO, the coercive force is significantly increased due to excessive increase in the negative magnetocrystalline anisotropy energy.
On the other hand, when attention is focused on ZnO, the comparative example (sample number 1-8) containing ZnO in a larger amount than the scope of the invention has a Curie temperature of less than 180 ° C., which is problematic in practice. On the other hand, in the comparative example (sample number 1-9) in which ZnO is insufficient, the coercive force is increased.
P、B、SおよびClの含有量が異なる種々の酸化鉄原料を使用し、試料における含有量が最終的に、P:50ppm以下、B:20ppm以下、S:30ppm以下およびCl:50ppm以下となるように計算した上で、含まれるFeおよびMnをすべてFe2O3およびMnOとして換算した場合に、Fe2O3:49.0mol%、ZnO:10.0 mol%、NiO:2.0mol%および残部:MnOの組成となるよう原料を秤量し、ボールミルを用いて16時間混合した後、空気中で925℃および3時間の仮焼を行った。次に、ボールミルで12時間粉砕を行い、得られた混合粉にポリビニルアルコールを加えて造粒し、1.2ton/cm2の圧力をかけてトロイダルコアを成形した。その後、この成形体を焼成炉に入れ、最高温度1350℃で焼成を行い、焼成後の冷却の際には、1100℃から500℃までの温度範囲で酸素分圧10体積ppmを含む工業用窒素流中で行い、外径25mm、内径15mmおよび高さ5mmの焼結体コアを得た。
これらの各試料について、室温での比抵抗および保磁力を測定し、また飽和磁束密度および残留磁束密度を測定して角形比を算出した。なお、主成分組成により決まるキュリー温度は、全ての試料で210℃であった。
得られた結果を表2に示す。
Using various iron oxide raw materials having different contents of P, B, S and Cl, the content in the sample is finally P: 50 ppm or less, B: 20 ppm or less, S: 30 ppm or less, and Cl: 50 ppm or less. After calculating so that all Fe and Mn contained are converted as Fe 2 O 3 and MnO, Fe 2 O 3 : 49.0 mol%, ZnO: 10.0 mol%, NiO: 2.0 mol% and the balance: The raw materials were weighed so as to have a composition of MnO, mixed for 16 hours using a ball mill, and then calcined in air at 925 ° C. for 3 hours. Next, it was pulverized with a ball mill for 12 hours. Polyvinyl alcohol was added to the obtained mixed powder and granulated, and a toroidal core was formed by applying a pressure of 1.2 ton / cm 2 . After that, this compact is put into a firing furnace and fired at a maximum temperature of 1350 ° C. When cooling after firing, industrial nitrogen containing oxygen partial pressure of 10 volume ppm in the temperature range from 1100 ° C to 500 ° C A sintered core having an outer diameter of 25 mm, an inner diameter of 15 mm and a height of 5 mm was obtained.
For each of these samples, the specific resistance and coercive force at room temperature were measured, and the squareness ratio was calculated by measuring the saturation magnetic flux density and the residual magnetic flux density. The Curie temperature determined by the main component composition was 210 ° C. for all samples.
The obtained results are shown in Table 2.
同表に示したとおり、P、B、SおよびCl成分がそれぞれ50、20、30および50massppm未満の発明例(試料番号1−6、2−1)はいずれも異常粒成長が見られず、NiOを含む組成においても、比抵抗が30Ω・m以上かつ保磁力が20.0A/m以下、という優れた値が得られた。
これに対し、P、B、SおよびClの4成分のうち1種類でも適正な値より多く含む比較例(試料番号2-2〜2-7)はいずれも、異常粒の発生が確認された。そのために、保磁力および比抵抗については共に大きく劣化している。
As shown in the table, P, B, S and Cl components are less than 50, 20, 30 and 50 massppm, respectively, and no abnormal grain growth is observed in any of the inventive examples (sample numbers 1-6, 2-1). Even in the composition containing NiO, excellent values of a specific resistance of 30 Ω · m or more and a coercive force of 20.0 A / m or less were obtained.
On the other hand, in any of the comparative examples (sample numbers 2-2 to 2-7) including more than one appropriate value among the four components of P, B, S and Cl, generation of abnormal particles was confirmed. . Therefore, both the coercive force and the specific resistance are greatly deteriorated.
実施例2と同組成の混合粉(但し、P、B、SおよびClはすべて5massppmに調整)に、添加物としてCaOおよびSiO2をそれぞれ最終組成が表3に示す比率となるよう添加し、ボールミルで12時間粉砕を行った。この混合粉にポリビニルアルコールを加えて造粒し、1.2ton/cm2の圧力を加えてトロイダルコアを成形し、その後この成形体を焼成炉に入れ最高温度1350℃で焼成を行い、焼成後の冷却の際には、1100℃から500℃までの温度範囲で酸素分圧10体積ppmを含む工業用窒素流中で行い、外径25mm、内径15mmおよび高さ5mmの焼結体コアを得た。
これらの各試料について、室温での比抵抗および保磁力を測定し、また飽和磁束密度および残留磁束密度を測定して角形比を算出した。なお、主成分組成により決まるキュリー温度は、全ての試料で210℃であった。
得られた結果を表3に示す。
To the mixed powder having the same composition as in Example 2 (however, P, B, S and Cl are all adjusted to 5 massppm), CaO and SiO 2 are added as additives so that the final composition has the ratio shown in Table 3, respectively. Grinding was performed for 12 hours with a ball mill. This mixed powder is granulated by adding polyvinyl alcohol, and a toroidal core is formed by applying a pressure of 1.2 ton / cm 2 , and then the formed body is placed in a firing furnace and fired at a maximum temperature of 1350 ° C. When cooling, it was carried out in an industrial nitrogen flow containing oxygen partial pressure of 10 ppm by volume in the temperature range from 1100 ° C to 500 ° C, and a sintered body core having an outer diameter of 25 mm, an inner diameter of 15 mm and a height of 5 mm was obtained. .
For each of these samples, the specific resistance and coercive force at room temperature were measured, and the squareness ratio was calculated by measuring the saturation magnetic flux density and the residual magnetic flux density. The Curie temperature determined by the main component composition was 210 ° C. for all samples.
The obtained results are shown in Table 3.
表3の結果から、CaOおよびSiO2の1種または2種を添加した発明例(試料番号3-1〜3-3)は、比抵抗の上昇が確認できる。しかし、CaOおよびSiO2のどちらか一方でも適正な値より多く含む比較例(試料番号3-4〜3-6)では、異常粒成長が発生し、磁気特性および比抵抗がともに大きく劣化している。 From the results in Table 3, the invention example (sample numbers 3-1 to 3-3) to which one or two of CaO and SiO 2 are added can confirm an increase in specific resistance. However, in the comparative example (sample numbers 3-4 to 3-6) containing more than either of CaO and SiO 2 at an appropriate value, abnormal grain growth occurs, and both the magnetic properties and the specific resistance are greatly deteriorated. Yes.
実施例2と同組成の混合粉(但し、P、B、SおよびClはすべて5massppmに調整)に、添加物としてNb2O5、Ta2O5、HfO2、およびZrO2をそれぞれ最終組成が表4に示す比率となるよう添加し、ボールミルで12時間粉砕を行った。この混合粉にポリビニルアルコールを加えて造粒し、1.2ton/cm2の圧力を加えてトロイダルコアを成形し、その後この成形体を焼成炉に入れ、最高温度1350℃で焼成を行い焼成後の冷却の際には、1100℃から500℃までの温度範囲で酸素分圧10体積ppmを含む工業用窒素流中で行い、外径25mm、内径15mmおよび高さ5mmの焼結体コアを得た。
これらの各試料について、室温での比抵抗および保磁力を測定し、また飽和磁束密度および残留磁束密度を測定して角形比を算出した。なお、主成分組成により決まるキュリー温度は、全ての試料で210℃であった。
得られた結果を表4に示す。
Nb 2 O 5 , Ta 2 O 5 , HfO 2 , and ZrO 2 were added as final additives to the mixed powder of the same composition as in Example 2 (however, P, B, S and Cl were all adjusted to 5 massppm). Was added so as to have the ratio shown in Table 4, and pulverized for 12 hours with a ball mill. Polyvinyl alcohol is added to this mixed powder and granulated, and a toroidal core is formed by applying a pressure of 1.2 ton / cm 2 , and then the formed body is placed in a firing furnace and fired at a maximum temperature of 1350 ° C. When cooling, it was carried out in an industrial nitrogen flow containing oxygen partial pressure of 10 ppm by volume in the temperature range from 1100 ° C to 500 ° C, and a sintered body core having an outer diameter of 25 mm, an inner diameter of 15 mm and a height of 5 mm was obtained. .
For each of these samples, the specific resistance and coercive force at room temperature were measured, and the squareness ratio was calculated by measuring the saturation magnetic flux density and the residual magnetic flux density. The Curie temperature determined by the main component composition was 210 ° C. for all samples.
Table 4 shows the obtained results.
表4の結果から、Nb2O5、Ta2O5、HfO2、およびZrO2の1種または2種以上を適量添加した発明例(試料番号4-1〜4-15)はいずれも、結晶の成長が抑制された結果、比抵抗が上昇し、保磁力が低下した。
しかし、Nb2O5、Ta2O5、HfO2、およびZrO2の4成分のうち1種類でも適正範囲を超えて多量に含有する比較例(試料番号4-16〜4-18)はいずれも、異常粒が発生し、粒内に多数の不純物や空孔を含むために比抵抗が低下し、また保磁力も大幅に上昇している。
From the results of Table 4, all of the invention examples (sample numbers 4-1 to 4-15) in which appropriate amounts of one or more of Nb 2 O 5 , Ta 2 O 5 , HfO 2 , and ZrO 2 were added, As a result of the suppression of crystal growth, the specific resistance increased and the coercive force decreased.
However, any of the comparative examples (sample numbers 4-16 to 4-18) containing a large amount exceeding the appropriate range of any one of the four components Nb 2 O 5 , Ta 2 O 5 , HfO 2 , and ZrO 2 However, abnormal grains are generated, and since many impurities and vacancies are contained in the grains, the specific resistance is lowered and the coercive force is also greatly increased.
実施例2と同組成の混合粉(但し、P、B、SおよびClはすべて5massppmに調整)に、副成分として、CaOおよびSiO2、の1種または2種(添加物群A)、そしてZrO2、Ta2O5、HfO2およびNb2O5の1種または2種以上(添加物群B)を、最終成分が表5に示す通りになるようにそれぞれ添加し、ボールミルで12時間粉砕を行った。この混合粉にポリビニルアルコールを加えて造粒し、1.2ton/cm2の圧力を加えてトロイダルコアを成形し、その後、この成形体を焼成炉に入れ、最高温度1350℃で焼成を行い、焼成後の冷却は1100℃から500℃までの温度範囲で酸素分圧10体積ppmを含む工業用窒素流中で行い、外径25mm、内径15mmおよび高さ5mmの焼結体コアを得た。
これらの各試料について、室温での比抵抗および保磁力を測定し、また飽和磁束密度および残留磁束密度を測定して角形比を算出した。なお、主成分組成により決まるキュリー温度は、全ての試料で210℃であった。
得られた結果を表5に示す。
Mixed powder having the same composition as in Example 2 (however, P, B, S, and Cl are all adjusted to 5 massppm), and one or two of CaO and SiO 2 as additive components (additive group A), and One or more of ZrO 2 , Ta 2 O 5 , HfO 2, and Nb 2 O 5 (additive group B) were added so that the final components were as shown in Table 5, and the mixture was ball milled for 12 hours. Grinding was performed. This mixed powder is granulated by adding polyvinyl alcohol, and a toroidal core is formed by applying a pressure of 1.2 ton / cm 2 , and then the formed body is placed in a firing furnace and fired at a maximum temperature of 1350 ° C. Subsequent cooling was performed in an industrial nitrogen flow containing an oxygen partial pressure of 10 ppm by volume in the temperature range from 1100 ° C. to 500 ° C. to obtain a sintered core having an outer diameter of 25 mm, an inner diameter of 15 mm, and a height of 5 mm.
For each of these samples, the specific resistance and coercive force at room temperature were measured, and the squareness ratio was calculated by measuring the saturation magnetic flux density and the residual magnetic flux density. The Curie temperature determined by the main component composition was 210 ° C. for all samples.
The results obtained are shown in Table 5.
表5に示したとおり、添加物群AおよびBを組み合わせて添加した発明例(試料番号5-1〜5-9)はいずれも、これらが無添加の場合と比べて比抵抗が上昇し、保磁力が低下した。
これに対し、これら6成分のうちどれか1つでも適正な値より多く含む比較例(試料番号5-10〜5-11)はいずれも、異常粒が発生し、また粒内に多数の不純物や空孔を含むために保磁力および比抵抗がともに大きく劣化している。
As shown in Table 5, the specific resistance of the inventive examples (Sample Nos. 5-1 to 5-9) added in combination with the additive groups A and B increased as compared with the case where they were not added, The coercive force decreased.
On the other hand, in any of the comparative examples (sample numbers 5-10 to 5-11) containing any one of these six components in excess of the appropriate value, abnormal grains are generated and many impurities are present in the grains. Both coercive force and specific resistance are greatly deteriorated due to the inclusion of holes.
Claims (3)
NiO:0.1mol%以上5.0mol%以下、
ZnO:3.0mol%以上15.5mol%未満および
MnO:残部
を基本成分とし、
フェライト中に含まれるP、B、SおよびClが、
P:50massppm未満、
B:20massppm未満、
S:30massppm未満および
Cl:50massppm未満
であることを特徴とするMn−Ni−Zn系フェライト。 Fe 2 O 3 : 45.0 mol% or more and less than 50.0 mol%,
NiO: 0.1 mol% or more and 5.0 mol% or less,
ZnO: 3.0 mol% or more and less than 15.5 mol% and
MnO: The balance is the basic component,
P, B, S and Cl contained in the ferrite are
P: less than 50 massppm,
B: Less than 20 massppm
S: less than 30 massppm and
Cl: Mn-Ni-Zn ferrite characterized by being less than 50 massppm.
CaO:0.005〜0.200mass%および
SiO2:0.001〜0.050mass%
のうちから選んだ1種または2種を含有する請求項1に記載のMn−Ni−Zn系フェライト。 In the ferrite, further as an additive
CaO: 0.005-0.200 mass% and
SiO 2 : 0.001 to 0.050 mass%
The Mn-Ni-Zn-based ferrite according to claim 1, comprising one or two selected from among them.
ZrO2:0.005〜0.100mass%、
Ta2O5:0.005〜0.100mass%、
HfO2:0.005〜0.100mass%および
Nb2O5:0.005〜0.100mass%
のうちから選んだ1種または2種以上を含有する請求項1または2に記載のMn−Ni−Zn系フェライト。
In the ferrite, further as an additive
ZrO 2 : 0.005 to 0.100 mass%,
Ta 2 O 5 : 0.005 to 0.100 mass%,
HfO 2 : 0.005 to 0.100 mass% and
Nb 2 O 5 : 0.005 to 0.100 mass%
The Mn-Ni-Zn-based ferrite according to claim 1 or 2, which contains one or more selected from among the above.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004064151A JP4849777B2 (en) | 2004-03-08 | 2004-03-08 | Mn-Ni-Zn ferrite |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004064151A JP4849777B2 (en) | 2004-03-08 | 2004-03-08 | Mn-Ni-Zn ferrite |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005247670A true JP2005247670A (en) | 2005-09-15 |
JP4849777B2 JP4849777B2 (en) | 2012-01-11 |
Family
ID=35028525
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004064151A Expired - Fee Related JP4849777B2 (en) | 2004-03-08 | 2004-03-08 | Mn-Ni-Zn ferrite |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4849777B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140139309A1 (en) * | 2012-11-20 | 2014-05-22 | Samsung Electro-Mechanics Co., Ltd. | Multilayer coil component |
CN107200574A (en) * | 2017-05-12 | 2017-09-26 | 天长市中德电子有限公司 | A kind of low loss soft magnetic ferrite material |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002145621A (en) * | 2000-11-08 | 2002-05-22 | Kawasaki Steel Corp | Iron oxide and its production method |
JP2003068515A (en) * | 2001-08-22 | 2003-03-07 | Minebea Co Ltd | Mn-Zn FERRITE AND WINDING COMPONENT |
JP2003068516A (en) * | 2001-08-28 | 2003-03-07 | Kawasaki Steel Corp | Mn-Zn-Ni FERRITE AND ITS MANUFACTURING METHOD |
-
2004
- 2004-03-08 JP JP2004064151A patent/JP4849777B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002145621A (en) * | 2000-11-08 | 2002-05-22 | Kawasaki Steel Corp | Iron oxide and its production method |
JP2003068515A (en) * | 2001-08-22 | 2003-03-07 | Minebea Co Ltd | Mn-Zn FERRITE AND WINDING COMPONENT |
JP2003068516A (en) * | 2001-08-28 | 2003-03-07 | Kawasaki Steel Corp | Mn-Zn-Ni FERRITE AND ITS MANUFACTURING METHOD |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140139309A1 (en) * | 2012-11-20 | 2014-05-22 | Samsung Electro-Mechanics Co., Ltd. | Multilayer coil component |
US9530554B2 (en) * | 2012-11-20 | 2016-12-27 | Samsung Electro-Mechanics Co., Ltd. | Multilayer coil component |
CN107200574A (en) * | 2017-05-12 | 2017-09-26 | 天长市中德电子有限公司 | A kind of low loss soft magnetic ferrite material |
CN107200574B (en) * | 2017-05-12 | 2021-01-01 | 天长市中德电子有限公司 | Low-loss soft magnetic ferrite material |
Also Published As
Publication number | Publication date |
---|---|
JP4849777B2 (en) | 2012-01-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4554959B2 (en) | Mn-Co-Zn ferrite | |
JP4554960B2 (en) | Mn-Co-Zn ferrite | |
JP5578766B2 (en) | MnZn ferrite and transformer core | |
JP4508626B2 (en) | Mn-Co-Zn ferrite | |
JP4694973B2 (en) | MnCoZn ferrite and transformer core | |
JP2006206347A (en) | Oxide magnetic material | |
JP5089970B2 (en) | MnCoZn ferrite and transformer core | |
JP4711897B2 (en) | MnCoZn ferrite and transformer core | |
JP4656949B2 (en) | High saturation magnetic flux density Mn-Zn-Ni ferrite | |
JP4750563B2 (en) | MnCoZn ferrite and transformer core | |
JP4554965B2 (en) | Mn-Co-Zn ferrite | |
JP4849777B2 (en) | Mn-Ni-Zn ferrite | |
JP4656958B2 (en) | Mn-Co-Zn ferrite | |
JP2005179098A (en) | Mn-Ni-Zn BASED FERRITE | |
JP2008169072A (en) | Mn-Zn FERRITE | |
JP5089923B2 (en) | MnCoZn ferrite and transformer core | |
JP4739658B2 (en) | Mn-Zn ferrite | |
US6461531B2 (en) | Mn-Zn ferrite and production process thereof | |
JP6964556B2 (en) | MnZnNiCo-based ferrite and its manufacturing method | |
JP5458302B2 (en) | Mn-Zn-Ni ferrite | |
JP6416808B2 (en) | MnZnCo ferrite | |
JP2019199378A (en) | MnZnNiCo-based ferrite and method for producing the same | |
JP2004238211A (en) | Manganese-zinc ferrite | |
JP6454309B2 (en) | MnZnCo ferrite | |
JP2010058983A (en) | Mn-Zn-BASED FERRITE MATERIAL |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070306 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20070306 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100720 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20100913 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100917 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20100913 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110405 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110606 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110927 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20111018 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4849777 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141028 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |