JP2005246509A - Cutting tool made of surface coated cermet with hard coating layer exhibiting excellent wear resistance in high-speed heavy cutting condition - Google Patents

Cutting tool made of surface coated cermet with hard coating layer exhibiting excellent wear resistance in high-speed heavy cutting condition Download PDF

Info

Publication number
JP2005246509A
JP2005246509A JP2004057170A JP2004057170A JP2005246509A JP 2005246509 A JP2005246509 A JP 2005246509A JP 2004057170 A JP2004057170 A JP 2004057170A JP 2004057170 A JP2004057170 A JP 2004057170A JP 2005246509 A JP2005246509 A JP 2005246509A
Authority
JP
Japan
Prior art keywords
content point
highest
hard coating
coating layer
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004057170A
Other languages
Japanese (ja)
Inventor
Natsuki Ichinomiya
夏樹 一宮
Kazuki Izumi
一樹 泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Mitsubishi Materials Kobe Tools Corp
Original Assignee
Mitsubishi Materials Corp
Mitsubishi Materials Kobe Tools Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp, Mitsubishi Materials Kobe Tools Corp filed Critical Mitsubishi Materials Corp
Priority to JP2004057170A priority Critical patent/JP2005246509A/en
Publication of JP2005246509A publication Critical patent/JP2005246509A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Drilling Tools (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cutting tool made of surface coated cermet with a hard coating layer exhibiting excellent wear resistance in high-speed heavy cutting conditions. <P>SOLUTION: The cutting tool made of surface coated cermet is formed by physical vapor deposition of the hard coating layer comprising a compound nitride layer of Al (aluminum), Ti (tatanium) and B (boron), in the average layer thickness of 1-15 μm. In the hard coating layer, (a) boron nitride particles are dispersedly distributed in a solid solution base material composed of a compound nitride of Al and Ti, and the boron nitride particles have specific content ratio structure, and (b) the solid solution base material in (a) has a component concentration distribution structure wherein Al maximum content points and Ti maximum content points exist in alternate repetition at predetermined spaces along a layer thickness direction and the content rates of Al and Ti continuously change between both points, and the Al maximum content point and Ti maximum content point satisfy specific composition formulas, and further the spacing of the adjacent Al maximum content points and Ti maximum content points is 0.01-0.1 μm. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、硬質被覆層がすぐれた高温硬さと耐熱性、さらに高強度を有し、したがって各種の鋼や鋳鉄などの切削加工を、特に高熱発生を伴う高速で、かつ高い機械的衝撃を伴う高切り込みや高送りなどの重切削条件で行なった場合に、硬質被覆層がチッピング(微小欠け)などの発生なく、すぐれた耐摩耗性を発揮する表面被覆サーメット製切削工具(以下、被覆サーメット工具という)に関するものである。   This invention has a high temperature hardness, heat resistance, and high strength with a hard coating layer. Therefore, cutting of various types of steel and cast iron, especially at high speed with high heat generation and high mechanical impact. A surface-coated cermet cutting tool (hereinafter referred to as a coated cermet tool) that exhibits excellent wear resistance without the occurrence of chipping (microchips) in the hard coating layer when performed under heavy cutting conditions such as high cutting and high feed. )).

一般に、被覆サーメット工具には、各種の鋼や鋳鉄などの被削材の旋削加工や平削り加工にバイトの先端部に着脱自在に取り付けて用いられるスローアウエイチップ、穴あけ切削加工などに用いられるドリルやミニチュアドリル、さらに面削加工や溝加工、肩加工などに用いられるソリッドタイプのエンドミルなどがあり、また前記スローアウエイチップを着脱自在に取り付けて前記ソリッドタイプのエンドミルと同様に切削加工を行うスローアウエイエンドミル工具などが知られている。   Generally, for coated cermet tools, drills used for slow-away inserts that are detachably attached to the tip of a bite for turning and planing of various steel and cast iron, drills for drilling, etc. And miniature drills, as well as solid type end mills used for chamfering, grooving, shoulder processing, etc. Also, the throwaway tip is detachably attached and the throw is performed in the same manner as the solid type endmill. Way end mill tools are known.

また、被覆サーメット工具として、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成されたサーメット基体の表面に、組成式:(Ti1-(E+F) Al)N(ただし、原子比で、Eは0.40〜0.60、Fは0.001〜0.05を示す)を満足するTi(チタン)とAl(アルミニウム)とB(ボロン)の複合窒化物[以下、(Ti,Al,B)Nで示す]層からなる硬質被覆層を1〜15μmの層厚で物理蒸着してなる被覆サーメット工具が知られており、かつ前記被覆サーメット工具の硬質被覆層である(Ti,Al,B)N層が、構成成分であるAlによって高温硬さと耐熱性、同Tiによって強度を具備し、さらに同Bによる一段の高温硬さ向上効果と相俟って、これを各種の鋼や鋳鉄などの連続切削や断続切削加工に用いた場合にすぐれた切削性能を発揮することも知られている。 Further, as a coated cermet tool, a composition formula: (Ti 1− ) is formed on the surface of a cermet base composed of a tungsten carbide (hereinafter referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) -based cermet. (E + F) Al E B F) N ( provided that an atomic ratio, E is 0.40 to 0.60, F and Ti (titanium) which satisfies showing the 0.001 to 0.05) Al ( There is known a coated cermet tool formed by physical vapor deposition of a hard coating layer composed of a composite nitride of aluminum and boron (hereinafter referred to as (Ti, Al, B) N) with a layer thickness of 1 to 15 μm. And the (Ti, Al, B) N layer, which is a hard coating layer of the coated cermet tool, has high-temperature hardness and heat resistance due to Al as a constituent component, and strength due to the Ti, and further with the same B. Effect of improving high temperature hardness of steel Te, is also known to exhibit excellent cutting performance when using this continuous cutting or intermittent cutting of various steels and cast iron.

さらに、上記の被覆サーメット工具が、例えば図2に概略説明図で示される物理蒸着装置の1種であるアークイオンプレーティング装置に上記のサーメット基体を装入し、以下一般的条件として、ヒータで装置内を400〜500℃の温度に加熱した状態で、アノード電極と所定組成を有するTi−Al−B合金がセットされたカソード電極(蒸発源)との間に、電流:80〜150A、電圧:−20〜−30Vの条件でアーク放電を発生させ、同時に装置内に反応ガスとして窒素ガスを導入して、1〜10Paの反応雰囲気とし、一方上記サーメット基体には、−30〜−150Vのバイアス電圧を印加した条件で、前記サーメット基体の表面に、上記(Ti,Al,B)N層からなる硬質被覆層を蒸着することにより製造されることも知られている。
特開平4−26756号公報
Furthermore, the above-mentioned coated cermet tool, for example, the above-mentioned cermet substrate is loaded into an arc ion plating apparatus which is a kind of physical vapor deposition apparatus schematically shown in FIG. With the inside of the apparatus heated to a temperature of 400 to 500 ° C., current: 80 to 150 A, voltage between the anode electrode and the cathode electrode (evaporation source) in which a Ti—Al—B alloy having a predetermined composition is set : Arc discharge is generated under the condition of -20 to -30V, and simultaneously nitrogen gas is introduced into the apparatus as a reaction gas to make a reaction atmosphere of 1 to 10 Pa. On the other hand, the cermet substrate has a pressure of -30 to -150V. It is also known that it is produced by vapor-depositing a hard coating layer composed of the (Ti, Al, B) N layer on the surface of the cermet substrate under the condition that a bias voltage is applied. It has been.
JP-A-4-26756

近年の切削加工装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求も強く、これに伴い、切削加工は高速化の傾向を深め、かつ高切り込みや高送りなどの重切削条件での切削加工が強く求められる傾向にあるが、上記の従来被覆サーメット工具においては、これを通常の切削加工条件で用いた場合には問題はないが、特に切削加工を高速で、かつ高い機械的衝撃を伴う高切り込みや高送りなどの重切削条件で行なった場合には、硬質被覆層の高温硬さおよび耐熱性が不足し、かつ強度も不十分であるために、硬質被覆層の摩耗進行が一段と促進し、かつチッピングも発生し易くなることから、比較的短時間で使用寿命に至るのが現状である。   In recent years, there has been a remarkable increase in performance of cutting devices. On the other hand, there is a strong demand for labor saving, energy saving, and cost reduction for cutting processing. Although there is a tendency to require cutting under heavy cutting conditions such as high feed, there is no problem with the above-mentioned conventional coated cermet tool when it is used under normal cutting conditions. Is performed at high speed and under heavy cutting conditions such as high cutting with high mechanical impact and high feed, the high temperature hardness and heat resistance of the hard coating layer is insufficient and the strength is insufficient. Furthermore, since the progress of wear of the hard coating layer is further promoted and chipping is likely to occur, the service life is reached in a relatively short time.

そこで、本発明者等は、上述のような観点から、特に高速重切削加工条件で硬質被覆層がすぐれた耐摩耗性を発揮する被覆サーメット工具を開発すべく、上記の従来被覆サーメット工具を構成する硬質被覆層に着目し、研究を行った結果、
(a)上記の図2に示されるアークイオンプレーティング装置を用いて形成された従来被覆サーメット工具を構成する(Ti,Al,B)N層は、層厚全体に亘って実質的に均一な組成を有し、したがって均質な高温硬さと耐熱性、さらに強度を有するが、例えば図1(a)に概略平面図で、同(b)に概略正面図で示される構造のアークイオンプレーティング装置、すなわち装置中央部にサーメット基体装着用回転テーブルを設け、前記回転テーブルを挟んで、一方側に相対的にAl含有量の高いAl−Ti−B合金、他方側に相対的にTi含有量の高いTi−Al−B合金をカソード電極(蒸発源)として対向配置したアークイオンプレーティング装置を用い、この装置の前記回転テーブル上の中心軸から半径方向に所定距離離れた位置にテーブル外周部に沿って複数のサーメット基体をリング状に装着し、この状態で装置内雰囲気を窒素雰囲気として前記回転テーブルを回転させると共に、蒸着形成される硬質被覆層の層厚均一化を図る目的でサーメット基体自体も自転させながら、前記サーメット基体に印加するバイアス電圧を、上記の従来(Ti,Al,B)N層の形成時に印加されるバイアス電圧、すなわち−30〜−150Vに比して相対的に低い−300〜−450Vとした条件(前記サーメット基体に印加されるバイアス電圧以外の条件は上記の一般的条件と同じ)で、両側のカソード電極(蒸発源)とアノード電極との間にアーク放電を発生させて、前記サーメット基体の表面にAlとTiとBの複合窒化物[以下、(Al−Ti,B)Nで示す]層を形成すると、この結果の(Al−Ti,B)N層においては、前記サーメット基体への低電圧印加(−300〜−450Vのバイアス電圧印加)によって前記カソード電極のAl−Ti−B合金およびTi−Al−B合金中に含有のB成分が独自に窒化硼素(以下、BNで示す)を形成し、これが微粒となってAlとTiの複合窒化物[以下、(Al,Ti)Nで示す]で構成された固溶体素地に均一に分散分布した組織を示すようになり、さらに、回転テーブル上にリング状に配置された前記サーメット基体が上記の一方側の相対的にAl含有量の高いAl−Ti−B合金のカソード電極(蒸発源)に最も接近した時点で前記(Al,Ti)Nの固溶体素地中にAl最高含有点が形成され、また前記サーメット基体が上記の他方側の相対的にTi含有量の高いTi−Al−B合金のカソード電極に最も接近した時点では前記固溶体素地中にTi最高含有点が形成され、この結果上記回転テーブルの回転によって前記固溶体素地中には層厚方向にそって前記Al最高含有点とTi最高含有点が所定間隔をもって交互に繰り返し現れると共に、前記Al最高含有点から前記Ti最高含有点、前記Ti最高含有点から前記Al最高含有点へAlおよびTiの含有割合がそれぞれ連続的に変化する成分濃度分布構造が形成されるようになること。
In view of the above, the present inventors configured the above-described conventional coated cermet tool in order to develop a coated cermet tool exhibiting excellent wear resistance with a hard coating layer particularly under high-speed heavy cutting conditions. As a result of conducting research, focusing on the hard coating layer
(A) The (Ti, Al, B) N layer constituting the conventional coated cermet tool formed using the arc ion plating apparatus shown in FIG. 2 is substantially uniform over the entire layer thickness. An arc ion plating apparatus having a composition and thus having a uniform high-temperature hardness, heat resistance, and strength, but having a structure shown, for example, in a schematic plan view in FIG. 1A and a schematic front view in FIG. That is, a rotating table for mounting a cermet substrate is provided in the center of the apparatus, the Al-Ti-B alloy having a relatively high Al content is sandwiched between the rotating tables, and a Ti content is relatively disposed on the other side. Using an arc ion plating apparatus in which a high Ti—Al—B alloy is disposed as a cathode electrode (evaporation source), a position spaced apart from the central axis of the apparatus on the rotary table by a predetermined distance in the radial direction. A purpose of mounting a plurality of cermet bases in a ring shape along the outer periphery of the table, rotating the rotary table with the atmosphere inside the apparatus as a nitrogen atmosphere in this state, and making the thickness of the hard coating layer formed by vapor deposition uniform While the cermet substrate itself rotates, the bias voltage applied to the cermet substrate is compared with the bias voltage applied at the time of forming the conventional (Ti, Al, B) N layer, that is, -30 to -150V. A relatively low condition of −300 to −450 V (the conditions other than the bias voltage applied to the cermet substrate are the same as the above general conditions), and between the cathode electrode (evaporation source) on both sides and the anode electrode An arc discharge is generated to form a composite nitride [hereinafter referred to as (Al-Ti, B) N] layer of Al, Ti, and B on the surface of the cermet substrate. In the resulting (Al—Ti, B) N layer, application of a low voltage (−300 to −450 V bias voltage) to the cermet substrate causes the Al—Ti—B alloy and Ti— of the cathode electrode to be applied. The B component contained in the Al—B alloy uniquely forms boron nitride (hereinafter referred to as BN), which becomes fine particles and is a composite nitride of Al and Ti [hereinafter referred to as (Al, Ti) N]. The cermet substrate arranged in a ring shape on the rotary table is a relatively high Al content Al- on the one side. At the point closest to the cathode electrode (evaporation source) of the Ti—B alloy, the highest Al content point is formed in the (Al, Ti) N solid solution substrate, and the cermet substrate is relatively positioned on the other side. Ti included At the point of closest approach to the cathode electrode of a high amount of Ti-Al-B alloy, the highest Ti content point is formed in the solid solution substrate. As a result, the rotation of the rotary table causes the solid solution substrate to have a layer thickness direction. Accordingly, the Al highest content point and the Ti highest content point appear alternately and repeatedly at a predetermined interval, and the Al and Ti content from the Al highest content point to the Ti highest content point and from the Ti highest content point to the Al highest content point. A component concentration distribution structure in which the content ratio continuously changes is formed.

(b)上記(a)の固溶体素地が繰り返し連続変化成分濃度分布構造を有する(Al−Ti,B)N層の形成において、対向配置の一方側のカソード電極(蒸発源)であるAl−Ti−B合金におけるAl含有量を上記の従来Ti−Al−B合金のAl含有量に比して相対的に高いものとし、かつ同他方側のカソード電極(蒸発源)であるTi−Al−B合金におけるAl含有量を上記の従来Ti−Al−B合金のAl含有量に比して相対的に低いものとする共に、これらカソード電極を構成する合金のB含有量も考慮し、さらにサーメット基体が装着されている回転テーブルの回転速度を制御して、
上記(Al,Ti)Nの固溶体素地に上記BN微粒が、B成分の含有割合で示して、AlおよびTi成分との合量に占める原子比で0.001〜0.05の割合で存在し、
かつ、上記Al最高含有点が、組成式:(Al1-X TiX )N(ただし、原子比で、Xは0.05〜0.25を示す)、
上記Ti最高含有点が、組成式:(Ti1-Y AlY )N(ただし、原子比で、Yは0.05〜0.25を示す)、
をそれぞれ満足し、かつ隣り合う上記Al最高含有点とTi最高含有点の厚さ方向の間隔を0.01〜0.1μmとすると、
上記Al最高含有点部分では、上記の従来(Ti,Al,B)N層に比してAl含有割合が相対的に高くなるので、より一段とすぐれた高温硬さと耐熱性を示し、一方上記Ti最高含有点部分では、前記従来(Ti,Al,B)N層に比してTi含有割合が相対的に高くなるので、一段と高い強度を具備し、かつこれらAl最高含有点とTi最高含有点の間隔をきわめて小さくしたことから、上記(Al,Ti)Nの固溶体素地に均一に分散分布する著しく硬質のBN微粒の存在と相俟って、層全体の特性として高強度を保持した状態で、すぐれた高温硬さと耐熱性を具備するようになり、したがって、硬質被覆層がかかる構成の(Al−Ti,B)N層からなる被覆サーメット工具は、各種の鋼や鋳鉄などの切削加工を、特に高熱発生および高い機械的衝撃を伴う、高速重切削条件で行なった場合にも、硬質被覆層にチッピングの発生なく、すぐれた耐摩耗性を発揮するようになること。
以上(a)および(b)に示される研究結果を得たのである。
(B) In the formation of the (Al—Ti, B) N layer in which the solid solution substrate of (a) above has a repetitively continuously changing component concentration distribution structure, Al—Ti which is a cathode electrode (evaporation source) on one side opposed to each other Ti-Al-B, which is a cathode electrode (evaporation source) on the other side, with the Al content in the -B alloy relatively higher than the Al content in the conventional Ti-Al-B alloy The Al content in the alloy is relatively lower than the Al content of the conventional Ti-Al-B alloy, and the B content of the alloy constituting the cathode electrode is also taken into consideration, and the cermet substrate Controls the rotation speed of the rotary table
In the (Al, Ti) N solid solution substrate, the BN fine particles are present in a proportion of 0.001 to 0.05 in terms of the atomic ratio to the total amount of Al and Ti components, indicated by the content ratio of the B component. ,
And, the Al highest content point, the composition formula: (Al 1-X Ti X ) N ( provided that an atomic ratio, X is shows the 0.05 to 0.25),
The highest Ti content point is the composition formula: (Ti 1-Y Al Y ) N (wherein Y represents 0.05 to 0.25 in atomic ratio),
And the interval in the thickness direction of the adjacent Al highest content point and Ti highest content point adjacent to each other is 0.01 to 0.1 μm,
In the Al highest content point portion, the Al content rate is relatively higher than that of the conventional (Ti, Al, B) N layer, so that it exhibits higher temperature hardness and heat resistance, while the Ti content is higher. In the highest content point portion, since the Ti content is relatively higher than that of the conventional (Ti, Al, B) N layer, it has a higher strength, and these Al highest content point and Ti highest content point. The distance between the layers is extremely small, and in combination with the presence of extremely hard BN fine particles that are uniformly distributed in the solid solution base of (Al, Ti) N, a high strength is maintained as a characteristic of the entire layer. Therefore, the coated cermet tool composed of the (Al-Ti, B) N layer, which has a structure with a hard coating layer, has excellent high-temperature hardness and heat resistance, and is capable of cutting various types of steel and cast iron. Especially high heat generation and With a high mechanical shock, high speed when conducted in heavy cutting conditions even without the occurrence of chipping in the hard coating layer, to become to exert excellent wear resistance.
The research results shown in (a) and (b) above were obtained.

この発明は、上記の研究結果に基づいてなされたものであって、サーメット基体の表面に、(Al−Ti,B)N層からなる硬質被覆層を1〜15μmの層厚で物理蒸着してなる被覆サーメット工具において、前記硬質被覆層が、
(a)(Al,Ti)Nで構成された固溶体素地に、BN微粒が分散分布し、かつ前記BN微粒の含有割合をB成分の含有割合で示すと、AlおよびTi成分との合量に占める原子比で0.001〜0.05である組織を有し、
(b)さらに、上記(a)の固溶体素地が、層厚方向にそって、Al最高含有点とTi最高含有点とが所定間隔をおいて交互に繰り返し存在し、かつ前記Al最高含有点から前記Ti最高含有点、前記Ti最高含有点から前記Al最高含有点へAlおよびTiの含有割合がそれぞれ連続的に変化する成分濃度分布構造を有すると共に、
上記Al最高含有点が、組成式:(Al1-X TiX )N(ただし、原子比で、Xは0.05〜0.25を示す)、
上記Ti最高含有点が、組成式:(Ti1-Y AlY )N(ただし、原子比で、Yは0.05〜0.25を示す)、
を満足し、かつ隣り合う上記Al最高含有点とTi最高含有点の間隔が、0.01〜0.1μmである、
高速重切削条件で硬質被覆層がすぐれた耐摩耗性を発揮する被覆サーメット工具に特徴を有するものである。
The present invention has been made based on the above research results. A hard coating layer made of an (Al—Ti, B) N layer is physically deposited on the surface of a cermet substrate with a layer thickness of 1 to 15 μm. In the coated cermet tool, the hard coating layer,
(A) When the BN fine particles are dispersed and distributed on the solid solution substrate composed of (Al, Ti) N, and the content ratio of the BN fine particles is indicated by the content ratio of the B component, the total amount of the Al and Ti components Having a structure of 0.001-0.05 in atomic ratio
(B) Further, in the solid solution substrate of the above (a), the Al highest content point and the Ti highest content point are alternately present at predetermined intervals along the layer thickness direction, and from the Al highest content point The Ti highest content point, having a component concentration distribution structure in which the content ratios of Al and Ti continuously change from the Ti highest content point to the Al highest content point, respectively,
The Al highest content point is the composition formula: (Al 1-X Ti X ) N (however, in atomic ratio, X represents 0.05 to 0.25),
The highest Ti content point is the composition formula: (Ti 1-Y Al Y ) N (wherein Y represents 0.05 to 0.25 in atomic ratio),
And the interval between the Al highest content point and the Ti highest content point adjacent to each other is 0.01 to 0.1 μm.
This is characterized by a coated cermet tool that exhibits excellent wear resistance under a high-speed heavy cutting condition.

つぎに、この発明の被覆サーメット工具において、これを構成する硬質被覆層の構成を上記の通りに限定した理由を説明する。
(a)固溶体素地に分散分布するBN微粒の含有割合
BN微粒はきわめて硬質で、固溶体素地に分散分布して層自体の高温硬さを著しく向上させ、もって硬質被覆層の耐摩耗性向上に寄与するものであるが、その含有割合が、B成分の含有割合に換算し、かつAlおよびTi成分との合量に占める原子比で0.001未満(この場合上記アークイオンプレーティング装置のカソード電極である対向配置の両合金のB含有量も同じく0.001未満となる)では、BN微粒の分散割合が少な過ぎて所望の高温硬さ向上効果が得られず、一方その含有割合が、同じく0.05を越える(同じく前記カソード電極である対向配置の両合金のB含有量も0.05を越える)と、B成分が固溶体素地に含有するようになり、硬質被覆層の強度が急激に低下し、切刃部にチッピングが発生し易くなることから、その含有割合をB成分の含有割合に換算し、かつAlおよびTi成分との合量に占める原子比で0.001〜0.05と定めた。
Next, in the coated cermet tool of the present invention, the reason why the configuration of the hard coating layer constituting the tool is limited as described above will be described.
(A) Content ratio of BN fine particles dispersed and distributed in the solid solution substrate BN fine particles are extremely hard and distributed and distributed in the solid solution substrate to significantly improve the high-temperature hardness of the layer itself, thereby contributing to the improvement of the wear resistance of the hard coating layer. However, the content ratio is converted into the content ratio of the B component, and the atomic ratio of the total amount of the Al and Ti components is less than 0.001 (in this case, the cathode electrode of the arc ion plating apparatus) , The B content of both the oppositely arranged alloys is also less than 0.001), the dispersion ratio of the BN fine particles is too small to obtain the desired high-temperature hardness improvement effect, while the content ratio is the same. If it exceeds 0.05 (the B content of both the oppositely arranged alloys that are the cathode electrodes also exceeds 0.05), the B component will be contained in the solid solution substrate, and the strength of the hard coating layer will rapidly increase. Decline Since the chipping is likely to occur in the cutting edge part, the content ratio is converted into the content ratio of the B component, and the atomic ratio occupying the total amount of the Al and Ti components is determined to be 0.001 to 0.05. It was.

(b)固溶体素地のAl最高含有点の組成
硬質被覆層の固溶体素地を構成する(Al,Ti)NのAl最高含有点におけるAl成分は、高温硬さと耐熱性を向上させ、同Ti成分は強度を向上させる作用があり、したがってAl成分の含有割合が高くなればなるほど高温硬さと耐熱性は向上し、高熱発生を伴う高速切削に適合したものになるが、Tiの割合を示すX値がAlとの合量に占める割合(原子比)で0.05未満になると、相対的にAlの割合が多くなり過ぎて、高強度を有するTi最高含有点が隣接して存在しても層自体の強度低下は避けられず、この結果チッピングなどが発生し易くなり、一方Ti成分の割合を示すX値が同0.25を越えると、相対的にAlの割合が少なくなることから、高温硬さと耐熱性の低下は避けられず、これが摩耗促進の原因となることから、X値を0.05〜0.25とそれぞれ定めた。
(B) The composition of the highest Al content point of the solid solution substrate The Al component at the highest Al content point of (Al, Ti) N constituting the solid solution substrate of the hard coating layer improves the high temperature hardness and heat resistance. There is an effect of improving the strength, and therefore, the higher the content ratio of the Al component, the higher the high temperature hardness and heat resistance, and the more suitable for high speed cutting with high heat generation, the X value indicating the ratio of Ti is If the ratio (atomic ratio) to the total amount with Al is less than 0.05, the ratio of Al becomes relatively large, and even if the highest Ti content point having high strength exists adjacently, the layer itself As a result, chipping is likely to occur. On the other hand, when the X value indicating the Ti component ratio exceeds 0.25, the Al ratio is relatively reduced, so that the high temperature hard And avoid lowering heat resistance However, since this causes the acceleration of wear, the X value was set to 0.05 to 0.25.

(c)固溶体素地のTi最高含有点の組成
上記の通り固溶体素地のAl最高含有点は高温硬さと耐熱性のすぐれたものであるが、反面強度の劣るものであるため、このAl最高含有点の強度不足を補う目的で、Ti含有割合が高く、これによって高強度を有するようになるTi最高含有点を厚さ方向に交互に介在させるものであり、したがってAlの割合を示すY値がTiとの合量に占める割合(原子比)で0.25を越えると、相対的にAlの割合が多くなり過ぎて、所望のすぐれた強度を確保することができず、一方同Y値が同じく0.05未満になると、相対的にTiの割合が多くなり過ぎて、Ti最高含有点における高温硬さと耐熱性が急激に低下し、これが摩耗促進の原因となることから、Y値を0.05〜0.25と定めた。
(C) Composition of the highest Ti content point of the solid solution substrate As described above, the highest Al content point of the solid solution substrate is excellent in high-temperature hardness and heat resistance, but on the other hand, it is inferior in strength. In order to compensate for the strength deficiency of Ti, the Ti content is high, thereby alternately interposing in the thickness direction the Ti highest content points that have high strength. Therefore, the Y value indicating the Al content is Ti When the ratio (atomic ratio) in the total amount exceeds 0.25, the ratio of Al becomes relatively large and the desired excellent strength cannot be ensured, while the same Y value is the same. If it is less than 0.05, the proportion of Ti is relatively increased, and the high temperature hardness and heat resistance at the highest Ti content point are drastically reduced, which causes wear acceleration. It was set as 05-0.25.

(c)固溶体素地のAl最高含有点とTi最高含有点間の間隔
その間隔が0.01μm未満ではそれぞれの点を上記の組成で明確に形成することが困難であり、この結果硬質被覆層に所望の高強度、さらに高温硬さと耐熱性を確保することができなくなり、またその間隔が0.1μmを越えるとそれぞれの点がもつ欠点、すなわちAl最高含有点であれば強度不足、Ti最高含有点であれば高温硬さおよび耐熱性不足が層内に局部的に現れ、これが原因で切刃にチッピングが発生し易くなったり、摩耗進行が促進されるようになることから、その間隔を0.01〜0.1μmと定めた。
(C) Interval between the highest Al content point and the highest Ti content point of the solid solution substrate If the distance is less than 0.01 μm, it is difficult to clearly form each point with the above composition. The desired high strength, high temperature hardness and heat resistance cannot be secured, and if the distance exceeds 0.1 μm, each point has a defect, that is, if the Al highest content point is insufficient strength, the highest Ti content If it is a point, high-temperature hardness and insufficient heat resistance will appear locally in the layer, which may cause chipping on the cutting edge and promote wear progress. .01 to 0.1 μm.

(d)硬質被覆層の層厚
その層厚が1μm未満では、所望の耐摩耗性を確保することができず、一方その層厚が15μmを越えると、チッピングが発生し易くなることから、その層厚を1〜15μmと定めた。
(D) Layer thickness of hard coating layer If the layer thickness is less than 1 μm, the desired wear resistance cannot be ensured. On the other hand, if the layer thickness exceeds 15 μm, chipping tends to occur. The layer thickness was determined to be 1-15 μm.

この発明の被覆サーメット工具は、各種の鋼や鋳鉄などの切削加工を、高温発生を伴う高速条件で、かつ高い機械的衝撃を伴う高切り込みや高送りなどの重切削条件で行なった場合にも、硬質被覆層にチッピングの発生なく、すぐれた耐摩耗性を発揮することができる。   The coated cermet tool of the present invention can be used for cutting various steels and cast irons at high speed conditions with high temperature generation and heavy cutting conditions such as high cutting and high feed with high mechanical impact. The hard coating layer can exhibit excellent wear resistance without occurrence of chipping.

つぎに、この発明の被覆サーメット工具を実施例により具体的に説明する。   Next, the coated cermet tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、VC粉末、TaC粉末、NbC粉末、Cr3 2 粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPa の圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったWC基超硬合金製のサーメット基体A1〜A10を形成した。 As raw material powders, WC powder, TiC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, and Co powder, all having an average particle diameter of 1 to 3 μm, were prepared. And then wet-mixed with a ball mill for 72 hours, dried, and press-molded into a green compact at a pressure of 100 MPa. The green compact was vacuumed at 6 Pa at a temperature of 1400 ° C. for 1 hour. The sintered cermet bases A1 to A10 made of WC-based cemented carbide having ISO standard / CNMG120408 chip shape by performing honing of R: 0.03 on the cutting edge portion after sintering under holding conditions. Formed.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、Mo2 C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を2kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったTiCN系サーメット製のサーメット基体B1〜B6を形成した。 In addition, as raw material powders, TiCN (mass ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder, all having an average particle diameter of 0.5 to 2 μm. Co powder and Ni powder are prepared, and these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and then pressed into a compact at a pressure of 100 MPa. The green compact was sintered in a nitrogen atmosphere of 2 kPa at a temperature of 1500 ° C. for 1 hour, and after sintering, the cutting edge portion was subjected to a honing process of R: 0.03 to obtain ISO standard / CNMG120408. The cermet bases B1 to B6 made of TiCN cermet having the following chip shape were formed.

ついで、上記のサーメット基体A1〜A10およびB1〜B6のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示されるアークイオンプレーティング装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置にテーブル外周部にそってリング状に装着し、表3に示される組み合わせで、一方側のカソード電極(蒸発源)として、表3に示される成分組成をもった固溶体素地のTi最高含有点形成用Ti−Al−B合金、他方側のカソード電極(蒸発源)として、同じく表3に示される成分組成をもった固溶体素地のAl最高含有点形成用Al−Ti−B合金を前記回転テーブルを挟んで対向配置し、またボンバート洗浄用金属Tiも装着し、まず、装置内を排気して0.5Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記回転テーブル上で自転しながら回転するサーメット基体に−1000Vの直流バイアス電圧を印加し、かつカソード電極の前記金属Tiとアノード電極との間に、電圧:25V、電流:100Aの条件でアーク放電を発生させ、もってサーメット基体表面をTiボンバート洗浄し、ついで装置内に反応ガスとして窒素ガスを導入して2Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転するサーメット基体に−400Vの直流バイアス電圧を印加し、かつそれぞれのカソード電極(前記固溶体素地のTi最高含有点形成用Ti−Al−B合金および同Al最高含有点形成用Al−Ti−B合金)とアノード電極との間に、電圧:25V、電流:100Aの条件でアーク放電を発生させ、もって前記サーメット基体の表面に、オージェ分光分析装置およびX線光電子分光装置による測定で、(Al,Ti)Nの固溶体素地にBN微粒が表4に示される割合で分散分布し、かつ層厚方向に沿って、前記固溶体素地には表4に示される成分組成をもったTi最高含有点とAl最高含有点とが交互に同じく表4に示される間隔で繰り返し存在し、さらに前記Al最高含有点から前記Ti最高含有点、前記Ti最高含有点から前記Al最高含有点へAlおよびTiの含有割合がそれぞれ連続的に変化する成分濃度分布構造を有し、同じく表4に示される層厚の硬質被覆層を蒸着することにより、本発明被覆サーメット工具としての本発明表面被覆サーメット製スローアウエイチップ(以下、本発明被覆チップと云う)1〜16をそれぞれ製造した。   Next, each of the cermet substrates A1 to A10 and B1 to B6 is ultrasonically cleaned in acetone and dried, and then the cermet bases A1 to A10 and B1 to B6 have a radius from the central axis on the rotary table in the arc ion plating apparatus shown in FIG. A solid solution having a component composition shown in Table 3 as a cathode electrode (evaporation source) on one side in a combination shown in Table 3 and mounted in a ring shape along the outer periphery of the table at a predetermined distance in the direction Ti-Al-B alloy for forming the highest Ti content point of the substrate, Al-Ti- for forming the highest Al content point of the solid solution substrate having the composition shown in Table 3 as the cathode electrode (evaporation source) on the other side The B alloy is placed opposite to the rotary table, and the bombard cleaning metal Ti is also mounted. First, the inside of the apparatus is evacuated and kept at a vacuum of 0.5 Pa or less. After heating the inside of the apparatus to 500 ° C., a DC bias voltage of −1000 V is applied to the cermet substrate that rotates while rotating on the rotary table, and between the metal Ti and the anode electrode of the cathode electrode, Arc discharge is generated under the conditions of voltage: 25 V, current: 100 A, and the surface of the cermet substrate is cleaned by Ti bombardment. Then, nitrogen gas is introduced into the apparatus as a reaction gas to form a reaction atmosphere of 2 Pa. A DC bias voltage of −400 V is applied to the cermet substrate that rotates while rotating, and each cathode electrode (Ti-Al—B alloy for forming the highest Ti content point of the solid solution substrate and for forming the highest Al content point) Arc discharge is generated between the Al-Ti-B alloy) and the anode electrode under the conditions of voltage: 25V and current: 100A. Therefore, BN fine particles are dispersed and distributed on the surface of the cermet substrate at a ratio shown in Table 4 on the solid solution base of (Al, Ti) N as measured by an Auger spectroscopic analyzer and an X-ray photoelectron spectroscope. Along the thickness direction, Ti solid content points and Al highest content points having the composition shown in Table 4 are alternately and repeatedly present at intervals shown in Table 4 in the solid solution substrate, It has a component concentration distribution structure in which the content ratios of Al and Ti continuously change from the content point to the Ti highest content point, from the Ti highest content point to the Al highest content point, and the layer thicknesses shown in Table 4 are also shown in Table 4 By depositing the hard coating layer, the surface-coated cermet throwaway tip (hereinafter referred to as the present invention-coated tip) 1 to 16 as the present invention-coated cermet tool is prepared. Each was produced.

また、比較の目的で、これらサーメット基体A1〜A10およびB1〜B6を、アセトン中で超音波洗浄し、乾燥した状態で、それぞれ図2に示される通常のアークイオンプレーティング装置に装入し、カソード電極(蒸発源)として種々の成分組成をもったTi−Al−B合金を装着し、さらにボンバート洗浄用金属Tiも装着し、まず、装置内を排気して0.5Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記サーメット基体に−1000Vの直流バイアス電圧を印加し、かつカソード電極の前記金属Tiとアノード電極との間に、電圧:25V、電流:100Aの条件でアーク放電を発生させ、もってサーメット基体表面をTiボンバート洗浄し、ついで装置内に反応ガスとして窒素ガスを導入して2Paの反応雰囲気とすると共に、サーメット基体に−100V(上記の本発明被覆チップ1〜16の硬質被覆層形成では−400V)の直流バイアス電圧を印加し、前記カソード電極のTi−Al−B合金とアノード電極との間に、電圧:25V、電流:100Aの条件でアーク放電を発生させ、もって前記サーメット基体A1〜A10およびB1〜B6のそれぞれの表面に、オージェ分光分析装置による測定で、表5に示される成分組成および層厚を有し、かつ層厚方向に沿って実質的に組成変化がなく、X線光電子分光装置による測定でもBN微粒の存在が認められない(Ti,Al,B)N層からなる硬質被覆層を蒸着することにより、従来被覆サーメット工具としての従来表面被覆サーメット製スローアウエイチップ(以下、従来被覆チップと云う)1〜16をそれぞれ製造した。   For comparison purposes, these cermet substrates A1 to A10 and B1 to B6 were ultrasonically cleaned in acetone and dried, and each was charged into a normal arc ion plating apparatus shown in FIG. Equipped with Ti-Al-B alloy with various component composition as cathode electrode (evaporation source), and also with metallic Ti for bombard cleaning, first evacuates the apparatus and keeps it at a vacuum of 0.5 Pa or less However, after heating the inside of the apparatus to 500 ° C. with a heater, a DC bias voltage of −1000 V was applied to the cermet substrate, and the voltage: 25 V, current: between the metal Ti of the cathode electrode and the anode electrode. An arc discharge is generated under the condition of 100 A, and the surface of the cermet substrate is cleaned by Ti bombardment. Then, nitrogen gas is introduced into the apparatus as a reactive gas, a direct-current bias voltage of −100 V (−400 V in the case of forming the hard coating layer of the present invention-coated chips 1 to 16) is applied to the cermet substrate, and the Ti—Al—B alloy of the cathode electrode is formed. Arc discharge was generated between the anode and the anode electrode under the conditions of voltage: 25V, current: 100A, and the surface of each of the cermet substrates A1 to A10 and B1 to B6 was measured by an Auger spectrometer. 5 and has substantially no composition change along the layer thickness direction, and the presence of BN fine particles is not observed even by measurement with an X-ray photoelectron spectrometer (Ti, Al, B). ) By depositing a hard coating layer consisting of N layers, a conventional surface-coated cermet throwaway tip (hereinafter referred to as a conventional coated cermet tool) Chip and refers) 1-16 were prepared, respectively.

つぎに、上記の各種の被覆チップを、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆チップ1〜10および従来被覆チップ1〜10については、
被削材:JIS・SNCM439の長さ方向等間隔4本縦溝入り丸棒、
切削速度:320m/min.、
切り込み:4.5mm、
送り:0.2mm/rev.、
切削時間:5分、
の条件での合金鋼の乾式断続高速高切り込み切削加工試験(通常の切削速度は200m/min.、同切り込みは2.5mm)、
被削材:JIS・S50Cの丸棒、
切削速度:450m/min.、
切り込み:1.5mm、
送り:0.6mm/rev.、
切削時間:10分、
の条件での炭素鋼の乾式連続高速高送り切削加工試験(通常の切削速度は250m/min.、同送りは0.3mm/rev.)、
被削材:JIS・FC250の丸棒、
切削速度:450m/min.、
切り込み:4.5mm、
送り:0.3mm/rev.、
切削時間:15分、
の条件での鋳鉄の乾式連続高速高切り込み切削加工試験(通常の切削速度は250m/min.、同切り込みは2.5mm)を行なった。
Next, in the state where all the above-mentioned various coated chips are screwed to the tip of the tool steel tool with a fixing jig, the present coated chips 1 to 10 and the conventional coated chips 1 to 10 are as follows.
Work material: JIS / SNCM439 round direction bar with 4 equal intervals in the length direction,
Cutting speed: 320 m / min. ,
Cutting depth: 4.5mm,
Feed: 0.2 mm / rev. ,
Cutting time: 5 minutes
A dry interrupted high-speed high-cutting cutting test of alloy steel under the conditions (normal cutting speed is 200 m / min, the cutting is 2.5 mm),
Work material: JIS / S50C round bar,
Cutting speed: 450 m / min. ,
Incision: 1.5mm,
Feed: 0.6 mm / rev. ,
Cutting time: 10 minutes,
Carbon steel dry continuous high-speed high-feed cutting test (normal cutting speed is 250 m / min., The same feed is 0.3 mm / rev.),
Work material: JIS / FC250 round bar,
Cutting speed: 450 m / min. ,
Cutting depth: 4.5mm,
Feed: 0.3 mm / rev. ,
Cutting time: 15 minutes,
The dry continuous high-speed, high-cutting cutting test of cast iron under the conditions (normal cutting speed is 250 m / min., The cutting is 2.5 mm).

さらに、本発明被覆チップ11〜16および従来被覆チップ11〜16については、
被削材:JIS・SCM435の長さ方向等間隔4本縦溝入り丸棒、
切削速度:350m/min.、
切り込み:4mm、
送り:0.4mm/rev.、
切削時間:5分、
の条件での合金鋼の乾式断続高速高切り込み切削加工試験(通常の切削速度は200m/min.、同切り込みは2mm)、
被削材:JIS・S55Cの丸棒、
切削速度:400m/min.、
切り込み:2mm、
送り:0.7mm/rev.、
切削時間:10分、
の条件での炭素鋼の乾式連続高速高送り切削加工試験(通常の切削速度は200m/min.、同送りは0.3mm/rev.)、
被削材:JIS・FC300の丸棒、
切削速度:500m/min.、
切り込み:5mm、
送り:0.4mm/rev.、
切削時間:15分、
の条件での鋳鉄の乾式連続高速高切り込み切削加工試験(通常の切削速度は250m/min.、同切り込みは2mm)を行い、いずれの切削加工試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表6に示した。
Furthermore, for the present coated chips 11-16 and the conventional coated chips 11-16,
Work material: JIS · SCM435 lengthwise equally spaced four round grooved round bars,
Cutting speed: 350 m / min. ,
Incision: 4mm,
Feed: 0.4 mm / rev. ,
Cutting time: 5 minutes
A dry interrupted high-speed high-cutting cutting test of alloy steel under the conditions (normal cutting speed is 200 m / min, the cutting is 2 mm),
Work material: JIS / S55C round bar,
Cutting speed: 400 m / min. ,
Cutting depth: 2mm,
Feed: 0.7 mm / rev. ,
Cutting time: 10 minutes,
Carbon steel dry continuous high-speed high-feed cutting test (normal cutting speed is 200 m / min., The same feed is 0.3 mm / rev.),
Work material: JIS / FC300 round bar,
Cutting speed: 500 m / min. ,
Cutting depth: 5mm,
Feed: 0.4 mm / rev. ,
Cutting time: 15 minutes,
The dry continuous high-speed, high-cutting cutting test of cast iron under the conditions (normal cutting speed is 250 m / min., The cutting is 2 mm), and the flank wear width of the cutting edge was measured in any cutting test. The measurement results are shown in Table 6.

Figure 2005246509
Figure 2005246509

Figure 2005246509
Figure 2005246509

Figure 2005246509
Figure 2005246509

Figure 2005246509
Figure 2005246509

Figure 2005246509
Figure 2005246509

Figure 2005246509
Figure 2005246509

原料粉末として、平均粒径:5.5μmを有する中粗粒WC粉末、同0.8μmの微粒WC粉末、同1.3μmのTaC粉末、同1.2μmのNbC粉末、同1.2μmのZrC粉末、同2.3μmのCr32粉末、同1.5μmのVC粉末、同1.0μmの(Ti,W)C(質量比でTiC/WC=50/50)粉末、および同1.8μmのCo粉末を用意し、これら原料粉末をそれぞれ表7に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、100MPaの圧力で所定形状の各種の圧粉体にプレス成形し、これらの圧粉体を、6Paの真空雰囲気中、7℃/分の昇温速度で1370〜1470℃の範囲内の所定の温度に昇温し、この温度に1時間保持後、炉冷の条件で焼結して、直径が8mm、13mm、および26mmの3種のサーメット基体形成用丸棒焼結体を形成し、さらに前記の3種の丸棒焼結体から、研削加工にて、表7に示される組合せで、切刃部の直径×長さがそれぞれ6mm×13mm、10mm×22mm、および20mm×45mmの寸法、並びにいずれもねじれ角30度の4枚刃スクエアの形状をもったサーメット基体(エンドミル)C−1〜C−8をそれぞれ製造した。 As raw material powders, medium coarse WC powder having an average particle diameter of 5.5 μm, fine WC powder of 0.8 μm, TaC powder of 1.3 μm, NbC powder of 1.2 μm, ZrC of 1.2 μm Powder, 2.3 μm Cr 3 C 2 powder, 1.5 μm VC powder, 1.0 μm (Ti, W) C (mass ratio TiC / WC = 50/50) powder, and 1. 8 μm Co powder was prepared, each of these raw material powders was blended into the blending composition shown in Table 7, further added with wax, ball milled in acetone for 24 hours, dried under reduced pressure, and then shaped into a predetermined shape at a pressure of 100 MPa. Various green compacts were press-molded, and these green compacts were heated to a predetermined temperature in the range of 1370 to 1470 ° C. at a rate of temperature increase of 7 ° C./min in a 6 Pa vacuum atmosphere. For 1 hour and then sintering under furnace cooling conditions Three types of cermet substrate-forming round bar sintered bodies having diameters of 8 mm, 13 mm, and 26 mm were formed, and further, the three types of round bar sintered bodies were subjected to grinding and combined in the combinations shown in Table 7 A cermet substrate (end mill) C- having a four-blade square shape with a diameter × length of the cutting edge portion of 6 mm × 13 mm, 10 mm × 22 mm, and 20 mm × 45 mm, respectively, and a twist angle of 30 degrees. 1 to C-8 were produced.

ついで、これらのサーメット基体(エンドミル)C−1〜C−8を、アセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、表8に示される組み合わせで、一方側のカソード電極(蒸発源)として、表8に示される成分組成をもった固溶体素地のTi最高含有点形成用Ti−Al−B合金、他方側のカソード電極(蒸発源)として、同じく表8に示される成分組成をもった固溶体素地のAl最高含有点形成用Al−Ti−B合金を前記回転テーブルを挟んで対向配置し、以下、上記実施例1と同一の条件で、前記サーメット基体の表面に、オージェ分光分析装置およびX線光電子分光装置による測定で、(Al,Ti)Nの固溶体素地にBN微粒が表9に示される割合で分散分布し、かつ層厚方向に沿って、前記固溶体素地には表9に示される成分組成をもったTi最高含有点とAl最高含有点とが交互に同じく表9に示される間隔で繰り返し存在し、さらに前記Al最高含有点から前記Ti最高含有点、前記Ti最高含有点から前記Al最高含有点へAlおよびTiの含有割合がそれぞれ連続的に変化する成分濃度分布構造を有し、同じく表9に示される層厚の硬質被覆層を蒸着することにより、本発明被覆サーメット工具としての本発明表面被覆サーメット製エンドミル(以下、本発明被覆エンドミルと云う)1〜8をそれぞれ製造した。   Then, these cermet substrates (end mills) C-1 to C-8 were ultrasonically cleaned in acetone and dried, and then charged into the arc ion plating apparatus shown in FIG. In the combination shown, as the cathode electrode (evaporation source) on one side, the Ti-Al-B alloy for forming the highest Ti content point of the solid solution substrate having the component composition shown in Table 8, the cathode electrode (evaporation source) on the other side The Al-Ti-B alloy for forming the highest Al content point of the solid solution substrate having the component composition shown in Table 8 is also placed oppositely across the rotary table, and the same conditions as in Example 1 below. Then, on the surface of the cermet substrate, BN fine particles are dispersed and distributed at a ratio shown in Table 9 on the (Al, Ti) N solid solution substrate as measured by an Auger spectrometer and an X-ray photoelectron spectrometer. Along the layer thickness direction, Ti solid content points and Al highest content points having the component composition shown in Table 9 are alternately and repeatedly present at intervals shown in Table 9 in the solid solution substrate. It has a component concentration distribution structure in which the content ratios of Al and Ti continuously change from the highest Al content point to the highest Ti content point and from the highest Ti content point to the highest Al content point, which are also shown in Table 9. The surface-coated cermet end mills (hereinafter referred to as the present invention-coated end mills) 1 to 8 as the present invention-coated cermet tools were produced by depositing a hard coating layer having a layer thickness.

また、比較の目的で、上記のサーメット基体(エンドミル)C−1〜C−8を、アセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示される通常のアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、前記サーメット基体のそれぞれの表面に、オージェ分光分析装置による測定で、表10に示される成分組成および層厚を有し、かつ層厚方向に沿って実質的に組成変化がなく、X線光電子分光装置による測定でもBN微粒の存在が認められない(Ti,Al,B)N層からなる硬質被覆層を蒸着することにより、従来被覆サーメット工具としての従来表面被覆サーメット製エンドミル(以下、従来被覆エンドミルと云う)1〜8をそれぞれ製造した。   For comparison purposes, the above cermet substrates (end mills) C-1 to C-8 are ultrasonically cleaned in acetone and dried, and the same is applied to the ordinary arc ion plating apparatus shown in FIG. Under the same conditions as in Example 1 above, each component of the cermet substrate has the component composition and layer thickness shown in Table 10 as measured by an Auger spectroscopic analyzer, and in the layer thickness direction. A conventional coated cermet tool is deposited by vapor-depositing a hard coating layer composed of a (Ti, Al, B) N layer, which has substantially no composition change along the X-ray photoelectron spectrometer and no BN fine particles are observed. Conventional surface-coated cermet end mills (hereinafter referred to as conventional coated end mills) 1 to 8 were produced.

つぎに、上記本発明被覆エンドミル1〜8および従来被覆エンドミル1〜8のうち、本発明被覆エンドミル1〜3および従来被覆エンドミル1〜3については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・SCM435の板材、
切削速度:250m/min.、
溝深さ(切り込み):1.5mm、
テーブル送り:1000mm/分、
の条件での合金鋼の乾式高速高送り溝切削加工試験(通常の切削速度は150m/min.、同テーブル送りは500mm/分)、本発明被覆エンドミル4〜6および従来被覆エンドミル4〜6については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・S45Cの板材、
切削速度:350m/min.、
溝深さ(切り込み):8mm、
テーブル送り:1200mm/分、
の条件での炭素鋼の乾式高速高切り込み溝切削加工試験(通常の切削速度は200m/min.、同溝深さは4mm)、本発明被覆エンドミル7,8および従来被覆エンドミル7,8については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・SKD61の板材、
切削速度:220m/min.、
溝深さ(切り込み):5mm、
テーブル送り:350mm/分、
の条件での工具鋼の乾式高速高送り溝切削加工試験(通常の切削速度は150m/min.、同テーブル送りは200mm/分)をそれぞれ行い、いずれの溝切削加工試験でも切刃部の外周刃の逃げ面摩耗幅が使用寿命の目安とされる0.1mmに至るまでの切削溝長を測定した。この測定結果を表9、10にそれぞれ示した。
Next, of the present invention coated end mills 1 to 8 and the conventional coated end mills 1 to 8, the present coated end mills 1 to 3 and the conventional coated end mills 1 to 3 are as follows:
Work material: Plane dimensions: 100 mm × 250 mm, thickness: 50 mm JIS / SCM435 plate material,
Cutting speed: 250 m / min. ,
Groove depth (cut): 1.5 mm,
Table feed: 1000 mm / min,
Test of dry high-speed, high-feed grooving of alloy steel under normal conditions (normal cutting speed is 150 m / min., Table feed is 500 mm / min), coated end mills 4 to 6 of the present invention and conventional coated end mills 4 to 6 Is
Work material: Plane dimensions: 100 mm × 250 mm, thickness: 50 mm JIS / S45C plate,
Cutting speed: 350 m / min. ,
Groove depth (cut): 8 mm,
Table feed: 1200mm / min,
Carbon steel dry high-speed high-cut groove cutting test under normal conditions (normal cutting speed is 200 m / min., The groove depth is 4 mm), the present invention coated end mills 7 and 8 and the conventional coated end mills 7 and 8 ,
Work material: Plane dimensions: 100 mm × 250 mm, thickness: 50 mm JIS / SKD61 plate material,
Cutting speed: 220 m / min. ,
Groove depth (cut): 5 mm,
Table feed: 350 mm / min,
A dry high-speed, high-feed groove cutting test (normal cutting speed is 150 m / min. And the table feed is 200 mm / min) is performed on each of the above conditions. The cutting groove length was measured until the flank wear width of the blade reached 0.1 mm, which is a guide for the service life. The measurement results are shown in Tables 9 and 10, respectively.

Figure 2005246509
Figure 2005246509

Figure 2005246509
Figure 2005246509

Figure 2005246509
Figure 2005246509

Figure 2005246509
Figure 2005246509

上記の実施例2で製造した直径が8mm(サーメット基体C−1〜C−3形成用)、13mm(サーメット基体C−4〜C−6形成用)、および26mm(サーメット基体C−7、C−8形成用)の3種の丸棒焼結体を用い、この3種の丸棒焼結体から、研削加工にて、溝形成部の直径×長さがそれぞれ4mm×13mm(サーメット基体D−1〜D−3)、8mm×22mm(サーメット基体D−4〜D−6)、および16mm×45mm(サーメット基体D−7、D−8)の寸法、並びにいずれもねじれ角30度の2枚刃形状をもったサーメット基体(ドリル)D−1〜D−8をそれぞれ製造した。     The diameters produced in Example 2 above were 8 mm (for forming cermet substrates C-1 to C-3), 13 mm (for forming cermet substrates C-4 to C-6), and 26 mm (cermet substrates C-7 and C). -8 for forming), and from these three types of round bar sintered bodies, the diameter x length of the groove forming portion is 4 mm x 13 mm (cermet substrate D) by grinding. −1 to D-3), 8 mm × 22 mm (cermet bases D-4 to D-6), and 16 mm × 45 mm (cermet bases D-7 and D-8), and 2 with a twist angle of 30 degrees. Cermet substrates (drills) D-1 to D-8 having a single blade shape were produced.

ついで、これらのサーメット基体(ドリル)D−1〜D−8の切刃に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、表11に示される組み合わせで、一方側のカソード電極(蒸発源)として、表11に示される成分組成をもった固溶体素地のTi最高含有点形成用Ti−Al−B合金、他方側のカソード電極(蒸発源)として、同じく表11に示される成分組成をもった固溶体素地のAl最高含有点形成用Al−Ti−B合金を前記回転テーブルを挟んで対向配置し、以下、上記実施例1と同一の条件で、前記サーメット基体の表面に、オージェ分光分析装置およびX線光電子分光装置による測定で、(Al,Ti)Nの固溶体素地にBN微粒が表12に示される割合で分散分布し、かつ層厚方向に沿って、前記固溶体素地には表12に示される成分組成をもったTi最高含有点とAl最高含有点とが交互に同じく表12に示される間隔で繰り返し存在し、さらに前記Al最高含有点から前記Ti最高含有点、前記Ti最高含有点から前記Al最高含有点へAlおよびTiの含有割合がそれぞれ連続的に変化する成分濃度分布構造を有し、同じく表12に示される層厚の硬質被覆層を蒸着することにより、本発明被覆サーメット工具としての本発明表面被覆サーメット製ドリル(以下、本発明被覆ドリルと云う)1〜8をそれぞれ製造した。   Next, the cutting blades of these cermet substrates (drills) D-1 to D-8 are subjected to honing, ultrasonically cleaned in acetone, and dried to the arc ion plating apparatus shown in FIG. The Ti-Al-B alloy for forming the highest Ti content point of the solid solution substrate having the component composition shown in Table 11 as the cathode electrode (evaporation source) on one side in the combination shown in Table 11 As a cathode electrode (evaporation source) on the side, an Al—Ti—B alloy for forming the highest Al content point of a solid solution substrate having the component composition shown in Table 11 is also placed oppositely across the rotary table. Under the same conditions as in Example 1, BN fine particles were found on the surface of the cermet substrate on the (Al, Ti) N solid solution substrate as measured by an Auger spectroscopic analyzer and an X-ray photoelectron spectroscope. In the same manner, Table 12 shows the highest Ti content points and the highest Al content points having the component composition shown in Table 12 along the layer thickness direction. It has a component concentration distribution structure that repeatedly exists at intervals, and in which the content ratio of Al and Ti continuously changes from the highest Al content point to the highest Ti content point and from the highest Ti content point to the highest Al content point. Similarly, by depositing a hard coating layer having a layer thickness shown in Table 12, the surface-coated cermet drills (hereinafter referred to as the present invention-coated drills) 1 to 8 as the present invention-coated cermet tools are produced. did.

また、比較の目的で、上記のサーメット基体(ドリル)D−1〜D−8の切刃に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示される通常のアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、前記サーメット基体のそれぞれの表面に、オージェ分光分析装置による測定で、表13に示される成分組成および層厚を有し、かつ層厚方向に沿って実質的に組成変化がなく、X線光電子分光装置による測定でもBN微粒の存在が認められない(Ti,Al,B)N層からなる硬質被覆層を蒸着することにより、従来被覆サーメット工具としての従来表面被覆サーメット製ドリル(以下、従来被覆超硬ドリルと云う)1〜8をそれぞれ製造した。   In addition, for comparison purposes, the cutting blades of the cermet substrates (drills) D-1 to D-8 are honed, ultrasonically cleaned in acetone, and dried. In the same conditions as in Example 1 above, each surface of the cermet substrate has the component composition and the layer thickness shown in Table 13 as measured by an Auger spectrometer. In addition, a hard coating layer composed of a (Ti, Al, B) N layer is deposited by which there is substantially no change in composition along the layer thickness direction and the presence of BN fine particles is not observed even by measurement with an X-ray photoelectron spectrometer. Thus, conventional surface-coated cermet drills (hereinafter referred to as conventional coated carbide drills) 1 to 8 as conventional coated cermet tools were manufactured, respectively.

つぎに、上記本発明被覆ドリル1〜8および従来被覆ドリル1〜8のうち、本発明被覆ドリル1〜3および従来被覆ドリル1〜3については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・SCM440の板材、
切削速度:200m/min.、
送り:0.3mm/rev、
穴深さ:8mm、
の条件での合金鋼の湿式高速高送り穴あけ切削加工試験(通常の切削速度は100m/min.、同送りは0.1mm/rev)、本発明被覆ドリル4〜6および従来被覆ドリル4〜6については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・SKD61の板材、
切削速度:180m/min.、
送り:0.35mm/rev、
穴深さ:16mm、
の条件での工具鋼の湿式高速高送り穴あけ切削加工試験(通常の切削速度は100m/min.、同送りは0.2mm/rev)、本発明被覆ドリル7,8および従来被覆ドリル7,8については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・S55Cの板材、
切削速度:190m/min.、
送り:0.4mm/rev、
穴深さ:32mm、
の条件での炭素鋼の湿式高速高送り穴あけ切削加工試験(通常の切削速度は100m/min.、同送りは0.2mm/rev)、をそれぞれ行い、いずれの湿式穴あけ切削加工試験(水溶性切削油使用)でも先端切刃面の逃げ面摩耗幅が0.3mmに至るまでの穴あけ加工数を測定した。この測定結果を表12、13にそれぞれ示した。
Next, of the present invention coated drills 1 to 8 and the conventional coated drills 1 to 8, the present invention coated drills 1 to 3 and the conventional coated drills 1 to 3 are:
Work material: Plane dimension: 100 mm × 250 mm, thickness: 50 mm JIS / SCM440 plate material,
Cutting speed: 200 m / min. ,
Feed: 0.3mm / rev,
Hole depth: 8mm,
Wet high-speed high-feed drilling test of alloy steel under the conditions (normal cutting speed is 100 m / min, the same feed is 0.1 mm / rev), the present invention coated drills 4 to 6 and the conventional coated drills 4 to 6 about,
Work material: Plane dimensions: 100 mm × 250 mm, thickness: 50 mm JIS / SKD61 plate material,
Cutting speed: 180 m / min. ,
Feed: 0.35mm / rev,
Hole depth: 16mm,
Wet high-speed high-feed drilling test of tool steel under the conditions (normal cutting speed is 100 m / min, the same feed is 0.2 mm / rev), the present invention coated drills 7 and 8 and the conventional coated drills 7 and 8 about,
Work material: Plane dimension: 100 mm × 250 mm, thickness: 50 mm JIS / S55C plate material,
Cutting speed: 190 m / min. ,
Feed: 0.4mm / rev,
Hole depth: 32mm,
Wet high-speed high-feed drilling test (normal cutting speed is 100 m / min., The same feed is 0.2 mm / rev) under the above conditions, and each wet drilling test (water-soluble) (Using cutting oil) The number of drilling operations was measured until the flank wear width of the cutting edge surface reached 0.3 mm. The measurement results are shown in Tables 12 and 13, respectively.

Figure 2005246509
Figure 2005246509

Figure 2005246509
Figure 2005246509

Figure 2005246509
Figure 2005246509

表3〜13に示される結果から、硬質被覆層が、(Al,Ti)Nの固溶体素地に著しく高い高温硬さをもったBN微粒が分散分布した組織を有し、かつ前記固溶体素地には、層厚方向に沿って、高強度を有するTi最高含有点とすぐれた高温硬さと耐熱性を有するAl最高含有点とが交互に所定間隔をおいて繰り返し存在し、かつ前記Al最高含有点から前記Ti最高含有点、前記Ti最高含有点から前記Al最高含有点へAlおよびTi含有量がそれぞれ連続的に変化する成分濃度分布構造を有する本発明被覆サーメット工具は、いずれも各種の鋼や鋳鉄などの切削加工を、高温発生を伴う高速条件で、かつ高い機械的衝撃を伴う高切り込みや高送りなどの重切削条件で行なった場合にも、硬質被覆層にチッピングの発生なく、すぐれた耐摩耗性を発揮するのに対して、硬質被覆層が層厚方向に沿って実質的に組成変化のない(Ti,Al,B)N層からなる従来被覆サーメット工具においては、前記の高速重切削条件では、前記硬質被覆層の高温硬さおよび耐熱性不足、並びに強度不足が原因で、摩耗進行が速く、かつチッピングも発生し易いことから、比較的短時間で使用寿命に至ることが明らかである。
上述のように、この発明の被覆サーメット工具は、通常の条件での切削加工は勿論のこと、特に各種の鋼や鋳鉄などの切削加工を、高熱発生および高い機械的衝撃を伴う高速重切削条件で行なった場合にも、チッピングの発生なく、すぐれた耐摩耗性を発揮するものであるから、切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。
From the results shown in Tables 3 to 13, the hard coating layer has a structure in which BN fine particles having extremely high high-temperature hardness are dispersed and distributed in the solid solution base of (Al, Ti) N, and the solid solution base has Along the layer thickness direction, the highest Ti content point having high strength and the highest Al content point having excellent high-temperature hardness and heat resistance are alternately present at predetermined intervals, and from the Al highest content point The present coated cermet tool having a component concentration distribution structure in which the Al and Ti contents continuously change from the highest Ti content point to the highest Al content point, respectively, includes various steels and cast irons. Even when cutting such as high-speed conditions with high temperature and heavy cutting conditions with high mechanical impact, such as high cutting and high feed, the hard coating layer is excellent without chipping. In the conventional coated cermet tool having a (Ti, Al, B) N layer in which the hard coating layer has substantially no composition change along the layer thickness direction while exhibiting wear, the above-mentioned high-speed heavy cutting is performed. Under the conditions, it is clear that the wear life is fast and chipping is likely to occur due to the high temperature hardness and heat resistance of the hard coating layer and insufficient strength, so that the service life can be reached in a relatively short time. is there.
As described above, the coated cermet tool according to the present invention can be used not only for cutting under normal conditions, but also for cutting various steels and cast irons under high-speed heavy cutting conditions with high heat generation and high mechanical impact. In this case, since chipping does not occur and excellent wear resistance is exhibited, it is possible to satisfactorily cope with labor saving and energy saving of cutting and cost reduction.

この発明の被覆サーメット工具を構成する硬質被覆層を形成するのに用いたアークイオンプレーティング装置を示し、(a)は概略平面図、(b)は概略正面図である。The arc ion plating apparatus used for forming the hard coating layer which comprises the covering cermet tool of this invention is shown, (a) is a schematic plan view, (b) is a schematic front view. 従来被覆サーメット工具を構成する硬質被覆層を形成するのに用いた通常のアークイオンプレーティング装置の概略説明図である。It is a schematic explanatory drawing of the normal arc ion plating apparatus used in forming the hard coating layer which comprises a conventional coated cermet tool.

Claims (1)

炭化タングステン基超硬合金または炭窒化チタン系サーメットで構成されたサーメット基体の表面に、Al(アルミニウム)とTi(チタン)とB(ボロン)の複合窒化物層からなる硬質被覆層を1〜15μmの層厚で物理蒸着してなる表面被覆サーメット製切削工具において、前記硬質被覆層が、
(a)AlとTiの複合窒化物で構成された固溶体素地に、窒化硼素微粒が分散分布し、かつ前記窒化硼素微粒の含有割合をB成分の含有割合で示すと、AlおよびTi成分との合量に占める原子比で0.001〜0.05である組織を有し、
(b)さらに、上記(a)の固溶体素地が、層厚方向にそって、Al最高含有点とTi最高含有点とが所定間隔をおいて交互に繰り返し存在し、かつ前記Al最高含有点から前記Ti最高含有点、前記Ti最高含有点から前記Al最高含有点へAlおよびTiの含有割合がそれぞれ連続的に変化する成分濃度分布構造を有すると共に、
上記Al最高含有点が、組成式:(Al1-X TiX )N(ただし、原子比で、Xは0.05〜0.25を示す)、
上記Ti最高含有点が、組成式:(Ti1-Y AlY )N(ただし、原子比で、Yは0.05〜0.25を示す)、
を満足し、かつ隣り合う上記Al最高含有点とTi最高含有点の間隔が、0.01〜0.1μmであること、
を特徴とする高速重切削条件で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆サーメット製切削工具。
A hard coating layer composed of a composite nitride layer of Al (aluminum), Ti (titanium), and B (boron) is formed on the surface of a cermet base composed of a tungsten carbide-based cemented carbide or a titanium carbonitride cermet. In the surface-coated cermet cutting tool formed by physical vapor deposition with a layer thickness of the hard coating layer,
(A) When boron nitride fine particles are dispersed and distributed in a solid solution base composed of a composite nitride of Al and Ti, and the content ratio of the boron nitride fine particles is expressed by the content ratio of the B component, It has a structure that is 0.001 to 0.05 in terms of atomic ratio to the total amount,
(B) Further, in the solid solution substrate of the above (a), the Al highest content point and the Ti highest content point are alternately present at predetermined intervals along the layer thickness direction, and from the Al highest content point The Ti highest content point, having a component concentration distribution structure in which the content ratios of Al and Ti continuously change from the Ti highest content point to the Al highest content point, respectively,
The Al highest content point is the composition formula: (Al 1-X Ti X ) N (however, in atomic ratio, X represents 0.05 to 0.25),
The highest Ti content point is the composition formula: (Ti 1-Y Al Y ) N (wherein Y represents 0.05 to 0.25 in atomic ratio),
And the interval between the Al highest content point and the Ti highest content point adjacent to each other is 0.01 to 0.1 μm,
A surface-coated cermet cutting tool that exhibits excellent wear resistance with a hard coating layer under high-speed heavy cutting conditions.
JP2004057170A 2004-03-02 2004-03-02 Cutting tool made of surface coated cermet with hard coating layer exhibiting excellent wear resistance in high-speed heavy cutting condition Pending JP2005246509A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004057170A JP2005246509A (en) 2004-03-02 2004-03-02 Cutting tool made of surface coated cermet with hard coating layer exhibiting excellent wear resistance in high-speed heavy cutting condition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004057170A JP2005246509A (en) 2004-03-02 2004-03-02 Cutting tool made of surface coated cermet with hard coating layer exhibiting excellent wear resistance in high-speed heavy cutting condition

Publications (1)

Publication Number Publication Date
JP2005246509A true JP2005246509A (en) 2005-09-15

Family

ID=35027488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004057170A Pending JP2005246509A (en) 2004-03-02 2004-03-02 Cutting tool made of surface coated cermet with hard coating layer exhibiting excellent wear resistance in high-speed heavy cutting condition

Country Status (1)

Country Link
JP (1) JP2005246509A (en)

Similar Documents

Publication Publication Date Title
JP3969230B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under heavy cutting conditions
JP2003326403A (en) Cutting tool made of surface coated cemented carbide providing excellent wear resistance by hard layer in high speed heavy cutting
JP5035527B2 (en) Surface coated cutting tool
JP4007102B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under high speed heavy cutting conditions
JP3985227B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under high speed heavy cutting conditions
JP2005028474A (en) Cutting tool made of surface coated cemented carbide with hard coating layer exhibiting excellent wear resistance in high-speed cutting
JP4366987B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance under high-speed heavy cutting conditions.
JP2005230926A (en) Surface-coated cermet-made cutting tool with hard coating layer exerting excellent chipping resistance under high-speed deep cutting condition
JP4029328B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer under high-speed heavy cutting conditions
JP2004358610A (en) Surface-coated cermet made cutting tool with hard coating layer having excellent wear resistance in high-speed cutting
JP2004106108A (en) Surface coated cemented carbide cutting tool having hard coated layer exhibiting superior chipping resistance under high speed heavy duty cutting condition
JP4211500B2 (en) Surface coated cermet cutting tool with excellent wear resistance due to high hard cutting layer in high speed cutting
JP4158191B2 (en) A method of forming a hard coating layer on the surface of a cutting tool that exhibits excellent chipping resistance and wear resistance under high-speed heavy cutting conditions
JP2005034925A (en) Surface coated cemented carbide cutting tool having surface coating layer which is excellent in wear resistance in high speed cutting
JP4029331B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer under high-speed heavy cutting conditions
JP4120499B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with high surface coating layer in high speed cutting
JP4211509B2 (en) Surface coated cermet cutting tool with excellent wear resistance due to high hard cutting layer in high speed cutting
JP4320707B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance under high-speed heavy cutting conditions.
JP4029329B2 (en) Surface coated cermet cutting tool with excellent wear resistance with high hard coating layer in high speed cutting
JP2005095986A (en) Cutting tool made of surface coated cermet
JP4048365B2 (en) Surface coated cermet cutting tool with excellent wear resistance with hard coating layer under high speed heavy cutting conditions
JP2004074379A (en) Surface coated cemented carbide cutting tool having hard coated layer exhibiting superior abrasion resistance under high speed heavy duty cutting condition
JP4320706B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance under high-speed heavy cutting conditions.
JP2005246509A (en) Cutting tool made of surface coated cermet with hard coating layer exhibiting excellent wear resistance in high-speed heavy cutting condition
JP2005246508A (en) Cutting tool made of surface coated cermet with hard coating layer exhibiting excellent wear resistance in high-speed heavy cutting condition

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20070228

Free format text: JAPANESE INTERMEDIATE CODE: A621

A711 Notification of change in applicant

Effective date: 20071226

Free format text: JAPANESE INTERMEDIATE CODE: A712

A131 Notification of reasons for refusal

Effective date: 20090205

Free format text: JAPANESE INTERMEDIATE CODE: A131

A977 Report on retrieval

Effective date: 20090212

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090317

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090422