JP2005245546A - Ophthalmological apparatus - Google Patents

Ophthalmological apparatus Download PDF

Info

Publication number
JP2005245546A
JP2005245546A JP2004056884A JP2004056884A JP2005245546A JP 2005245546 A JP2005245546 A JP 2005245546A JP 2004056884 A JP2004056884 A JP 2004056884A JP 2004056884 A JP2004056884 A JP 2004056884A JP 2005245546 A JP2005245546 A JP 2005245546A
Authority
JP
Japan
Prior art keywords
optical system
eye
cornea
optical axis
corneal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004056884A
Other languages
Japanese (ja)
Other versions
JP4349937B2 (en
Inventor
Noriji Kawai
規二 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidek Co Ltd
Original Assignee
Nidek Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidek Co Ltd filed Critical Nidek Co Ltd
Priority to JP2004056884A priority Critical patent/JP4349937B2/en
Publication of JP2005245546A publication Critical patent/JP2005245546A/en
Application granted granted Critical
Publication of JP4349937B2 publication Critical patent/JP4349937B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ophthalmological apparatus capable of measuring a cornea thickness without arranging an optical path of a light receiving optical system for measuring the cornea thickness in an inclined direction relative to the optical axis of an anterior ocular segment observing optical system, and to provide the ophthalmological device capable of measuring the cornea thickness while increasing commonly used parts as much as possible. <P>SOLUTION: The ophthalmological apparatus has an observing optical system having an optical axis for observing the anterior ocular segment of an eye to be tested from the front direction, a fixation optical system showing a fixation mark from outside of the light axis of the observing optical system, an irradiating optical system for irradiation with a light beam toward the cornea of the eye to be tested from an optical axis direction symmetrical to the optical axis of the observing optical system across the visual axis of the eye to be tested when fixedly viewing the fixation mark, a light receiving optical system for allowing a light receiving sensor to receive a reflecting image of the front surface of the cornea by irradiation with the optical beam and the reflecting image of the rear surface of the cornea by the sensor from the direction of the optical axis of the observing optical system, and a cornea thickness measuring means for obtaining the cornea thickness based on the output of the light receiving sensor. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、眼科医院など使用される眼科装置に係り、角膜厚を測定可能な眼科装置に関する。   The present invention relates to an ophthalmic apparatus used such as an ophthalmic clinic, and relates to an ophthalmic apparatus capable of measuring corneal thickness.

角膜厚を測定する眼科装置としては、被検眼前眼部を観察する前眼部観察光学系の光軸上に被検眼の視軸(光軸)を導き、被検眼の斜め方向から照明光束を角膜に向けて照射する照射光学系を設けると共に、前眼部観察光学系の光軸に対して照射光学系の光軸と対称な方向に配置された光軸を持つ受光光学系を設け、角膜の前面及び裏面から反射された光束を受光光学系が有する受光センサにより検出して角膜の厚さを光学的に計測する装置が知られている(例えば、特許文献1参照)。
特開平5−146409号公報
As an ophthalmologic apparatus for measuring the corneal thickness, the visual axis (optical axis) of the eye to be examined is guided on the optical axis of the anterior ocular segment observation optical system for observing the anterior ocular segment of the eye to be examined, and the illumination light beam is emitted from an oblique direction of the eye to be examined. An irradiation optical system for irradiating the cornea is provided, and a light receiving optical system having an optical axis arranged in a direction symmetrical to the optical axis of the irradiation optical system with respect to the optical axis of the anterior ocular segment observation optical system is provided. There is known an apparatus that optically measures the thickness of the cornea by detecting a light beam reflected from the front surface and the back surface of the lens by a light receiving sensor included in a light receiving optical system (see, for example, Patent Document 1).
JP-A-5-146409

しかし、従来の角膜厚を測定可能な装置においては、前眼部観察光学系の光軸に対して斜め方向に受光光学系の光路を確保する必要がある。このため、例えば、被検眼の屈折力や角膜形状を測定する測定光学系を持つ眼科装置に角膜厚の測定機能を付加しようとすると、その受光光学系の光路の確保が難しい場合があり、また、装置構成が複雑になる。   However, in a conventional apparatus capable of measuring the corneal thickness, it is necessary to secure the optical path of the light receiving optical system in an oblique direction with respect to the optical axis of the anterior ocular segment observation optical system. For this reason, for example, if an ophthalmologic apparatus having a measurement optical system for measuring the refractive power and corneal shape of the eye to be examined is added, it may be difficult to secure the optical path of the light receiving optical system. The device configuration becomes complicated.

本発明は、上記従来技術に鑑み、前眼部観察光学系の光軸に対して斜め方向に角膜厚測定の受光光学系の光路を設けずに、角膜厚を測定することが可能な眼科装置を提供することを技術課題とする。また、共用部品をできるだけ多くして、角膜厚を測定することが可能な眼科装置を提供することを技術課題とする。   In view of the above prior art, the present invention is an ophthalmic apparatus capable of measuring corneal thickness without providing an optical path of a light receiving optical system for measuring corneal thickness in an oblique direction with respect to the optical axis of the anterior ocular segment observation optical system. The technical challenge is to provide It is another object of the present invention to provide an ophthalmologic apparatus capable of measuring the corneal thickness with as many common parts as possible.

(1) 被検眼の前眼部を正面方向から観察する光軸を持つ観察光学系と、前記観察光学系の光軸外から固視標を呈示する固視光学系と、前記固視標を固視したときの被検眼の視軸を挟んで前記観察光学系の光軸と対称な光軸方向から被検眼角膜に向けて光束を照射する照射光学系と、該光束の照射による角膜表面の反射像と角膜裏面の反射像とを前記観察光学系の光軸方向から受光センサに受光させる受光光学系と、前記受光センサの出力に基づいて角膜厚を求める角膜厚測定手段と、を備えることを特徴とする。
(2) (1)の眼科装置において、前記観察光学系は前眼部を撮像する撮像素子を持ち、前記撮像素子は前記受光センサを兼ねることを特徴とする。
(3) (2)の眼科装置は、眼屈折力又は角膜形状等を測定する測定光学系と、該測定光学系をアライメントするためのアライメント指標を被検眼に投影する指標投影光学系を持ち、前記固視光学系は前記指標投影光学系の一部を兼用し、前記観察光学系の撮像素子は、さらに前記アライメント指標を検出する検出素子を兼ねることを特徴とする。
(4) (1)の眼科装置は、前記観察光学系の光軸に対して前記照射光学系とは異なる角度の光軸方向から被検眼角膜に向けて光束を照射する第2の照射光学系を備え、前記角膜厚測定手段はさらに前記第2の照射光学系の光束の照射による角膜表面の反射像と角膜裏面の反射像とを受光した前記受光センサの出力に基づいて、被検眼の視軸部位と異なる部位における角膜厚を求めることを特徴とする。
(1) An observation optical system having an optical axis for observing the anterior segment of the eye to be examined from the front direction, a fixation optical system for presenting the fixation target from outside the optical axis of the observation optical system, and the fixation target An irradiation optical system that irradiates a light beam toward the eye cornea from an optical axis direction symmetrical to the optical axis of the observation optical system across the visual axis of the eye to be examined when fixed, and the surface of the cornea by irradiation of the light beam A light receiving optical system that causes the light receiving sensor to receive a reflected image and a reflected image of the back side of the cornea from an optical axis direction of the observation optical system; and a corneal thickness measuring unit that calculates a corneal thickness based on an output of the light receiving sensor. It is characterized by.
(2) In the ophthalmologic apparatus according to (1), the observation optical system includes an image sensor that images an anterior segment, and the image sensor also serves as the light receiving sensor.
(3) The ophthalmologic apparatus according to (2) has a measurement optical system for measuring eye refractive power or a corneal shape, and an index projection optical system for projecting an alignment index for aligning the measurement optical system onto the eye to be examined. The fixation optical system also serves as a part of the index projection optical system, and the imaging element of the observation optical system further serves as a detection element that detects the alignment index.
(4) The ophthalmic apparatus according to (1) is a second irradiation optical system that irradiates a light beam toward the eye cornea from an optical axis direction different from the irradiation optical system with respect to the optical axis of the observation optical system. And the corneal thickness measuring means further includes a step of viewing the eye to be inspected based on an output of the light receiving sensor that receives a reflected image on the corneal surface and a reflected image on the back surface of the cornea by irradiation of the light beam of the second irradiation optical system. It is characterized in that a corneal thickness at a part different from the axial part is obtained.

本発明によれば、前眼部観察光学系の光軸に対して斜め方向に角膜厚測定の受光光学系の光路を設けずに、角膜厚を測定することが可能になる。また、共用部品をできるだけ多くして、角膜厚を測定することが可能な眼科装置を構成できる。   According to the present invention, the corneal thickness can be measured without providing the optical path of the light receiving optical system for measuring the corneal thickness in an oblique direction with respect to the optical axis of the anterior ocular segment observation optical system. In addition, an ophthalmologic apparatus capable of measuring the corneal thickness can be configured with as many shared parts as possible.

以下、本発明にかかる眼科装置の実施の形態を図面に基づいて説明する。図1は、本発明に係る眼科装置の外観図であり、この実施形態では眼屈折力測定装置をベースとしてしている。   Embodiments of an ophthalmologic apparatus according to the present invention will be described below with reference to the drawings. FIG. 1 is an external view of an ophthalmologic apparatus according to the present invention, and this embodiment is based on an eye refractive power measuring apparatus.

測定装置100は、基台101と、基台101に取り付けられた顔支持ユニット102と、基台101上に移動可能に設けられた移動台103と、移動台103に移動可能に設けられ、後述する光学系を収納する測定部104を備える。測定部104は、移動台103に設けられたXYZ駆動部106により、被検眼Eに対して左右方向(X方向)、上下方向(Y方向)及び前後方向(Z方向)に移動される。駆動部106は、X,Y,Zの方向毎に設けられたスライド機構、モータ等から構成される。移動台103は、ジョイスティック105の操作により、基台101上をX方向及びZ方向に移動され、回転ノブ105aを回転操作することにより、XYZ駆動部106のY駆動によりY方向に移動される。移動台103には被検眼Eの観察像や測定結果等の各種の情報を表示するモニタ107、測定モード切換スイッチ等が配置されたスイッチ部108が設けられている。   The measuring apparatus 100 is provided with a base 101, a face support unit 102 attached to the base 101, a movable base 103 provided on the base 101 so as to be movable, and a movable base 103 so as to be movable. A measuring unit 104 that houses the optical system that performs the operation. The measuring unit 104 is moved in the left-right direction (X direction), the up-down direction (Y direction), and the front-back direction (Z direction) with respect to the eye E by an XYZ driving unit 106 provided on the moving table 103. The drive unit 106 includes a slide mechanism, a motor, and the like provided for each of the X, Y, and Z directions. The movable table 103 is moved in the X direction and the Z direction on the base 101 by the operation of the joystick 105, and is moved in the Y direction by the Y drive of the XYZ drive unit 106 by rotating the rotation knob 105a. The moving table 103 is provided with a monitor 107 for displaying various information such as an observation image of the eye E to be examined and measurement results, and a switch unit 108 on which a measurement mode changeover switch and the like are arranged.

図2は、測定部104に配置される光学系及び制御系の概略構成図である。1は眼屈折力測定用の赤外光源であり、光源1による光は、回転セクター2に設けられたスリットを通過し、投影レンズ3,絞り4,ハーフミラー5,ハーフミラー9を介して、被検眼Eの眼底に走査されながら投影される。眼底からの反射光は、ハーフミラー9,ハーフミラー5,受光レンズ6及び絞り7を介して、複数対の受光素子を備える受光部8により受光される。なお、眼屈折力測定のための光学系に関しては、詳しくは、本出願人による特開平10−108836号公報を参照されたい。なお、光源1による角膜反射像は、X方向及びY方向のアライメントに利用することもできる。   FIG. 2 is a schematic configuration diagram of an optical system and a control system arranged in the measurement unit 104. Reference numeral 1 denotes an infrared light source for measuring eye refractive power, and light from the light source 1 passes through a slit provided in the rotating sector 2 and passes through a projection lens 3, a diaphragm 4, a half mirror 5, and a half mirror 9. The image is projected while being scanned on the fundus of the eye E. Reflected light from the fundus is received by a light receiving unit 8 including a plurality of pairs of light receiving elements via a half mirror 9, a half mirror 5, a light receiving lens 6, and a diaphragm 7. For details on the optical system for measuring eye refractive power, refer to Japanese Patent Application Laid-Open No. 10-108836 by the present applicant. In addition, the cornea reflection image by the light source 1 can also be utilized for alignment in the X direction and the Y direction.

14は眼屈折力測定時に使用する固指標投影用の可視光源であり、光源14により照明された固視標15の光は、投影レンズ16,ハーフミラー13,ハーフミラー9を介して、被検眼Eに向かう。また、投影レンズ16が光軸方向に移動することにより、被検眼Eの雲霧が行われる。   Reference numeral 14 denotes a visible light source for fixation index projection used for measuring eye refractive power, and the light of the fixation target 15 illuminated by the light source 14 passes through the projection lens 16, the half mirror 13, and the half mirror 9 to be examined. Head to E. Further, as the projection lens 16 moves in the optical axis direction, clouding of the eye E is performed.

17は、被検眼前眼部を撮像する撮像光学系(前眼部観察光学系)である。10は2次元撮像素子としてのCCDカメラであり、被検眼の前眼部からの光は、ハーフミラー9、ハーフミラー13、結像レンズ12、絞り11を介して、CCDカメラ10に受光される。撮像光学系17の光軸はハーフミラー13,9により光軸L1と同軸にされ、被検眼の前眼部は正面方向から撮像される。絞り11はレンズ12の焦点位置にあり、撮像光学系17はテレセントリック光学系として構成されている。また、この撮像光学系17は、アライメント指標像(後述する指標投影光学系の指標像)を検出する検出光学系を兼ねると共に、角膜厚測定時の角膜表面反射像及び角膜裏面反射像を受光する受光光学系を兼ね、CCDカメラ10はその受光センサを兼ねる。CCDカメラ10は、指標像(角膜反射像)の検出精度を高くするために高解像度のものが好ましい。   Reference numeral 17 denotes an imaging optical system (anterior ocular segment observation optical system) that images the anterior segment of the eye to be examined. Reference numeral 10 denotes a CCD camera as a two-dimensional imaging device, and light from the anterior segment of the eye to be examined is received by the CCD camera 10 through the half mirror 9, the half mirror 13, the imaging lens 12, and the diaphragm 11. . The optical axis of the imaging optical system 17 is made coaxial with the optical axis L1 by the half mirrors 13 and 9, and the anterior eye portion of the eye to be examined is imaged from the front direction. The diaphragm 11 is at the focal position of the lens 12, and the imaging optical system 17 is configured as a telecentric optical system. The imaging optical system 17 also serves as a detection optical system that detects an alignment index image (an index image of an index projection optical system, which will be described later), and receives a corneal surface reflection image and a corneal back surface reflection image when measuring the corneal thickness. The CCD camera 10 also serves as a light receiving sensor, and also serves as a light receiving optical system. The CCD camera 10 preferably has a high resolution in order to increase the detection accuracy of the index image (corneal reflection image).

20は被検眼に有限遠の指標を投影する第一指標投影光学系である。光源21は被検眼に可視可能な近赤外光源であり、光軸L1外で光軸L1を中心に2個配置されている。また、第一指標投影光学系20は、それぞれ投影光軸が光軸L1に対して水平方向に所定の角度で交わるように配置されている。光源21からの光は、スポット絞り22を介して角膜Ecに投影される。25は、被検眼に無限遠の指標を投影する第二指標投影光学系である。26は赤外光源であり、光軸L1外で光軸L1を中心に2個配置されている。また、第二指標投影光学系25は、それぞれ投影光軸が光軸に対して水平方向に前記第一指標投影光学系よりも大きい角度で交わるように配置されている。光源26からの光は、スポット絞り27及びコリメーティングレンズ28を介して角膜Ecに投影される。   Reference numeral 20 denotes a first index projection optical system that projects a finite index on the eye to be examined. The light source 21 is a near-infrared light source that is visible to the eye to be examined, and two light sources 21 are arranged around the optical axis L1 outside the optical axis L1. The first index projection optical system 20 is arranged such that the projection optical axes intersect at a predetermined angle in the horizontal direction with respect to the optical axis L1. Light from the light source 21 is projected onto the cornea Ec through the spot stop 22. Reference numeral 25 denotes a second index projection optical system that projects an index at infinity onto the eye to be examined. Reference numeral 26 denotes an infrared light source, and two infrared light sources are arranged around the optical axis L1 outside the optical axis L1. The second index projection optical system 25 is arranged such that the projection optical axes intersect with the optical axis in the horizontal direction at a larger angle than the first index projection optical system. Light from the light source 26 is projected onto the cornea Ec via the spot stop 27 and the collimating lens 28.

第二指標投影光学系25により投影される指標はほぼ平行光であるため、被検眼Eに対する測定部104の作動距離(Z方向の距離)が変化しても角膜反射像の位置はほとんど変化しない。一方、第一指標投影光学系20により投影される指標は発散光であるので、作動距離が変化すると角膜反射像の位置が変化する。そして、これら角膜反射像の位置に基づきZ方向のアライメント状態を検出することができる(詳しくは、本出願人による特開平6−46999号を参照)。また、第二指標投影光学系25による角膜反射像は、光軸L1を中心に左右に二つ投影されるので、これら角膜反射像間における水平方向の中心座標を算出することにより、XY方向のアライメント状態を検出することができる。よって、第一指標投影光学系20及び第二指標投影光学系25による角膜反射像の相対位置を、CCDカメラ10により検出することにより、XYZ方向における被検眼へのアライメント状態の検出を行うことができる。これにより、被検眼への自動アライメントを行ったり、モニタ107に表示される前眼部像に基づいて所定の操作手段を用いてアライメントを行うことが可能となる。   Since the index projected by the second index projection optical system 25 is substantially parallel light, the position of the cornea reflection image hardly changes even if the working distance (distance in the Z direction) of the measurement unit 104 with respect to the eye E changes. . On the other hand, since the index projected by the first index projection optical system 20 is divergent light, the position of the corneal reflection image changes when the working distance changes. The alignment state in the Z direction can be detected based on the position of these corneal reflection images (for details, see Japanese Patent Application Laid-Open No. 6-46999 by the present applicant). In addition, since two corneal reflection images by the second index projection optical system 25 are projected left and right around the optical axis L1, by calculating the horizontal center coordinates between these corneal reflection images, The alignment state can be detected. Therefore, by detecting the relative position of the corneal reflection image by the first index projection optical system 20 and the second index projection optical system 25 by the CCD camera 10, the alignment state to the eye to be examined in the XYZ directions can be detected. it can. Thereby, automatic alignment to the eye to be examined can be performed, or alignment can be performed using a predetermined operation unit based on the anterior segment image displayed on the monitor 107.

30は制御部であり、CCDカメラ10、受光部8、測定スイッチ32、メモリ33、及びモニタ107が接続されている。制御部30は、CCDカメラ10及び受光部8の出力に基づいて測定結果の算出を行ったり、CCDカメラ10により撮像される前眼部画像をモニタ107に表示させる役割を持つ。測定スイッチ32は、測定開始のトリガ信号を出力するスイッチである。メモリ33は、測定データ等を記憶する役割を持つ。   A control unit 30 is connected to the CCD camera 10, the light receiving unit 8, the measurement switch 32, the memory 33, and the monitor 107. The control unit 30 has a role of calculating a measurement result based on the outputs of the CCD camera 10 and the light receiving unit 8 and displaying an anterior eye image captured by the CCD camera 10 on the monitor 107. The measurement switch 32 is a switch that outputs a trigger signal for starting measurement. The memory 33 has a role of storing measurement data and the like.

眼屈折力の測定について簡単に説明する。スイッチ部108のモード切換えスイッチにより眼屈折力測定モードを選択すると、光源14及び光源1が点灯される。被検眼には、光源14の点灯によ光軸L1方向から呈示される固視標15を固視させる。固視標15は、例えば、風景チャートであり、アライメント用の光源21と区別して、これを固視させることができる。被検眼の前眼部像は、CCDカメラ10に撮像される。検者はモニタ107にて前眼部像と図示なきレチクルを観察しながら、ジョイスティック105等の操作により移動台103及び測定部104をXYZ方向に移動し、粗くアライメントする。CCD10により第一指標投影光学系20及び第二指標投影光学系25による4つの指標像(角膜反射像)が検出できるようになると、制御部30は前述のようにそれらの指標像の検出結果に基づいてXYZの各方向のアライメント状態を得て、測定部104をXYZ駆動部106により移動させ、アライメントを完了させる。アライメント完了後は自動的に、又は検者が測定開始スイッチを押すことにより、眼屈折力測定光学系による測定が実行される。   The measurement of eye refractive power will be briefly described. When the eye refractive power measurement mode is selected by the mode switch of the switch unit 108, the light source 14 and the light source 1 are turned on. The eye to be examined is caused to fixate the fixation target 15 presented from the direction of the optical axis L1 when the light source 14 is turned on. The fixation target 15 is, for example, a landscape chart, and can be distinguished from the light source 21 for alignment. The anterior segment image of the eye to be examined is captured by the CCD camera 10. While observing the anterior segment image and a reticle (not shown) on the monitor 107, the examiner moves the moving table 103 and the measurement unit 104 in the XYZ directions by operating the joystick 105 and the like to roughly align. When the CCD 10 can detect four index images (corneal reflection images) by the first index projection optical system 20 and the second index projection optical system 25, the control unit 30 uses the detection results of these index images as described above. Based on this, the alignment state in each direction of XYZ is obtained, and the measuring unit 104 is moved by the XYZ driving unit 106 to complete the alignment. After the alignment is completed, measurement by the eye refractive power measurement optical system is executed automatically or when the examiner presses the measurement start switch.

次に、角膜厚測定について説明する。モード切換えスイッチにより角膜厚測定モードを選択すると、光源14及び光源1は消灯される。アライメント用の各光源は点灯されたままであり、第一指標投影光学系20及び第二指標投影光学系25の左右どちらかは角膜厚測定用の光束を照射する照射光学系及び固視標を呈示する固視標光学系として用いられる。なお、説明の便宜上、図2で示した左右の第一指標投影光学系20及び第二指標投影光学系25を区別するために、図3では、左側の光学系を第一指標投影光学系20a及び第二指標投影光学系25aとし、右側の光学系を第一指標投影光学系20b及び第二指標投影光学系25bとする。各光学部材についても同様に、区別する符号を付している。   Next, corneal thickness measurement will be described. When the corneal thickness measurement mode is selected by the mode switch, the light source 14 and the light source 1 are turned off. Each alignment light source remains turned on, and either the left or right of the first index projection optical system 20 and the second index projection optical system 25 presents an irradiation optical system and a fixation target for irradiating a light beam for measuring corneal thickness. It is used as a fixation target optical system. For convenience of explanation, in order to distinguish between the left and right first index projection optical systems 20 and the second index projection optical system 25 shown in FIG. 2, in FIG. 3, the left optical system is the first index projection optical system 20a. And the second index projection optical system 25a, and the right optical system as the first index projection optical system 20b and the second index projection optical system 25b. Similarly, each optical member is given a distinguishing symbol.

ここで、被検者から見て左側の第一指標投影光学系20a及び第二指標投影光学系25aを角膜厚測定に用いるものとする。被検者には左側に見える光源21aを固視させる。角膜厚測定時のアライメントは、前述の眼屈折力測定時と同様であり、CCDカメラ10により検出される各指標投影光学系の4つの指標像に基づいて、測定部104が移動されることによりなされる。図3は、被検眼が光源21aを固視したときのアライメント完了状態を示す。   Here, the first index projection optical system 20a and the second index projection optical system 25a on the left side as viewed from the subject are used for corneal thickness measurement. The subject is caused to stare at the light source 21a visible on the left side. The alignment at the time of measuring the corneal thickness is the same as that at the time of measuring the eye refractive power, and the measurement unit 104 is moved based on the four index images of each index projection optical system detected by the CCD camera 10. Made. FIG. 3 shows the alignment completed state when the eye to be examined fixedly looks at the light source 21a.

図4は、アライメント完了した時の、被検眼E,第一指標投影光学系20a,第二指標投影光学系25a及び撮像光軸L1の光学的関係を示す概略図である。図4において、N1は被検眼Eが光源21aを固視しているときの視軸である。被検眼Eが光源21aを固視しているときの視軸N1を挟んで、第一指標投影光学系20aの光軸M1の方向と撮像光学系の光軸L1の方向とが、角度θでほぼ対称となるように配置されている。点P1は視軸N1上の角膜表面の交点であり、P2は視軸Nと角膜裏面の交点である。ここで、光軸L1の軸方向から観察される光源26aの角膜表面による反射像(虚像)及び角膜裏面による反射像(虚像)が、それぞれI1及びI2として形成される。撮像光学系17はテレセントリック光学系として構成されているので、光軸L1方向から観察される角膜表面反射像I1の中心(角膜表面P1での正反射光の主光線Ls)と角膜裏面反射像I2の中心(角膜裏面P2での正反射光の主光線Lr)との間隔Hを検出すれば、角膜厚dを求めることができる。 FIG. 4 is a schematic diagram showing an optical relationship among the eye E, the first index projection optical system 20a, the second index projection optical system 25a, and the imaging optical axis L1 when the alignment is completed. In FIG. 4, N1 is a visual axis when the eye E is fixing the light source 21a. The direction of the optical axis M1 of the first index projection optical system 20a and the direction of the optical axis L1 of the imaging optical system are at an angle θ across the visual axis N1 when the eye E is fixing the light source 21a. They are arranged so as to be almost symmetrical. Point P1 is the intersection of the corneal surface on the visual axis N1, and P2 is the intersection of the visual axis N and the corneal back surface. Here, a reflected image (virtual image) by the cornea surface of the light source 26a observed from the axial direction of the optical axis L1 and a reflected image (virtual image) by the cornea back surface are formed as I 1 and I 2 , respectively. Since the imaging optical system 17 is configured as a telecentric optical system, the center of the corneal surface reflection image I1 observed from the direction of the optical axis L1 (the principal ray Ls of regular reflection light on the corneal surface P1) and the corneal back surface reflection image I2 Corneal thickness d can be obtained by detecting the distance H from the center (the principal ray Lr of specularly reflected light at the cornea back surface P2).

なお、角膜厚測定時には、アライメント完了した後、測定スイッチ32による測定開始のトリガ信号が入力されると(又はアライメント完了が検出された後に自動的にトリガ信号が発せられ)、角膜厚測定光源26a以外の光源21a,21b,26b及び図示を略した前眼部照明光源が消灯される(減光する場合も含む)。これにより、角膜厚測定以外のノイス光が減少し、また他のアライメント指標像(反射像)も消えるため、弱い光量の角膜裏面反射像I2を検出し易くなる。   When measuring the corneal thickness, if a trigger signal for starting measurement by the measurement switch 32 is input after completion of alignment (or a trigger signal is automatically issued after completion of alignment is detected), the corneal thickness measurement light source 26a. The other light sources 21a, 21b, and 26b and the anterior ocular segment illumination light source (not shown) are turned off (including the case of dimming). Thereby, noise light other than the measurement of corneal thickness is reduced, and other alignment index images (reflected images) are also disappeared, so that it becomes easy to detect the cornea back surface reflected image I2 having a weak light amount.

CCDカメラ10により撮像された前眼部像はメモリ33に記憶される。制御部30は、メモリ33に記憶された画像における反射像I1とI2を抽出し、その間隔Hに基づいて角膜厚dを演算する。以下、間隔Hに基づいて角膜厚dを求める方法を、図5を用いて説明する。 The anterior ocular segment image captured by the CCD camera 10 is stored in the memory 33. The control unit 30 extracts the reflection images I 1 and I 2 in the image stored in the memory 33 and calculates the corneal thickness d based on the interval H. Hereinafter, a method of obtaining the corneal thickness d based on the interval H will be described with reference to FIG.

図5において、角膜曲率中心を0座標とし、角膜曲率半径をr0、角膜曲率中心と固視点を結んだ直線と角膜表面との交点をP1(Px、Py)、角膜曲率中心と固視点を結んだ直線と角膜裏面との交点をP2、P2からの反射光と角膜表面との交点をQ(Qx、Qy)、∠P1OS=θ、∠P1OQ=α、∠QOS=β0、∠P12Q=∠γ、角膜内の屈折率をn、空気中の屈折率を1とすると、
1=(r0cosθ、r0sinθ)
Q=(r0cosβ0、Py−H)
となる。図5におけるwは、w=Qx−Pxであるから、
w=r0cosβ0−r0cosθ
となる。この時、
β0=sin-1{(r0sinθ−H)/r0
である。よって、座標P1とQ間の距離vは、三平方の定理により、
v=√(h2+w2
として求められる。また、s及びtは、
s=v・sin(α/2)
t=v・cos(α/2)
となる。これらを基にcを求めると、
c=t/tan(∠γ)
となる。但し、∠γ=α+β1、β1=sin-1(β0/n)である。よって、上記の式より、d=c+sを求めることにより、角膜厚dが得られる。
In FIG. 5, the corneal curvature center is 0 coordinate, the corneal curvature radius is r 0 , the intersection of the straight line connecting the corneal curvature center and the corneal surface and the corneal surface is P 1 (Px, Py), and the corneal curvature center and the fixed viewpoint. Is the intersection of the straight line connecting the corneal surface and the back surface of the cornea, P 2 , and the intersection of the reflected light from P 2 and the corneal surface is Q (Qx, Qy), ∠P 1 OS = θ, ∠P 1 OQ = α, ∠QOS = Β 0 , ∠P 1 P 2 Q = ∠γ, n is the refractive index in the cornea, and 1 is the refractive index in air.
P 1 = (r 0 cos θ, r 0 sin θ)
Q = (r 0 cos β 0 , Py−H)
It becomes. Since w in FIG. 5 is w = Qx−Px,
w = r 0 cos β 0 -r 0 cos θ
It becomes. This time,
β 0 = sin −1 {(r 0 sin θ−H) / r 0 }
It is. Therefore, the distance v between the coordinates P1 and Q is given by the three square theorem:
v = √ (h 2 + w 2 )
As required. Also, s and t are
s = v · sin (α / 2)
t = v · cos (α / 2)
It becomes. If c is calculated based on these,
c = t / tan (∠γ)
It becomes. However, ∠γ = α + β 1 and β 1 = sin −10 / n). Therefore, the corneal thickness d can be obtained by obtaining d = c + s from the above formula.

以上のような構成により、角膜厚測定用の受光素子(撮像素子)と、被検眼の観察や位置合わせを行うための受光素子をそれぞれ備えることなく、簡単な構成で、簡易的な角膜厚を測定することができる。さらに、上記の実施形態では、角膜厚測定に用いる被検眼固視用の指標投影光学系及び角膜厚測定用指標を投影するため光学系と、アライメント用の指標投影光学系を兼用させることにより、より簡易的な構成とすることができる。なお、被検眼の角膜曲率半径の違いによる角膜厚の誤差は少ないので、上記の角膜曲率半径r0は平均的な値を使用すれば良い。また、角膜曲率半径r0が分かっている場合は、その値を入力しておいても良い。 With the configuration as described above, a simple corneal thickness can be achieved with a simple configuration without including a light receiving element (imaging element) for measuring corneal thickness and a light receiving element for observing and aligning the eye to be examined. Can be measured. Further, in the above-described embodiment, by combining the index projection optical system for eye fixation to be used for measuring the corneal thickness and the index projection optical system for alignment and the index projection optical system for projecting the corneal thickness measurement index, A simpler configuration can be obtained. Since there is little error in the corneal thickness due to the difference in the corneal curvature radius of the eye to be examined, an average value may be used for the corneal curvature radius r 0 described above. When the corneal curvature radius r 0 is known, the value may be input.

以上の実施形態の眼科装置では、眼屈折力と角膜厚を1台の眼科装置で測定できる。角膜の曲率を変化させ眼の屈折異常を矯正する角膜矯正手術等では、被検眼の屈折力や角膜形状と共に角膜厚の情報を得て角膜矯正手術の適応を診断しているので、上記のように眼屈折力と角膜厚を1台の眼科装置により測定できることは都合が良い。   In the ophthalmologic apparatus of the above embodiment, the eye refractive power and the corneal thickness can be measured with one ophthalmologic apparatus. In corneal correction surgery, etc., which corrects the refractive error of the eye by changing the curvature of the cornea, information on the corneal thickness is obtained together with the refractive power of the eye to be examined and the corneal shape. In addition, it is convenient that the eye refractive power and corneal thickness can be measured with a single ophthalmic apparatus.

図6は、上記の実施形態に対して角膜形状測定用の指標投影系を設けた構成例である。光軸L1の後方の光学系は、図2と同様の光学系が配置されているので、省略している。被検眼に指標を投影する投影光学系は、光軸L1からの距離が近い順に、第一指標投影光学系50、第二指標投影光学系55、第三指標投影光学系60を備える。第一指標投影光学系50は、光源51、スポット絞り52を備え、有限遠の赤外光の指標を被検眼に投影する構成となっている。第二指標投影光学系55は、可視可能な近赤外光を発する近赤外光源56、スポット絞り57、コリメーティングレンズ58を備え、平行光束により無限遠の指標を被検眼に投影する。第三指標投影光学系60は、近赤外光源61、スポット絞り62、コリメーティングレンズ63を備え、これも無限遠の指標を被検眼に投影する。なお、第二指標投影光学系55は、光軸L1を中心に4個配置されており、この内の2つは装置の水平方向に、他の2つは装置の垂直方向に、それぞれ投影光軸が光軸L1に対して所定の角度で交わるように配置されている。この第二指標投影光学系55は、角膜形状測定用及びアライメント用に兼用され、さらに、角膜厚測定時には固視光学系として使用される。また、第三指標投影光学系60は左右どちらか一方に配置されていればよい。   FIG. 6 is a configuration example in which an index projection system for measuring the corneal shape is provided for the above embodiment. The optical system behind the optical axis L1 is omitted because an optical system similar to that shown in FIG. 2 is disposed. The projection optical system that projects the index onto the eye to be examined includes a first index projection optical system 50, a second index projection optical system 55, and a third index projection optical system 60 in order of increasing distance from the optical axis L1. The first index projection optical system 50 includes a light source 51 and a spot stop 52, and is configured to project an index of finite infrared light onto the eye to be examined. The second index projection optical system 55 includes a near-infrared light source 56 that emits visible near-infrared light, a spot stop 57, and a collimating lens 58, and projects an infinite index onto the eye to be examined by a parallel light flux. The third index projection optical system 60 includes a near-infrared light source 61, a spot stop 62, and a collimating lens 63, which also project an infinite index onto the eye to be examined. Four second index projection optical systems 55 are arranged around the optical axis L1, two of which are projected light in the horizontal direction of the apparatus and the other two in the vertical direction of the apparatus. The axes are arranged so as to intersect with the optical axis L1 at a predetermined angle. The second index projection optical system 55 is used for both corneal shape measurement and alignment, and is used as a fixation optical system when measuring corneal thickness. The third index projection optical system 60 may be arranged on either the left or right side.

上記構成においてアライメントを行う場合、被検眼が光軸L1と同軸になるようにアライメントを行うには、第一指標投影光学系50及び第二指標投影光学系55による角膜反射像の相対位置の変化をCCDカメラ10にて検出することにより、アライメント状態を検出する。また、第二指標投影光学系55により投影される指標は、光軸L1を中心に4つの角膜反射像ができるので、これらの位置をCCDカメラ10で検出することにより被検眼の角膜形状を測定する。   When alignment is performed in the above configuration, the relative position of the corneal reflection image is changed by the first index projection optical system 50 and the second index projection optical system 55 in order to perform alignment so that the eye to be examined is coaxial with the optical axis L1. Is detected by the CCD camera 10 to detect the alignment state. In addition, since the index projected by the second index projection optical system 55 forms four corneal reflection images around the optical axis L1, the corneal shape of the eye to be examined is measured by detecting these positions with the CCD camera 10. To do.

被検眼の角膜厚を測定する場合には、第三指標投影光学系60側に位置する第二指標投影光学系55の光源を被検眼に固視させた状態でアライメント完了させた後、それらの光源51及び56を消灯すると共に、第三投影光学系60の光源61を点灯する。これにより、角膜厚測定用の指標が投影され、その角膜表面反射像と角膜裏面反射像とに基づいて、前述と同様に角膜厚が測定される。なお、この例では、被検眼に第二指標投影光学系55の光源56を固視させた時の被検眼の視軸N2が、その投影光軸と一致するように配置されており、視軸N2を挟んで、光軸L1の方向と第三指標投影光学系60の光軸方向とがほぼ対称になるように構成されている。   When measuring the corneal thickness of the eye to be examined, after the alignment is completed with the light source of the second index projection optical system 55 located on the third index projection optical system 60 side fixed to the eye, The light sources 51 and 56 are turned off, and the light source 61 of the third projection optical system 60 is turned on. Thereby, an index for measuring the corneal thickness is projected, and the corneal thickness is measured in the same manner as described above based on the corneal surface reflection image and the corneal back surface reflection image. In this example, the visual axis N2 of the eye to be inspected when the light source 56 of the second index projection optical system 55 is fixed to the eye to be examined is arranged so as to coincide with the projection optical axis. The direction of the optical axis L1 and the optical axis direction of the third index projection optical system 60 are substantially symmetrical with respect to N2.

図7は、この変容例は、図3及び図4で示した指標投影光学系に、第三指標投影投影光学系70を加えたものである。指標投影投影光学系70は、赤外光線71、スポット絞り72、コリメーティングレンズ73を備え、略平行光束により被検眼に無限遠の指標を投影する。その投影光軸M3は、光軸L1に対して第二指標投影光学系26aの光軸M1より大きな角度φを持つように配置されている。このため、指標投影光学系70による光束は第二指標投影光学系26aとは異なる部位で角膜表面反射像I3,角膜裏面反射像I4を形成する。反射像I3,I4を撮像光学系17のCCDカメラ10により撮像し、その間隔を検出することにより、視軸N上とは別の部位である角膜表面P3と角膜裏面P4における角膜厚を得ることができる。さらに、第三指標投影光学系70を光軸の角度φを異なる角度とすることにより、他の部位での角膜厚を測定できる。 FIG. 7 shows a modified example in which a third index projection optical system 70 is added to the index projection optical system shown in FIGS. 3 and 4. The index projection / projection optical system 70 includes an infrared ray 71, a spot stop 72, and a collimating lens 73, and projects an index at infinity onto the eye to be examined by a substantially parallel light beam. The projection optical axis M3 is arranged so as to have an angle φ larger than the optical axis M1 of the second index projection optical system 26a with respect to the optical axis L1. For this reason, the light flux by the index projection optical system 70 forms a corneal surface reflection image I 3 and a corneal back surface reflection image I 4 at a site different from the second index projection optical system 26a. The reflected images I 3 and I 4 are picked up by the CCD camera 10 of the image pickup optical system 17 and the distance between them is detected, whereby the corneal film thicknesses at the corneal surface P3 and the corneal back surface P4 which are different from the visual axis N are obtained. Can be obtained. Further, by setting the third index projection optical system 70 so that the optical axis angle φ is different, the corneal thickness at other parts can be measured.

なお、光軸L1中心の固視標15を使用して被検眼の視軸Nを光軸L1に導き、上記の第二指標投影光学系26aや第三指標投影投影光学系70を複数設ける構成とすれば、視軸N上以外の角膜部位の角膜厚を複数箇所で測定でき、角膜厚の分布を簡単に得ることができる。   A configuration in which the visual axis N of the eye to be examined is guided to the optical axis L1 using the fixation target 15 at the center of the optical axis L1, and a plurality of the second index projection optical system 26a and the third index projection projection optical system 70 are provided. Then, the corneal thickness of the corneal region other than on the visual axis N can be measured at a plurality of locations, and the distribution of corneal thickness can be easily obtained.

以上の実施形態では、撮像光学系17のCCDカメラ10を、角膜厚測定のための角膜表面反射像及び角膜裏面反射像を受光する受光センサを兼ねるものとしたが、専用の受光センサを設けても良い。この場合、絞り11とCCDカメラ10の間にビームスプリッタを設け、その反射方向に角膜表面反射像及び角膜裏面反射像を受光する受光センサを設ける。この受光センサに1次元ラインセンサを使用する場合は、その検出方向と直交する円柱軸を持つ円柱レンズを光路中に配置すれば、角膜反射像を検出しやすくなる。   In the above embodiment, the CCD camera 10 of the imaging optical system 17 also serves as a light receiving sensor for receiving a corneal surface reflection image and a corneal back surface reflection image for measuring the corneal thickness, but a dedicated light receiving sensor is provided. Also good. In this case, a beam splitter is provided between the diaphragm 11 and the CCD camera 10, and a light receiving sensor for receiving the cornea surface reflection image and the cornea back surface reflection image is provided in the reflection direction. When a one-dimensional line sensor is used as the light receiving sensor, a corneal reflection image can be easily detected by arranging a cylindrical lens having a cylindrical axis perpendicular to the detection direction in the optical path.

本発明に係る眼科装置の外観図である。1 is an external view of an ophthalmologic apparatus according to the present invention. 測定部に配置される光学系及び制御系の概略構成図である。It is a schematic block diagram of the optical system and control system which are arrange | positioned at a measurement part. 被検眼が第一指標投影光学系の光源21aを固視したときのアライメント完了状態を示す図である。It is a figure which shows the alignment completion state when a to-be-tested eye stares at the light source 21a of a 1st parameter | index projection optical system. アライメント完了した時の、被検眼E,第一指標投影光学系,第二指標投影光学系及び撮像光軸L1の光学的関係を示す概略図である。It is the schematic which shows the optical relationship of the to-be-tested eye E, the 1st parameter | index projection optical system, the 2nd parameter | index projection optical system, and the imaging optical axis L1 when alignment is completed. 角膜厚を求める方法を説明する図である。It is a figure explaining the method of calculating | requiring a corneal thickness. 角膜形状測定用の指標投影系を設けた構成例である。It is a configuration example provided with an index projection system for corneal shape measurement. 被検眼の視軸部位と異なる部位の角膜厚を同時に測定可能にした場合の構成例である。It is an example of a configuration in which the corneal thickness of a part different from the visual axis part of the eye to be examined can be measured simultaneously.

符号の説明Explanation of symbols

10 CCDカメラ
20 第一指標投影光学系
21a 光源
25、25a 第二指標投影光学系
33 メモリ
50 第一指標投影光学系
55 第二指標投影光学系
60 第三指標投影光学系
70 第三指標投影光学系
L1 撮像光軸
N1 視軸


10 CCD camera 20 First index projection optical system 21a Light source 25, 25a Second index projection optical system 33 Memory 50 First index projection optical system 55 Second index projection optical system 60 Third index projection optical system 70 Third index projection optical System L1 Imaging optical axis N1 Visual axis


Claims (4)

被検眼の前眼部を正面方向から観察する光軸を持つ観察光学系と、前記観察光学系の光軸外から固視標を呈示する固視光学系と、前記固視標を固視したときの被検眼の視軸を挟んで前記観察光学系の光軸と対称な光軸方向から被検眼角膜に向けて光束を照射する照射光学系と、該光束の照射による角膜表面の反射像と角膜裏面の反射像とを前記観察光学系の光軸方向から受光センサに受光させる受光光学系と、前記受光センサの出力に基づいて角膜厚を求める角膜厚測定手段と、を備えることを特徴とする眼科装置。 An observation optical system having an optical axis for observing the anterior segment of the eye to be examined from the front direction, a fixation optical system for presenting the fixation target from outside the optical axis of the observation optical system, and the fixation target An irradiation optical system that irradiates a light beam toward the eye cornea from an optical axis direction symmetrical to the optical axis of the observation optical system across the visual axis of the subject eye, and a reflection image of the cornea surface by irradiation of the light beam A light-receiving optical system that causes a light-receiving sensor to receive a reflected image of the back surface of the cornea from an optical axis direction of the observation optical system; Ophthalmic equipment. 請求項1の眼科装置において、前記観察光学系は前眼部を撮像する撮像素子を持ち、前記撮像素子は前記受光センサを兼ねることを特徴とする眼科装置。 The ophthalmologic apparatus according to claim 1, wherein the observation optical system includes an image sensor that captures an anterior segment, and the image sensor also serves as the light receiving sensor. 請求項2の眼科装置は、眼屈折力又は角膜形状等を測定する測定光学系と、該測定光学系をアライメントするためのアライメント指標を被検眼に投影する指標投影光学系を持ち、前記固視光学系は前記指標投影光学系の一部を兼用し、前記観察光学系の撮像素子は、さらに前記アライメント指標を検出する検出素子を兼ねることを特徴とする眼科装置。 The ophthalmologic apparatus according to claim 2 includes a measurement optical system for measuring eye refractive power, a corneal shape, and the like, and an index projection optical system for projecting an alignment index for aligning the measurement optical system onto the eye to be examined. An ophthalmologic apparatus, wherein an optical system also serves as a part of the index projection optical system, and an imaging element of the observation optical system further serves as a detection element that detects the alignment index. 請求項1の眼科装置は、前記観察光学系の光軸に対して前記照射光学系とは異なる角度の光軸方向から被検眼角膜に向けて光束を照射する第2の照射光学系を備え、前記角膜厚測定手段はさらに前記第2の照射光学系の光束の照射による角膜表面の反射像と角膜裏面の反射像とを受光した前記受光センサの出力に基づいて、被検眼の視軸部位と異なる部位における角膜厚を求めることを特徴とする眼科装置。


The ophthalmologic apparatus according to claim 1 includes a second irradiation optical system that irradiates a light beam from the direction of the optical axis different from the irradiation optical system with respect to the optical axis of the observation optical system toward the eye cornea. The corneal thickness measurement means further includes a visual axis portion of the eye to be inspected based on an output of the light receiving sensor that receives a reflection image of the corneal surface and a reflection image of the back surface of the cornea by irradiation of the light beam of the second irradiation optical system. An ophthalmologic apparatus characterized by obtaining corneal thickness at different sites.


JP2004056884A 2004-03-01 2004-03-01 Ophthalmic equipment Expired - Fee Related JP4349937B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004056884A JP4349937B2 (en) 2004-03-01 2004-03-01 Ophthalmic equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004056884A JP4349937B2 (en) 2004-03-01 2004-03-01 Ophthalmic equipment

Publications (2)

Publication Number Publication Date
JP2005245546A true JP2005245546A (en) 2005-09-15
JP4349937B2 JP4349937B2 (en) 2009-10-21

Family

ID=35026609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004056884A Expired - Fee Related JP4349937B2 (en) 2004-03-01 2004-03-01 Ophthalmic equipment

Country Status (1)

Country Link
JP (1) JP4349937B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008167777A (en) * 2007-01-06 2008-07-24 Nidek Co Ltd Ophthalmological apparatus
JP2012096098A (en) * 2012-02-20 2012-05-24 Nidek Co Ltd Ophthalmologic apparatus
JP2015104555A (en) * 2013-11-29 2015-06-08 株式会社ニデック Ophthalmic measurement apparatus
JP2016220860A (en) * 2015-05-28 2016-12-28 株式会社ニデック Ophthalmologic measuring device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008167777A (en) * 2007-01-06 2008-07-24 Nidek Co Ltd Ophthalmological apparatus
JP2012096098A (en) * 2012-02-20 2012-05-24 Nidek Co Ltd Ophthalmologic apparatus
JP2015104555A (en) * 2013-11-29 2015-06-08 株式会社ニデック Ophthalmic measurement apparatus
JP2016220860A (en) * 2015-05-28 2016-12-28 株式会社ニデック Ophthalmologic measuring device

Also Published As

Publication number Publication date
JP4349937B2 (en) 2009-10-21

Similar Documents

Publication Publication Date Title
JP3709335B2 (en) Ophthalmic equipment
CN100409802C (en) Ophthalomologic apparatus
JP3664937B2 (en) Ophthalmic equipment
JP5704946B2 (en) Ophthalmic imaging equipment
JP4492847B2 (en) Eye refractive power measuring device
JP5943004B2 (en) Hand-held ophthalmic device
JP2008188047A (en) Ocular axial length measuring apparatus
JP3703310B2 (en) Hand-held ophthalmic device
JP5578560B2 (en) Anterior segment measurement device
JP3798199B2 (en) Ophthalmic equipment
JP5198831B2 (en) Eye size measuring device
JP3636886B2 (en) Ophthalmic equipment
JP2003169778A (en) Shape measuring instrument
JP2012249768A (en) Anterior eye part measurement apparatus
JPH10216088A (en) Opthalmonogy device
US7219999B2 (en) Device for measuring optical characteristic of eye
JP4349937B2 (en) Ophthalmic equipment
JP4551283B2 (en) Ophthalmic equipment
JP6507536B2 (en) Ophthalmic imaging apparatus and ophthalmologic imaging program
JP2012183123A (en) Hand-held ophthalmic device
JP4136691B2 (en) Ophthalmic equipment
JP4653576B2 (en) Eye refractive power measuring device
JP3441175B2 (en) Ophthalmic equipment
JPH05317255A (en) Measuring instrument for eye to be examined
JP3085679B2 (en) Eye refractometer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090701

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090721

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130731

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees