JP2005247023A - State quantity presumption device of vehicle - Google Patents

State quantity presumption device of vehicle Download PDF

Info

Publication number
JP2005247023A
JP2005247023A JP2004056780A JP2004056780A JP2005247023A JP 2005247023 A JP2005247023 A JP 2005247023A JP 2004056780 A JP2004056780 A JP 2004056780A JP 2004056780 A JP2004056780 A JP 2004056780A JP 2005247023 A JP2005247023 A JP 2005247023A
Authority
JP
Japan
Prior art keywords
vehicle
road surface
lateral
slope
calculated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004056780A
Other languages
Japanese (ja)
Other versions
JP4246652B2 (en
Inventor
Noritaka Hayashi
憲孝 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Heavy Industries Ltd filed Critical Fuji Heavy Industries Ltd
Priority to JP2004056780A priority Critical patent/JP4246652B2/en
Publication of JP2005247023A publication Critical patent/JP2005247023A/en
Application granted granted Critical
Publication of JP4246652B2 publication Critical patent/JP4246652B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/06Road conditions

Abstract

<P>PROBLEM TO BE SOLVED: To stably and precisely detect various state quantity generated on a vehicle. <P>SOLUTION: An elliptical marker is marked on a road surface to travel on. The marker is photographed by a camera arranged immediately downward on a lower part of the vehicle and translational speed in the longitudinal direction and in the lateral direction of the vehicle is computed from a relative positional change against the vehicle at a center-of-gravity position of the marker. A yaw angle and yaw angle speed are computed from a rotational state. A pitch angle and pitch angle speed are computed from a change in the major axial direction of the marker, and a rolling angle and rolling angle speed are computed from a change in the minor axial direction. Heel of the present road surface is computed by computing an increment of heel of the road surface previously computed in accordance with at least either one of relations of a relation of acceleration in the vertical direction, translational speed in the longitudinal direction, a radius of revolution and the heel of the road surface previously computed and a relation of acceleration in the lateral direction, the translational speed in the longitudinal direction, the radius of revolution and the heel of the road surface previously computed in accordance with a signal from a force detection sensor to detect force working in the vertical direction from the road surface on each of the wheels and a signal from a lateral acceleration sensor. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、前後方向、横方向の並進速度、ヨー、ロール、ピッチの各角度、車両質量、自車両に対する路面の横傾斜等を演算する車両の状態量推定装置に関する。   The present invention relates to a vehicle state quantity estimating device that calculates forward / backward and lateral translation speeds, yaw, roll and pitch angles, vehicle mass, lateral inclination of a road surface with respect to the host vehicle, and the like.

近年、車両においては、走行する車両の様々な状態量、すなわち、前後方向、横方向の並進速度、ヨー、ロール、ピッチの各角度、車両質量、自車両に対する路面の横傾斜等を検出或いは演算し、車両開発や車両挙動制御の重要な補正パラメータとして用いることが行われるようになっている。   In recent years, various state quantities of a traveling vehicle, that is, forward / backward and lateral translation speeds, yaw, roll and pitch angles, vehicle mass, lateral inclination of the road surface with respect to the host vehicle, and the like are detected or calculated. However, it is used as an important correction parameter for vehicle development and vehicle behavior control.

こうした、様々な車両の状態量を推定する技術として、例えば特開平11−230742号公報では、従動輪に設けた車輪速センサからの信号を基に車速を検出し、車体前後に設けた車高センサからの信号を基にピッチ角を検出し、車体(前部バンパ)左右に設けた車高センサからの信号を基にロール角を検出し、ヨーレートセンサからの信号を基にヨー角を検出し、横加速度センサにより横加速度を検出する。また、ヨーレートセンサからの信号を基に車両の旋回時の角速度を求め、角速度と車速から遠心力、車両の旋回時の曲率半径を求め、曲率半径から車両の旋回円の接線方向のなす角度を求め、遠心力と車両の旋回円の接線方向のなす角度から横加速度センサの検出方向である横方向分力を求め、横加速度、横方向分力、ロール角から路面の横傾斜角を求める技術が開示されている。
特開平11−230742号公報
As a technique for estimating various vehicle state quantities, for example, in Japanese Patent Application Laid-Open No. 11-230742, vehicle speed is detected based on signals from wheel speed sensors provided on driven wheels, and vehicle heights provided before and after the vehicle body. The pitch angle is detected based on the signal from the sensor, the roll angle is detected based on the signals from the vehicle height sensors provided on the left and right sides of the vehicle body (front bumper), and the yaw angle is detected based on the signal from the yaw rate sensor. Then, the lateral acceleration is detected by the lateral acceleration sensor. In addition, the angular velocity at the time of turning of the vehicle is obtained based on the signal from the yaw rate sensor, the centrifugal force is obtained from the angular velocity and the vehicle speed, and the radius of curvature at the turning of the vehicle is obtained. Technology to determine the lateral component force that is the detection direction of the lateral acceleration sensor from the angle between the centrifugal force and the tangential direction of the turning circle of the vehicle, and to determine the lateral inclination angle of the road surface from the lateral acceleration, lateral component force, and roll angle Is disclosed.
Japanese Patent Laid-Open No. 11-230742

しかしながら、上述の特許文献1に開示される技術では、車速を車輪速センサからの値で求めるようになっているため、タイヤの滑りが生じた場合に誤差が蓄積し、精度良く車両の速度の計測ができないという問題がある。また、車高センサもバンパ下に向けて検出が行われるため、路面の凹凸状態の影響を受けて精度の良い車高変化の計測を連続し安定して行うことができ難いという課題もある。そして、こうした車速や車高の値を用いて各種状態量を演算すると正確な値が得られず、精度の良い制御や運転支援ができない虞がある。   However, in the technique disclosed in Patent Document 1 described above, the vehicle speed is obtained from a value from the wheel speed sensor. Therefore, an error is accumulated when tire slip occurs, and the vehicle speed is accurately measured. There is a problem that measurement is not possible. Further, since the vehicle height sensor is also detected toward the bottom of the bumper, there is a problem that it is difficult to continuously and stably measure the vehicle height with high accuracy under the influence of the uneven state of the road surface. If various state quantities are calculated using such vehicle speed and vehicle height values, accurate values cannot be obtained, and there is a possibility that accurate control and driving support cannot be performed.

本発明は上記事情に鑑みてなされたもので、車両に生じる様々な状態量を安定して精度良く検出することができる車両の状態量推定装置を提供することを目的としている。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a vehicle state quantity estimation device that can stably and accurately detect various state quantities generated in a vehicle.

本発明は、自車両の移動に伴う該自車両に対する相対位置の変化が判別自在な路面上のマーカ手段を認識する認識手段と、上記マーカ手段の位置の認識結果に基づいて自車両の並進速度を演算する並進速度演算手段と、自車両に作用する垂直方向の加速度を検出する垂直方向加速度検出手段と、自車両に作用する横方向の加速度を検出する横方向加速度検出手段と、自車両の旋回半径を演算する旋回半径演算手段と、上記垂直方向加速度と上記並進速度と上記旋回半径と前回演算した自車両に対する路面の横傾斜の関係と、上記横方向加速度と上記並進速度と上記旋回半径と上記前回演算した自車両に対する路面の横傾斜の関係の少なくともどちらかの関係を基に上記前回演算した自車両に対する路面の横傾斜の増加分を演算し、今回の自車両に対する路面の横傾斜を演算する路面横傾斜演算手段とを備えたことを特徴としている。   The present invention provides a recognition means for recognizing marker means on a road surface in which a change in relative position with respect to the own vehicle accompanying the movement of the own vehicle can be discriminated, and a translation speed of the own vehicle based on the recognition result of the position of the marker means. Translational speed calculating means for calculating the vertical acceleration detecting means for detecting the vertical acceleration acting on the own vehicle, lateral acceleration detecting means for detecting the lateral acceleration acting on the own vehicle, A turning radius calculating means for calculating a turning radius, the relationship between the vertical acceleration, the translation speed, the turning radius, and the lateral inclination of the road surface with respect to the vehicle previously calculated, the lateral acceleration, the translation speed, and the turning radius. Based on the relationship between at least one of the above and the previously calculated relationship of the lateral slope of the road surface, the increase in the lateral slope of the road surface relative to the previously calculated vehicle is calculated, and the current vehicle It is characterized in that a road side slope calculating means for calculating a lateral inclination of the road surface against.

本発明による車両の状態量推定装置は、車両に生じる様々な状態量を安定して精度良く検出することができるという優れた効果を奏する。   The vehicle state quantity estimation device according to the present invention has an excellent effect that various state quantities generated in the vehicle can be detected stably and accurately.

以下、図面に基づいて本発明の実施の形態を説明する。
図1〜図6は本発明の実施の形態を示し、図1は路面を走行する状態量推定装置を備えた車両の構成説明図、図2は状態量推定プログラムのフローチャート、図3は前後方向、横方向の並進速度、ヨー角検出の説明図、図4はロール角、ピッチ角検出の説明図、図5は旋回半径の演算の説明図、図6は横傾斜による各力の釣り合いの説明図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1 to 6 show an embodiment of the present invention. FIG. 1 is an explanatory diagram of a vehicle equipped with a state quantity estimation device that travels on a road surface. FIG. 2 is a flowchart of a state quantity estimation program. FIG. FIG. 4 is an explanatory diagram of roll angle and pitch angle detection, FIG. 5 is an explanatory diagram of calculation of a turning radius, and FIG. 6 is an explanatory diagram of balance of each force due to lateral inclination. FIG.

図1において、符号1は自動車等の車両(自車両)を示し、この車両1には、前後方向の並進速度vx、横方向の並進速度vy、ピッチ角θP、ピッチ角速度(dθP/dt)、ロール角θR、ロール角速度(dθR/dt)、ヨー角θY、ヨー角速度(dθY/dt)、車両質量m、路面の横傾斜θK等の各状態量を推定する状態量推定装置2が搭載されている。   In FIG. 1, reference numeral 1 denotes a vehicle such as an automobile (own vehicle). The vehicle 1 includes a longitudinal translation speed vx, a lateral translation speed vy, a pitch angle θP, a pitch angular velocity (dθP / dt), A state quantity estimating device 2 for estimating each state quantity such as a roll angle θR, a roll angular velocity (dθR / dt), a yaw angle θY, a yaw angular velocity (dθY / dt), a vehicle mass m, and a lateral slope θK of a road surface is mounted. Yes.

車両1が走行する路面3には、進行方向を長軸、道幅方向を短軸とする楕円形状のマーカ手段としてのマーカ4が設定間隔(例えば、4〜5m間隔)毎に記されており、このマーカ4は、車両1の下部に真下に向けて配設されたカメラ5により撮像され、後述する制御部6によりその形状が認識される。   On the road surface 3 on which the vehicle 1 travels, markers 4 as elliptical marker means whose major axis is the traveling direction and whose minor axis is the road width direction are marked at set intervals (for example, every 4 to 5 m). The marker 4 is picked up by a camera 5 disposed directly below the vehicle 1 and its shape is recognized by a control unit 6 described later.

上述の各状態量を推定するため、車両1には、カメラ5の他、4輪(左前輪7fl、右前輪7fr、左後輪7rl、右後輪7rr)に路面から垂直方向に作用する力Fzfl、Fzfr、Fzrl、Fzrrを検出する力検出センサ8fl、8fr、8rl、8rrがそれぞれの車輪のアクスルハウジングに埋設されており、また、車両1に作用する横方向加速度(dy/dt)を検出する横方向加速度検出手段としての横加速度センサ9が配設されている。 In order to estimate each state quantity described above, the vehicle 1 has a force acting on the four wheels (left front wheel 7fl, right front wheel 7fr, left rear wheel 7rl, right rear wheel 7rr) in addition to the camera 5 in the vertical direction from the road surface. Force detection sensors 8fl, 8fr, 8rl and 8rr for detecting Fzfl, Fzfr, Fzrl and Fzrr are embedded in the axle housings of the respective wheels, and lateral acceleration acting on the vehicle 1 (d 2 y / dt 2 The lateral acceleration sensor 9 is disposed as a lateral acceleration detecting means for detecting ().

上述のカメラ5及び各センサ8fl、8fr、8rl、8rr、9は、制御部6と接続され、この制御部6により、以下の状態量推定プログラムに従って各状態量の推定演算が実行される。   The camera 5 and the sensors 8fl, 8fr, 8rl, 8rr, and 9 are connected to the control unit 6, and the control unit 6 performs estimation calculation of each state quantity according to the following state quantity estimation program.

制御部6により実行される、状態量推定処理を、図2の状態量推定プログラムのフローチャートで説明する。   The state quantity estimation process executed by the control unit 6 will be described with reference to the state quantity estimation program flowchart of FIG.

まず、ステップ(以下、「S」と略称)101で必要パラメータを読み込む。このパラメータとして、具体的には、マーカ4に関しては、前回と今回の楕円の長軸寸法a1、a2、前回と今回の楕円の短軸寸法b1、b2、前回認識した時からの楕円の傾き角度(ヨー角)θY、自車両1を絶対座標系とする前回と今回の楕円の重心位置座標(x01,y01)、(x02,y02)が読み込まれる。また、力検出センサ8fl、8fr、8rl、8rrから4輪7fl、7fr、7rl、7rrの垂直方向に作用する力Fzfl、Fzfr、Fzrl、Fzrrが読み込まれ、横加速度センサ9から横方向加速度(dy/dt)が読み込まれる。更に、過去の走行軌跡の3点の座標、すなわち、図5に示すように、現在の位置を点P4とし、点P1(x1,y1)、点P2(x2,y2)、点P3(x3,y3)の座標を、点P1を原点とする絶対座標系として読み込む。また、前回演算した路面の横傾斜θKn-1が読み込まれる。 First, in step (hereinafter abbreviated as “S”) 101, necessary parameters are read. Specifically, as for this parameter, with respect to the marker 4, the long axis dimensions a1 and a2 of the previous and current ellipses, the short axis dimensions b1 and b2 of the previous and current ellipses, and the inclination angle of the ellipse from the previous recognition. (Yaw angle) θY, and the previous and current ellipse center-of-gravity position coordinates (x01, y01) and (x02, y02) with the vehicle 1 as an absolute coordinate system are read. Also, forces Fzfl, Fzfr, Fzrl, Fzrr acting in the vertical direction of the four wheels 7fl, 7fr, 7rl, 7rr are read from the force detection sensors 8fl, 8fr, 8rl, 8rr, and the lateral acceleration (d 2 y / dt 2 ) is read. Further, the coordinates of three points in the past travel locus, that is, as shown in FIG. 5, the current position is point P4, point P1 (x1, y1), point P2 (x2, y2), point P3 (x3, The coordinates of y3) are read as an absolute coordinate system with the point P1 as the origin. Further, the previously calculated lateral slope θKn−1 of the road surface is read.

次に、S102に進み、図3に示す関係から、前後方向の並進速度vxと横方向の並進速度vyを以下の(1)式と(2)式により演算し、出力する。
vx=(x02−x01)/Δt …(1)
vy=(y02−y01)/Δt …(2)
ここで、Δtはサンプリングタイムである。
Next, the process proceeds to S102, and the translational speed vx in the front-rear direction and the translational speed vy in the lateral direction are calculated by the following formulas (1) and (2) from the relationship shown in FIG.
vx = (x02−x01) / Δt (1)
vy = (y02−y01) / Δt (2)
Here, Δt is a sampling time.

次いで、S103に進み、ピッチ角θP、ピッチ角速度(dθP/dt)、ロール角θR、ロール角速度(dθR/dt)、ヨー角θY、ヨー角速度(dθY/dt)を演算し、出力する。これらの角度、及び、角速度は、以下の(3)式〜(7)式により演算される。   Next, in S103, the pitch angle θP, the pitch angular velocity (dθP / dt), the roll angle θR, the roll angular velocity (dθR / dt), the yaw angle θY, and the yaw angular velocity (dθY / dt) are calculated and output. These angles and angular velocities are calculated by the following equations (3) to (7).

まず、ピッチ角速度(dθP/dt)は、図4に示す関係から、
(dθP/dt)=(cos−1(a2/a1))/Δt …(3)
但し、
((dFzfl/dt)+(dFzfr/dt))/2
>((dFzrl/dt)+(dFzrr/dt))/2ならば符号は正とし、
((dFzfl/dt)+(dFzfr/dt))/2
<((dFzrl/dt)+(dFzrr/dt))/2ならば符号は負とする。
First, the pitch angular velocity (dθP / dt) is calculated from the relationship shown in FIG.
(DθP / dt) = (cos −1 (a2 / a1)) / Δt (3)
However,
((DFzfl / dt) + (dFzfr / dt)) / 2
> ((DFzrl / dt) + (dFzrr / dt)) / 2, the sign is positive,
((DFzfl / dt) + (dFzfr / dt)) / 2
If <((dFzrl / dt) + (dFzrr / dt)) / 2, the sign is negative.

そして、ピッチ角θPは、
θP=∫(dθP/dt)dt …(4)
により演算する。
And the pitch angle θP is
θP = ∫ (dθP / dt) dt (4)
It calculates by.

また、ロール角速度(dθR/dt)は、図4に示す関係から、
(dθR/dt)=(cos−1(b2/b1))/Δt …(5)
但し、
((dFzfl/dt)+(dFzrl/dt))/2
<((dFzfr/dt)+(dFzrr/dt))/2ならば符号は正とし、
((dFzfl/dt)+(dFzrl/dt))/2
>((dFzfr/dt)+(dFzrr/dt))/2ならば符号は負とする。
Further, the roll angular velocity (dθR / dt) is calculated from the relationship shown in FIG.
(DθR / dt) = (cos −1 (b2 / b1)) / Δt (5)
However,
((DFzfl / dt) + (dFzrl / dt)) / 2
If <((dFzfr / dt) + (dFzrr / dt)) / 2, the sign is positive,
((DFzfl / dt) + (dFzrl / dt)) / 2
If> ((dFzfr / dt) + (dFzrr / dt)) / 2, the sign is negative.

そして、ロール角θRは、
θR=∫(dθR/dt)dt …(6)
により演算する。
And the roll angle θR is
θR = ∫ (dθR / dt) dt (6)
It calculates by.

また、ヨー角速度(dθY/dt)は、
θY/Δt …(7)
により演算する。
The yaw angular velocity (dθY / dt) is
θY / Δt (7)
It calculates by.

次に、S104に進み、車両1に作用する垂直方向力Fzを以下の(8)式により演算する。
Fz=Fzfl+Fzfr+Fzrl+Fzrr …(8)
Next, proceeding to S104, the vertical force Fz acting on the vehicle 1 is calculated by the following equation (8).
Fz = Fzfl + Fzfr + Fzrl + Fzrr (8)

次いで、S105に進み、前回演算した路面の横傾斜θKn-1と予め設定しておいた閾値(殆ど横傾斜を無視できると考えられる値で、例えば5°)とを比較し、前回演算した路面の横傾斜θKn-1が予め設定しておいた閾値(5°)よりも大きい場合は、S106に進み、今回は車両質量を演算することなく、前回の車両質量の値を今回の車両質量の値に決定してS108へと進む。   Next, the process proceeds to S105, where the previously calculated road slope θKn-1 is compared with a preset threshold value (a value that is almost negligible, such as 5 °, for example, 5 °). When the horizontal inclination θKn-1 of the vehicle is larger than a preset threshold value (5 °), the process proceeds to S106, and the previous vehicle mass value is calculated as the current vehicle mass without calculating the vehicle mass this time. The value is determined and the process proceeds to S108.

また、S105の比較の結果、前回演算した路面の横傾斜θKn-1が予め設定しておいた閾値(5°)以下の場合は、S107に進み、今回の車両質量mを以下の(9)式により演算してS108に進む。尚、gは重力加速度。
m=Fz/g …(9)
As a result of the comparison in S105, if the previously calculated road slope θKn-1 is less than or equal to a preset threshold value (5 °), the process proceeds to S107, and the current vehicle mass m is set to the following (9) The calculation is performed using the formula and the process proceeds to S108. In addition, g is a gravitational acceleration.
m = Fz / g (9)

S106、或いは、S107で今回の車両質量mを決定してS108に進むと、点P1(x1,y1)、点P2(x2,y2)、点P3(x3,y3)の座標を基に旋回半径rを演算する。すなわち、図5に示すように、P1−P2間の線分をA、P2−P3間の線分をB、P3−P1間の線分をCとすると、3点P1,P2,P3の外接円の半径rは、以下の(10)式で与えられる。
r=(A+B+C)/(4・Sa) …(10)
When the current vehicle mass m is determined in S106 or S107 and the process proceeds to S108, the turning radius is based on the coordinates of point P1 (x1, y1), point P2 (x2, y2), and point P3 (x3, y3). r is calculated. That is, as shown in FIG. 5, if the line segment between P1 and P2 is A, the line segment between P2 and P3 is B, and the line segment between P3 and P1 is C, the circumscribing of three points P1, P2, and P3 The radius r of the circle is given by the following equation (10).
r = (A + B + C) / (4 · Sa) (10)

ここで、Saは、三角形P1−P2−P3の面積であり、
Sa=(λ・(λ−A)・(λ−B)・(λ−C))1/2 …(11)
但し、λ=(A+B+C)/2
Here, Sa is the area of the triangle P1-P2-P3,
Sa = (λ · (λ−A) · (λ−B) · (λ−C)) 1/2 (11)
However, λ = (A + B + C) / 2

また、各線分A、B、Cは、各座標値より以下の各式により求められる。
A=((y2−y1)+(x2−x1)1/2 …(12)
B=((y3−y2)+(x3−x2)1/2 …(13)
C=((y1−y3)+(x1−x3)1/2 …(14)
Moreover, each line segment A, B, C is calculated | required by each following formula | equation from each coordinate value.
A = ((y2−y1) 2 + (x2−x1) 2 ) 1/2 (12)
B = ((y3−y2) 2 + (x3−x2) 2 ) 1/2 (13)
C = ((y1−y3) 2 + (x1−x3) 2 ) 1/2 (14)

次いで、S109に進み、路面に対する垂直方向加速度(Fz/m)と前後方向の並進速度vxと旋回半径rと前回演算した路面の横傾斜θKn-1の関係を基に前回演算した路面の横傾斜θKn-1の増加分を第1の路面横傾斜増加分ΔθKzとして演算する。また、横方向加速度(dy/dt)(=(Fy/m))と前後方向の並進速度vxと旋回半径rと前回演算した路面の横傾斜θKn-1の関係を基に前回演算した路面の横傾斜θKn-1の増加分を第2の路面横傾斜増加分ΔθKyとして演算する。 Next, the process proceeds to S109, where the lateral slope of the road surface calculated last time is based on the relationship between the vertical acceleration (Fz / m) with respect to the road surface, the translational velocity vx in the front-rear direction, the turning radius r, and the lateral slope θKn-1 calculated previously. An increase in θKn−1 is calculated as a first road surface lateral slope increase ΔθKz. The previous calculation is based on the relationship between the lateral acceleration (d 2 y / dt 2 ) (= (Fy / m)), the longitudinal translational velocity vx, the turning radius r, and the previously calculated lateral slope θKn−1 of the road surface. The increase in the lateral slope θKn−1 of the road surface is calculated as the second road surface lateral slope increase ΔθKy.

具体的には、第1の路面横傾斜増加分ΔθKzは以下の(15)式により演算する。
ΔθKz=((Fz/m)−g・cosθKn-1−ω・vx・sinθKn-1)
/(ω・vx・cosθKn-1−g・sinθKn-1) …(15)
また、第2の路面横傾斜増加分ΔθKyは以下の(16)式により演算する。
ΔθKy=−((Fy/m)+g・sinθKn-1−ω・vx・cosθKn-1)
/(ω・vx・sinθKn-1+g・cosθKn-1) …(16)
ここで、ωは角速度であり、ω=vx/rである。
Specifically, the first road surface lateral slope increase ΔθKz is calculated by the following equation (15).
ΔθKz = ((Fz / m) −g · cos θKn-1−ω · vx · sin θKn-1)
/ (Ω · vx · cosθKn-1−g · sinθKn-1) (15)
Further, the second road surface lateral slope increase ΔθKy is calculated by the following equation (16).
ΔθKy = − ((Fy / m) + g · sinθKn-1−ω · vx · cosθKn-1)
/ (Ω · vx · sinθKn-1 + g · cosθKn-1) (16)
Here, ω is an angular velocity, and ω = vx / r.

すなわち、図6に示すように、車両局所座標系について、力のつり合いの関係から、今回演算する路面の横傾斜θKnを用いて、垂直、水平成分に関して以下の(17)、(18)式が導出される。   That is, as shown in FIG. 6, with respect to the vehicle local coordinate system, the following equations (17) and (18) are obtained with respect to the vertical and horizontal components using the lateral slope θKn of the road surface calculated this time from the relationship of force balance. Derived.

Fz=m・g・cosθKn+(m・vx/r)・sinθKn …(17)
Fy=−m・g・sinθKn+(m・vx/r)・cosθKn …(18)
ここで、急激な路面の横傾斜の変動がないものとすると、前回演算した路面の横傾斜θKn-1と路面横傾斜増加分ΔθKを用いて以下の(19)、(20)式が得られる。
cosθKn=cos(θKn-1+ΔθK)≒cosθKn-1−ΔθK・sinθKn-1 …(19)
sinθKn=sin(θKn-1+ΔθK)≒sinθKn-1+ΔθK・cosθKn-1 …(20)
Fz = m · g · cos θKn + (m · vx 2 / r) · sin θKn (17)
Fy = −m · g · sin θKn + (m · vx 2 / r) · cos θKn (18)
Here, assuming that there is no sudden change in the lateral slope of the road surface, the following equations (19) and (20) are obtained using the previously calculated lateral slope θKn-1 of the road surface and an increase ΔΔK in the lateral slope of the road surface. .
cosθKn = cos (θKn-1 + ΔθK) ≈cosθKn-1−ΔθK · sinθKn-1 (19)
sinθKn = sin (θKn-1 + ΔθK) ≈sinθKn-1 + ΔθK · cosθKn-1 (20)

そして、上述の(19)、(20)式を(17)、(18)式に代入し、これら(17)、(18)式を路面横傾斜増加分ΔθKについて変形し、それぞれの路面横傾斜増加分ΔθKをΔθKz、ΔθKyとして、上述の(15)、(16)式が得られるのである。   Then, the above equations (19) and (20) are substituted into equations (17) and (18), and these equations (17) and (18) are modified with respect to the road surface lateral slope increment ΔθK, and the respective road surface lateral slopes are transformed. By using the increments ΔθK as ΔθKz and ΔθKy, the above equations (15) and (16) are obtained.

その後、S110に進み、第1の路面横傾斜増加分ΔθKzと第2の路面横傾斜増加分ΔθKyとの差SKを演算する。
SK=ΔθKz−ΔθKy …(21)
Thereafter, the process proceeds to S110, and the difference SK between the first road surface lateral slope increase ΔθKz and the second road surface lateral slope increase ΔθKy is calculated.
SK = ΔθKz−ΔθKy (21)

次いで、S111に進み、第1の路面横傾斜増加分ΔθKzと第2の路面横傾斜増加分ΔθKyとの差SKの絶対値が予め設定しておいた閾値C1以下か否か判定し、閾値C1以下の場合にはS112に進む。   Next, the process proceeds to S111, where it is determined whether or not the absolute value of the difference SK between the first road surface lateral slope increment ΔθKz and the second road surface lateral slope increment ΔθKy is equal to or smaller than a preset threshold C1. In the following cases, the process proceeds to S112.

S112では、最終的な路面横傾斜増加分ΔθKを以下の(22)式により演算し、この路面横傾斜増加分ΔθKを前回演算した路面の横傾斜θKn-1に加算((23)式)して今回の路面の横傾斜θKnとして出力し、プログラムを抜ける。
ΔθK=(ΔθKz+ΔθKy)/2 …(22)
θKn=θKn-1+ΔθK …(23)
尚、上述の(22)式では、第1の路面横傾斜増加分ΔθKzと第2の路面横傾斜増加分ΔθKyとは、1:1の重み付けで最終的な路面横傾斜増加分ΔθKを演算しているが、センサの特性によっては1:1ではなく、どちらかの値を重視する重み付けを行って演算するようにしても良い。
In S112, the final road surface slope increase ΔθK is calculated by the following equation (22), and this road surface slope increase ΔθK is added to the previously calculated road surface slope θKn-1 (expression (23)). Output as the current road side slope θKn and exit the program.
ΔθK = (ΔθKz + ΔθKy) / 2 (22)
θKn = θKn-1 + ΔθK (23)
In the above equation (22), the first road surface lateral slope increment ΔθKz and the second road surface lateral slope increment ΔθKy are calculated by calculating the final road surface lateral slope increment ΔθK with a weight of 1: 1. However, depending on the characteristics of the sensor, the calculation may be performed with weighting that places importance on either value instead of 1: 1.

一方、上述のS111で、第1の路面横傾斜増加分ΔθKzと第2の路面横傾斜増加分ΔθKyとの差SKの絶対値が予め設定しておいた閾値C1を超える場合は、S113に進み、過去に得られている数点(例えば、5点)の路面の横傾斜θKから今回予想される補外値θK1nを、公知の補間法(例えば、ラグランジュ補間やスプライン補間)や最小2乗法により求めた関数により演算する。   On the other hand, if the absolute value of the difference SK between the first road surface lateral slope increment ΔθKz and the second road surface lateral slope increment ΔθKy exceeds the preset threshold C1 in S111 described above, the process proceeds to S113. The extrapolated value θK1n that is predicted this time from several lateral (θ, for example) road surface slopes θK obtained in the past is calculated by a known interpolation method (for example, Lagrange interpolation or spline interpolation) or a least square method. Calculate with the calculated function.

その後、S114に進み、S113で演算した補外値θK1nに基づき今回の路面の横傾斜θKnを演算し、出力して、プログラムを抜ける。具体的には、まず、以下の(24)式により、第1の路面横傾斜増加分ΔθKzと前回演算した路面の横傾斜θKn-1から第1の路面の横傾斜θKnzを演算し、以下の(25)式により、第2の路面横傾斜増加分ΔθKyと前回演算した路面の横傾斜θKn-1から第2の路面の横傾斜θKnyを演算する。
θKnz=θKn-1+ΔθKz …(24)
θKny=θKn-1+ΔθKy …(25)
Thereafter, the process proceeds to S114, where the lateral slope θKn of the current road surface is calculated and output based on the extrapolated value θK1n calculated in S113, and the program is exited. Specifically, first, the first road surface lateral slope θKnz is calculated from the first road surface lateral slope increment ΔθKz and the previously calculated road surface lateral slope θKn-1 by the following equation (24). The second road surface slope θKny is calculated from the second road surface slope increase ΔθKy and the previously calculated road surface slope θKn−1 according to the equation (25).
θKnz = θKn-1 + ΔθKz (24)
θKny = θKn-1 + ΔθKy (25)

そして、補外値θK1nと第1の路面の横傾斜θKnz、及び、補外値θK1nと第2の路面の横傾斜θKnyを比較して、第1の路面の横傾斜θKnzと第2の路面の横傾斜θKnyが共に補外値θK1nから設定値(予め実験等により求めた値)以上離れている場合は、補外値θK1nを今回の路面の横傾斜θKnとして決定する。   Then, the extrapolation value θK1n is compared with the lateral slope θKnz of the first road surface, and the extrapolation value θK1n is compared with the lateral slope θKny of the second road surface, and the lateral slope θKnz of the first road surface is compared with the second road surface. When both the lateral slopes θKny are separated from the extrapolation value θK1n by a set value (value obtained in advance through experiments or the like), the extrapolation value θK1n is determined as the lateral slope θKn of the current road surface.

また、補外値θK1nと第1の路面の横傾斜θKnz、及び、補外値θK1nと第2の路面の横傾斜θKnyとの比較の結果、少なくともどちらかが補外値θK1nから設定値の範囲内にある場合には、補外値θK1nに近い方の値を今回の路面の横傾斜θKnとして決定する。   Further, as a result of comparison between the extrapolation value θK1n and the first road surface lateral inclination θKnz, and the extrapolation value θK1n and the second road surface lateral inclination θKny, at least one of them is within the set value range from the extrapolation value θK1n. If it is within the range, the value closer to the extrapolation value θK1n is determined as the lateral slope θKn of the current road surface.

このように、本発明の実施の形態においては、制御部6は、認識手段、並進速度演算手段、垂直方向加速度検出手段、旋回半径演算手段、路面横傾斜演算手段、ヨー角演算手段、ピッチ角演算手段、ロール角演算手段としての機能を備えて構成される。   Thus, in the embodiment of the present invention, the control unit 6 includes the recognition means, the translation speed calculation means, the vertical acceleration detection means, the turning radius calculation means, the road surface lateral inclination calculation means, the yaw angle calculation means, the pitch angle. Functions are provided as a calculation means and a roll angle calculation means.

そして、以上のように、制御部6において、各状態量を求めるようになっているため、従来の車輪速センサを用いた推定で生じるような車輪スリップによる誤差が発生することがなく、精度の良い状態量の検出を行うことができる。また、車高センサで生じるような路面状態による誤差も生じることがなく、精度の良い状態量の検出を行うことができる。   And as mentioned above, since each state quantity is calculated | required in the control part 6, the error by a wheel slip which arises by the estimation using the conventional wheel speed sensor does not generate | occur | produce, but accuracy. A good state quantity can be detected. Further, there is no error due to the road surface condition that occurs in the vehicle height sensor, and it is possible to detect the state quantity with high accuracy.

尚、本実施の形態では、マーカ4は楕円形状のものを用いるようにしているが、道幅方向と進行方向が判別できれるものであれば他の形状のものであっても良い(例えば長方形等)。   In the present embodiment, the marker 4 has an elliptical shape, but may have another shape as long as the road width direction and the traveling direction can be distinguished (for example, a rectangle or the like). ).

また、本実施の形態においては、前後方向の並進速度vx、横方向の並進速度vy、ピッチ角θP、ピッチ角速度(dθP/dt)、ロール角θR、ロール角速度(dθR/dt)、ヨー角θY、ヨー角速度(dθY/dt)、車両質量m、路面の横傾斜θKの各状態量を推定する例を説明しているが、これら全てを推定するものでなくても良い。その場合、推定に必要なパラメータも削除できる。例えば、ピッチ角θP、ピッチ角速度(dθP/dt)を推定しないのであれば、マーカ4の長軸方向の変化を検出する必要はない。   In the present embodiment, the longitudinal translational velocity vx, the lateral translational velocity vy, the pitch angle θP, the pitch angular velocity (dθP / dt), the roll angle θR, the roll angular velocity (dθR / dt), and the yaw angle θY. In this example, the state quantities of the yaw angular velocity (dθY / dt), the vehicle mass m, and the lateral slope θK of the road surface are estimated, but it is not necessary to estimate all of these. In that case, parameters necessary for estimation can also be deleted. For example, if the pitch angle θP and the pitch angular velocity (dθP / dt) are not estimated, it is not necessary to detect a change in the major axis direction of the marker 4.

路面を走行する状態量推定装置を備えた車両の構成説明図Configuration explanatory diagram of a vehicle including a state quantity estimating device that travels on a road surface 状態量推定プログラムのフローチャートFlow chart of state quantity estimation program 前後方向、横方向の並進速度、ヨー角検出の説明図Illustration of front / rear and lateral translation speed and yaw angle detection ロール角、ピッチ角検出の説明図Explanation of roll angle and pitch angle detection 旋回半径の演算の説明図Illustration of calculation of turning radius 横傾斜による各力の釣り合いの説明図Explanatory drawing of balance of each force by lateral inclination

符号の説明Explanation of symbols

1 車両
2 状態量推定装置
3 路面
4 マーカ(マーカ手段)
5 カメラ
6 制御部(認識手段、並進速度演算手段、垂直方向加速度検出手段、旋回半径演算手段、路面横傾斜演算手段、ヨー角演算手段、ピッチ角演算手段、ロール角演算手段)
7fl、7fr、7rl、7rr 車輪
8fl、8fr、8rl、8rr 力検出センサ
9 横加速度センサ(横方向加速度検出手段)
代理人 弁理士 伊 藤 進
DESCRIPTION OF SYMBOLS 1 Vehicle 2 State quantity estimation apparatus 3 Road surface 4 Marker (marker means)
5 Camera 6 Control section (recognition means, translation speed calculation means, vertical acceleration detection means, turning radius calculation means, road surface lateral inclination calculation means, yaw angle calculation means, pitch angle calculation means, roll angle calculation means)
7fl, 7fr, 7rl, 7rr Wheel 8fl, 8fr, 8rl, 8rr Force detection sensor 9 Lateral acceleration sensor (lateral acceleration detection means)
Agent Patent Attorney Susumu Ito

Claims (13)

自車両の移動に伴う該自車両に対する相対位置の変化が判別自在な路面上のマーカ手段を認識する認識手段と、
上記マーカ手段の位置の認識結果に基づいて自車両の並進速度を演算する並進速度演算手段と、
自車両に作用する垂直方向の加速度を検出する垂直方向加速度検出手段と、
自車両に作用する横方向の加速度を検出する横方向加速度検出手段と、
自車両の旋回半径を演算する旋回半径演算手段と、
上記垂直方向加速度と上記並進速度と上記旋回半径と前回演算した自車両に対する路面の横傾斜の関係と、上記横方向加速度と上記並進速度と上記旋回半径と上記前回演算した自車両に対する路面の横傾斜の関係の少なくともどちらかの関係を基に上記前回演算した自車両に対する路面の横傾斜の増加分を演算し、今回の自車両に対する路面の横傾斜を演算する路面横傾斜演算手段と、
を備えたことを特徴とする車両の状態量推定装置。
Recognizing means for recognizing a marker means on a road surface in which a change in relative position with respect to the own vehicle accompanying the movement of the own vehicle is discriminable
Translation speed calculation means for calculating the translation speed of the host vehicle based on the recognition result of the position of the marker means;
Vertical acceleration detecting means for detecting vertical acceleration acting on the host vehicle;
Lateral acceleration detecting means for detecting lateral acceleration acting on the host vehicle;
Turning radius calculating means for calculating the turning radius of the host vehicle;
The relationship between the vertical acceleration, the translation speed, the turning radius, and the lateral slope of the road surface with respect to the vehicle previously calculated, the lateral acceleration, the translation speed, the turning radius, and the lateral surface of the road surface with respect to the vehicle previously calculated. A road surface side inclination calculating means for calculating an increase in the lateral inclination of the road surface with respect to the host vehicle calculated above based on at least one of the relationships of the inclination, and calculating the lateral inclination of the road surface with respect to the current vehicle;
A vehicle state quantity estimation apparatus comprising:
上記認識手段は、上記マーカ手段の自車両の移動に伴う該自車両に対する前後方向の前回検出した位置からの相対位置の変化が検出自在であって、
上記並進速度演算手段は、上記マーカ手段の自車両の移動に伴う該自車両に対する前後方向の前回検出した位置からの相対位置の変化を基に自車両の前後方向の並進速度を演算することを特徴とする請求項1記載の車両の状態量推定装置。
The recognizing means is capable of detecting a change in relative position from the previously detected position in the front-rear direction with respect to the own vehicle accompanying the movement of the own vehicle of the marker means,
The translation speed calculating means calculates a translation speed in the front-rear direction of the host vehicle based on a change in relative position from a previously detected position in the front-rear direction relative to the host vehicle as the marker unit moves. The vehicle state quantity estimating device according to claim 1, wherein
上記認識手段は、上記マーカ手段の自車両の移動に伴う該自車両に対する横方向の前回検出した位置からの相対位置の変化が検出自在であって、
上記並進速度演算手段は、上記マーカ手段の自車両の移動に伴う該自車両に対する横方向の前回検出した位置からの相対位置の変化を基に自車両の横方向の並進速度を演算することを特徴とする請求項1又は請求項2記載の車両の状態量推定装置。
The recognizing means is capable of detecting a change in relative position from the previously detected position in the lateral direction with respect to the own vehicle accompanying movement of the own vehicle of the marker means,
The translation speed calculation means calculates the lateral translation speed of the host vehicle based on a change in relative position from the previously detected position in the lateral direction relative to the host vehicle accompanying the movement of the host vehicle of the marker means. The vehicle state quantity estimation apparatus according to claim 1 or 2, wherein the vehicle state quantity estimation apparatus is characterized.
上記認識手段は、上記マーカ手段の自車両の移動に伴う該自車両に対する回転方向の前回検出した位置からの相対位置の変化が検出自在であって、
上記マーカ手段の自車両の移動に伴う該自車両に対する回転方向の前回検出した位置からの相対位置の変化を基にヨー角とヨー角速度の少なくともどちらかを演算するヨー角演算手段を有することを特徴とする請求項1乃至請求項3の何れか一つに記載の車両の状態量推定装置。
The recognizing means is capable of detecting a change in relative position from the previously detected position in the rotation direction relative to the own vehicle accompanying the movement of the own vehicle of the marker means,
Yaw angle calculating means for calculating at least one of a yaw angle and a yaw angular velocity based on a change in relative position from a previously detected position of the rotation direction with respect to the own vehicle accompanying the movement of the own vehicle by the marker means. The vehicle state quantity estimating device according to any one of claims 1 to 3, wherein
上記認識手段は、上記マーカ手段の自車両の移動に伴う該自車両に対する前後方向の寸法の前回検出した値からの変化が検出自在であって、
上記マーカ手段の自車両の移動に伴う該自車両に対する前後方向の寸法の前回検出した値からの変化を基にピッチ角とピッチ角速度の少なくともどちらかを演算するピッチ角演算手段を有することを特徴とする請求項1乃至請求項4の何れか一つに記載の車両の状態量推定装置。
The recognizing means is capable of detecting a change from the previously detected value of the dimension in the front-rear direction relative to the own vehicle accompanying the movement of the own vehicle of the marker means,
Pitch angle calculating means for calculating at least one of a pitch angle and a pitch angular velocity based on a change from a previously detected value of a dimension in the front-rear direction with respect to the own vehicle accompanying the movement of the own vehicle of the marker means. The vehicle state quantity estimating device according to any one of claims 1 to 4.
上記認識手段は、上記マーカ手段の自車両の移動に伴う該自車両に対する横方向の寸法の前回検出した値からの変化が検出自在であって、
上記マーカ手段の自車両の移動に伴う該自車両に対する横方向の寸法の前回検出した値からの変化を基にロール角とロール角速度の少なくともどちらかを演算するロール角演算手段を有することを特徴とする請求項1乃至請求項5の何れか一つに記載の車両の状態量推定装置。
The recognizing means is capable of detecting a change from the previously detected value of the dimension in the lateral direction with respect to the own vehicle accompanying the movement of the own vehicle of the marker means,
A roll angle calculating means for calculating at least one of a roll angle and a roll angular velocity based on a change from a previously detected value of a dimension in a lateral direction with respect to the own vehicle accompanying the movement of the own vehicle of the marker means. The vehicle state quantity estimating device according to any one of claims 1 to 5.
上記垂直方向加速度検出手段は、自車両の各車輪に作用する垂直方向の力を検出してこれらの総和を求め、この総和を自車両の質量で除して演算することを特徴とする請求項1乃至請求項6の何れか一つに記載の車両の状態量推定装置。   The vertical acceleration detecting means detects a vertical force acting on each wheel of the host vehicle to obtain a sum of these, and calculates the sum by dividing the sum by the mass of the host vehicle. The vehicle state quantity estimation apparatus according to any one of claims 1 to 6. 上記自車両の質量は、上記演算した自車両に対する路面の横傾斜が予め設定しておいた閾値より小さい場合に、上記自車両の各車輪に作用する垂直方向の力の総和を重力加速度で除して予め演算しておくことを特徴とする請求項7記載の車両の状態量推定装置。   The mass of the host vehicle is obtained by dividing the sum of vertical forces acting on the wheels of the host vehicle by the gravitational acceleration when the calculated lateral slope of the road surface with respect to the host vehicle is smaller than a preset threshold value. The vehicle state quantity estimating device according to claim 7, wherein the vehicle state quantity estimating device is calculated in advance. 上記旋回半径演算手段は、過去の自車両の走行軌跡から上記旋回半径を近似計算することを特徴とする請求項1乃至請求項8の何れか一つに記載の車両の状態量推定装置。   The vehicle state quantity estimating apparatus according to any one of claims 1 to 8, wherein the turning radius calculation means approximately calculates the turning radius from a past travel locus of the host vehicle. 上記路面横傾斜演算手段は、上記垂直方向加速度と上記並進速度と上記過去の自車両の走行路と上記前回演算した自車両に対する路面の横傾斜の関係を基に上記前回演算した自車両に対する路面の横傾斜の増加分を第1の路面横傾斜増加分として演算し、上記横方向加速度と上記並進速度と上記過去の自車両の走行路と上記前回演算した自車両に対する路面の横傾斜の関係を基に上記前回演算した自車両に対する路面の横傾斜の増加分を第2の路面横傾斜増加分として演算し、上記第1の路面横傾斜増加分と上記第2の路面横傾斜増加分との差の絶対値が予め設定しておいた閾値以内の場合は、上記第1の路面横傾斜増加分と上記第2の路面横傾斜増加分とを予め設定した重み付けで演算処理して最終的な路面横傾斜増加分を演算し、上記前回演算した自車両に対する路面の横傾斜に上記最終的な路面横傾斜増加分を加算して上記今回の自車両に対する路面の横傾斜とすることを特徴とする請求項1乃至請求項9の何れか一つに記載の車両の状態量推定装置。   The road surface side inclination calculating means is based on the relationship between the vertical acceleration, the translation speed, the past traveling road of the own vehicle, and the lateral inclination of the road surface with respect to the previous vehicle. The increase in the lateral slope of the vehicle is calculated as a first road surface lateral slope increase, and the relationship between the lateral acceleration, the translational speed, the previous travel path of the host vehicle, and the previously calculated lateral slope of the road surface relative to the host vehicle is calculated. Based on the above, the previously calculated increase in the lateral slope of the road surface with respect to the host vehicle is calculated as the second increased lateral slope, and the first increased lateral slope and the second increased lateral slope If the absolute value of the difference between the two is within a preset threshold value, the first road surface lateral slope increment and the second road surface lateral slope increment are calculated and processed with a predetermined weighting. Calculate the increase in road slope 10. The road slope according to any one of claims 1 to 9, characterized in that the final road slope increase is added to the calculated road slope relative to the host vehicle to obtain the current road slope relative to the host vehicle. The vehicle state quantity estimation apparatus according to one. 上記路面横傾斜演算手段は、上記垂直方向加速度と上記並進速度と上記過去の自車両の走行路と上記前回演算した自車両に対する路面の横傾斜の関係を基に上記前回演算した自車両に対する路面の横傾斜の増加分を第1の路面横傾斜増加分として演算し、上記横方向加速度と上記並進速度と上記過去の自車両の走行路と上記前回演算した自車両に対する路面の横傾斜の関係を基に上記前回演算した自車両に対する路面の横傾斜の増加分を第2の路面横傾斜増加分として演算し、上記第1の路面横傾斜増加分と上記第2の路面横傾斜増加分との差の絶対値が予め設定しておいた閾値を超える場合は、過去に演算した自車両に対する路面の横傾斜から補外値を演算し、該補外値と上記前回演算した自車両に対する路面の横傾斜に上記第1の路面横傾斜増加分を加算した第1の路面の横傾斜と上記前回演算した自車両に対する路面の横傾斜に上記第2の路面横傾斜増加分を加算した第2の路面の横傾斜とを比較して上記今回の自車両に対する路面の横傾斜を決定することを特徴とする請求項1乃至請求項10の何れか一つに記載の車両の状態量推定装置。   The road surface side inclination calculating means is based on the relationship between the vertical acceleration, the translation speed, the past traveling road of the own vehicle, and the lateral inclination of the road surface with respect to the previous vehicle. The increase in the lateral slope of the vehicle is calculated as a first road surface lateral slope increase, and the relationship between the lateral acceleration, the translational speed, the previous travel path of the host vehicle, and the previously calculated lateral slope of the road surface relative to the host vehicle is calculated. Based on the above, the previously calculated increase in the lateral slope of the road surface with respect to the host vehicle is calculated as the second increased lateral slope, and the first increased lateral slope and the second increased lateral slope If the absolute value of the difference exceeds a preset threshold value, an extrapolation value is calculated from the lateral slope of the road surface with respect to the host vehicle calculated in the past, and the extrapolated value and the road surface with respect to the host vehicle calculated last time are calculated. Next to the first road surface A comparison is made between the lateral slope of the first road surface obtained by adding the increase in the slope and the lateral slope of the second road surface obtained by adding the second road surface slope increase to the lateral slope of the road surface with respect to the host vehicle calculated previously. The vehicle state quantity estimating apparatus according to any one of claims 1 to 10, wherein a lateral inclination of a road surface with respect to the current vehicle is determined. 上記路面横傾斜演算手段は、上記第1の路面の横傾斜と上記第2の路面の横傾斜が共に上記補外値から設定値以上離れている場合は、上記補外値を上記今回の自車両に対する路面の横傾斜として決定することを特徴とする請求項11記載の車両の状態量推定装置。   The road surface lateral slope calculating means determines that the extrapolated value is the current self-automatic value when the lateral slope of the first road surface and the lateral slope of the second road surface are separated from the extrapolated value by more than a set value. 12. The vehicle state quantity estimating device according to claim 11, wherein the vehicle state quantity estimating device is determined as a lateral inclination of the road surface with respect to the vehicle. 上記路面横傾斜演算手段は、上記第1の路面の横傾斜と上記第2の路面の横傾斜の少なくともどちらかが上記補外値から設定値の範囲内にある場合には、上記補外値に近い方の値を上記今回の自車両に対する路面の横傾斜として決定することを特徴とする請求項11記載の車両の状態量推定装置。   The road surface lateral slope calculating means is configured to calculate the extrapolated value when at least one of the lateral slope of the first road surface and the lateral slope of the second road surface is within a set value range from the extrapolated value. 12. The vehicle state quantity estimating apparatus according to claim 11, wherein a value closer to is determined as a lateral slope of the road surface relative to the current vehicle.
JP2004056780A 2004-03-01 2004-03-01 Vehicle state quantity estimation device Expired - Fee Related JP4246652B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004056780A JP4246652B2 (en) 2004-03-01 2004-03-01 Vehicle state quantity estimation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004056780A JP4246652B2 (en) 2004-03-01 2004-03-01 Vehicle state quantity estimation device

Publications (2)

Publication Number Publication Date
JP2005247023A true JP2005247023A (en) 2005-09-15
JP4246652B2 JP4246652B2 (en) 2009-04-02

Family

ID=35027940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004056780A Expired - Fee Related JP4246652B2 (en) 2004-03-01 2004-03-01 Vehicle state quantity estimation device

Country Status (1)

Country Link
JP (1) JP4246652B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012026992A (en) * 2010-07-28 2012-02-09 Honda Motor Co Ltd Estimation device of vehicle pitch angle
GB2494526A (en) * 2011-09-06 2013-03-13 Land Rover Uk Ltd Vehicle Speed Determination
KR20170042742A (en) * 2014-09-19 2017-04-19 로베르트 보쉬 게엠베하 Banked curve detection using vertical and lateral acceleration

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012026992A (en) * 2010-07-28 2012-02-09 Honda Motor Co Ltd Estimation device of vehicle pitch angle
GB2494526A (en) * 2011-09-06 2013-03-13 Land Rover Uk Ltd Vehicle Speed Determination
GB2494526B (en) * 2011-09-06 2015-11-25 Jaguar Land Rover Ltd Improvements in vehicle speed determination
KR20170042742A (en) * 2014-09-19 2017-04-19 로베르트 보쉬 게엠베하 Banked curve detection using vertical and lateral acceleration
JP2017530058A (en) * 2014-09-19 2017-10-12 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング Inclination curve detection using vertical and horizontal acceleration
KR101977574B1 (en) 2014-09-19 2019-05-13 로베르트 보쉬 게엠베하 Banked curve detection using vertical and lateral acceleration

Also Published As

Publication number Publication date
JP4246652B2 (en) 2009-04-02

Similar Documents

Publication Publication Date Title
JP6228933B2 (en) Method and system for determining vehicle travel depth
KR101987636B1 (en) Control method for collision avoidance of vehicle and Apparatus for collision avoidance of vehicle implementing the same
US9126595B2 (en) Apparatus and method for calculating inter-vehicle distance
JP4878370B2 (en) Method and apparatus for roll angle calculation for occupant protection device
US20050201593A1 (en) Vehicle state sensing system and vehicle state sensing method
JP6020729B2 (en) Vehicle position / posture angle estimation apparatus and vehicle position / posture angle estimation method
US8862326B2 (en) Vehicle travel assisting device
JP2005271915A (en) Automobile stability control system
JP4646045B2 (en) Parking assistance device
JP3463207B2 (en) Method for modifying the signal of at least one sensor for detecting the curve of the road on which the vehicle is moving
KR20180015018A (en) Method for estimating road line information
KR20180006635A (en) System for avoiding collision in crossroad and method for control thereof
JP4246652B2 (en) Vehicle state quantity estimation device
US7522991B2 (en) Device for determining the centre of rotation of a vehicle about a vehicle vertical axis
JP5189316B2 (en) Yaw rate sensor output determination device and following vehicle determination device
JP4976998B2 (en) Vehicle travel safety device
KR101928154B1 (en) Method and device for sending rollover of vehicle
JP2008007026A (en) Air pressure reduction detection device, air pressure reduction detection program and air pressure reduction detection method
JP6594546B2 (en) Angle measuring device
US11454514B2 (en) Distance estimation device, distance estimation method and program
KR20100024022A (en) Method and system for controlling parking
JP4606861B2 (en) Vehicle state detection device
JP2006256469A (en) Method of estimating vehicle body slip angle, and slip angle of four wheels
JP6632727B2 (en) Angle measuring device
WO2015079533A1 (en) Detection device, detection method, detection program, and recording medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061102

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090108

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140116

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees