JP2005245190A - Power supply system equipped with thunder detecting means - Google Patents

Power supply system equipped with thunder detecting means Download PDF

Info

Publication number
JP2005245190A
JP2005245190A JP2004349607A JP2004349607A JP2005245190A JP 2005245190 A JP2005245190 A JP 2005245190A JP 2004349607 A JP2004349607 A JP 2004349607A JP 2004349607 A JP2004349607 A JP 2004349607A JP 2005245190 A JP2005245190 A JP 2005245190A
Authority
JP
Japan
Prior art keywords
power
lightning
power supply
detection
generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004349607A
Other languages
Japanese (ja)
Other versions
JP4361470B2 (en
Inventor
Shinichi Ishii
真一 石井
Yoshihiro Hirakawa
義宏 平川
Hiroshi Ueda
浩史 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HIRAKAWA SEISAKUSHO KK
TDK Lambda Corp
Original Assignee
HIRAKAWA SEISAKUSHO KK
TDK Lambda Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HIRAKAWA SEISAKUSHO KK, TDK Lambda Corp filed Critical HIRAKAWA SEISAKUSHO KK
Priority to JP2004349607A priority Critical patent/JP4361470B2/en
Publication of JP2005245190A publication Critical patent/JP2005245190A/en
Application granted granted Critical
Publication of JP4361470B2 publication Critical patent/JP4361470B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Emergency Protection Circuit Devices (AREA)
  • Stand-By Power Supply Arrangements (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power supply system equipped with a thunder detecting means capable of entirely eliminating the effect of a lightening surge to cope with the occurrence of thunder by the power supply system itself, and capable of stably supplying power with no power failure even at the time of power interruption. <P>SOLUTION: There are provided a thunder detector 12 for detecting far and near thunder, and an uninterruptible power system 9 which incorporates a battery 9c to supply power to a load from a battery 9c at the time of power interruption. When the thunder detector 12 detects remote thunder, it triggers a power generation system 7 to generate power, and if it detects near thunder, the power supply of a main power input 3 is cut off by a circuit breaker 3d, and the output voltage of the power generation system 7 is supplied to the uninteruptible power system 9 by a system switcher 6, thus supplying the power from the power generation system 7 to the load. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、雷発生検知手段を備えた電源システムに関し、特に、遠地、至近距離の雷の影響を受けることなしに安定して電力の供給が可能な雷発生検知手段を備えた電源システムに関する。   The present invention relates to a power supply system provided with lightning occurrence detection means, and more particularly, to a power supply system provided with lightning occurrence detection means capable of stably supplying power without being affected by lightning at a long distance or close range.

電源システムでは、落雷等に対する停電対策が行われている。以下に従来の電源システムにおける雷対策について図8,図9を用いて述べる。図8は、従来の電源システムの要部をブロック構成で示した図である。図9は、従来の電源システムの構成を示す図である。図8に示すように、従来の電源システム20は、商用交流電源23からの交流電圧が、商用電源入力部21を経由して系統切替器6に入力される。また、系統切替器6の一方の入力端子には、補助用電力を発電する発電装置7からの交流電圧が入力される。系統切替器6は、通常は、商用電源入力部21からの交流電圧を回路遮断器25a(図9)を経由して負荷25に供給するように設定されている。また、停電や雷発生時には、系統切替器6を切り替えて発電装置7からの交流電圧を負荷25に供給するようになっている。   In the power supply system, power failure countermeasures against lightning strikes are taken. The lightning countermeasure in the conventional power supply system will be described below with reference to FIGS. FIG. 8 is a block diagram showing the main part of a conventional power supply system. FIG. 9 is a diagram showing a configuration of a conventional power supply system. As shown in FIG. 8, in the conventional power supply system 20, the AC voltage from the commercial AC power supply 23 is input to the system switch 6 via the commercial power supply input unit 21. In addition, an AC voltage from the power generator 7 that generates auxiliary power is input to one input terminal of the system switch 6. The system switch 6 is normally set to supply the AC voltage from the commercial power input unit 21 to the load 25 via the circuit breaker 25a (FIG. 9). Further, when a power failure or lightning occurs, the system switch 6 is switched to supply the alternating voltage from the power generator 7 to the load 25.

図9に示すように、従来の電源システム20の商用電源入力部21は、回路遮断器(ブレーカ)3eと耐雷トランス21aで構成される。耐雷トランス21aは、雷発生時の商用交流電源23に重畳された雷サージを軽減して、負荷25である機器を雷サージから保護するためのものである。発電装置7は、ディーゼルエンジン(ENG)7b等により発電機(ACG)7aを回転させて発電を行い、負荷25に交流電源を供給するものである。停電発生時に発電装置7に設置している停電検出器7fにより商用電源入力部21の停電が検知されて、停電検出器7fにより発電装置7のエンジン7bが始動されて発電を行う。発電装置7からの出力電圧が安定した後に、系統切替器6を商用電源入力部21からの交流電源を発電装置7からの交流電源に切り替えて負荷25に供給する。また、雷が電源システム20の設置場所の近傍で発生したときには、作業員が、最初に発電装置7を起動して、発電装置7からの出力電圧が安定した後に、系統切替器6を商用電源入力部21から発電装置7の交流電源に切り替えて負荷25に供給する。さらに、雷の発生が収まったときには、作業員が、系統切替器6を発電装置7から商用電源入力部21の交流電源に切り替えて負荷25に電源を供給している。従来の電源システムは、雷発生時に発電装置7の起動、系統切替器6による電源の切替を手動で行っていた。   As shown in FIG. 9, the commercial power supply input unit 21 of the conventional power supply system 20 includes a circuit breaker (breaker) 3e and a lightning proof transformer 21a. The lightning-resistant transformer 21a is for reducing the lightning surge superimposed on the commercial AC power supply 23 at the time of lightning occurrence, and protecting the apparatus which is the load 25 from a lightning surge. The power generation device 7 generates power by rotating a generator (ACG) 7 a with a diesel engine (ENG) 7 b or the like, and supplies AC power to a load 25. When a power failure occurs, a power failure of the commercial power input unit 21 is detected by the power failure detector 7f installed in the power generator 7, and the engine 7b of the power generator 7 is started by the power failure detector 7f to generate power. After the output voltage from the power generator 7 is stabilized, the system switch 6 switches the AC power from the commercial power input unit 21 to the AC power from the power generator 7 and supplies it to the load 25. When lightning occurs in the vicinity of the place where the power supply system 20 is installed, the worker first activates the power generation device 7, and after the output voltage from the power generation device 7 stabilizes, the system switch 6 is switched to the commercial power supply. The input unit 21 is switched to the AC power source of the power generator 7 and supplied to the load 25. Furthermore, when the generation of lightning is stopped, the worker supplies the power to the load 25 by switching the system switch 6 from the power generator 7 to the AC power source of the commercial power input unit 21. In the conventional power supply system, when the lightning occurs, the power generation device 7 is started and the power source is switched by the system switch 6 manually.

なお、遠地で発生した雷を検知する雷検出器が特許文献1に開示されている。   In addition, the lightning detector which detects the lightning which generate | occur | produced in the distant place is disclosed by patent document 1. FIG.

特許第3266884号Japanese Patent No. 326684

しかしながら、従来の電源システム20では、雷、停電に対する対応に関して下記の課題を有していた。
1)商用電源入力部21の耐雷トランス21aにより商用交流電源に重畳された雷サージを低減するようにしているが、耐雷トランス21aでは、完全には雷サージの影響をなくすことができないため、電源にノイズとして混入したり、瞬時に高電圧が負荷に印加されて機器の劣化を招く恐れがある。このため、雷発生時に商用電源入力部21の商用交流ラインを完全に遮断することが望まれている。
2)雷発生時には、作業員により発電装置7の始動、電源の切替を行っているが、これらの操作のために作業員を必要とする。また、雷発生時の対応は、作業員の判断で行われるため、適切に対応できない恐れがある。なお、気象レーダからの情報を基に雷雲の存在を確認して落雷の危険度を推定する方法もあるが、装置のコストが高く、管理費等が発生する。また、雷雲の推定等の信頼性も低いため普及していない。このため、雷発生時に作業員を必要とせず、遠地、至近距離の雷の影響を受けることなしに安定して負荷に電力の供給を行うことができる電源システムが望まれている。
3)停電時に発電装置7から電源を供給するが、発電装置7の始動から出力電圧が安定するまでに時間を要するため、停電発生時から発電装置7の出力電圧が安定するまでの時間は、負荷に電源が供給されないため、停電してしまう。このため、停電発生時でも、停電なしに電源を供給する電源システムが望まれている。
However, the conventional power supply system 20 has the following problems regarding measures against lightning and power outages.
1) The lightning surge superimposed on the commercial AC power supply is reduced by the lightning resistant transformer 21a of the commercial power supply input unit 21, but the lightning surge transformer 21a cannot completely eliminate the influence of the lightning surge. May be mixed in as noise, or a high voltage may be instantaneously applied to the load, causing deterioration of the equipment. For this reason, it is desired to completely cut off the commercial AC line of the commercial power input unit 21 when lightning occurs.
2) When lightning occurs, workers start the power generation device 7 and switch the power source. However, workers are required for these operations. In addition, since the response at the occurrence of lightning is performed at the discretion of the worker, there is a possibility that it cannot be appropriately handled. Although there is a method of estimating the risk of lightning strike by confirming the presence of thunderclouds based on information from weather radar, the cost of the device is high, and management costs are incurred. Also, it is not popular because of the low reliability of thundercloud estimation. For this reason, there is a demand for a power supply system that can stably supply power to a load without requiring an operator at the time of occurrence of lightning and without being affected by lightning at a long distance or close range.
3) Although power is supplied from the power generation device 7 at the time of a power failure, since it takes time from the start of the power generation device 7 until the output voltage is stabilized, the time from when the power failure occurs until the output voltage of the power generation device 7 is stabilized is A power failure occurs because no power is supplied to the load. Therefore, a power supply system that supplies power without a power failure even when a power failure occurs is desired.

そこで、本発明は、上記課題に鑑みて成されたものであり、従来の電源システムに雷検知器を備えることにより、完全に雷サージの影響を無くし、遠地、至近距離の雷発生時の対応が電源システム自身で行えて、また、停電発生時でも、瞬断することなしに電力を安定して供給することが可能な雷発生検知手段を備えた電源システムを提供することを目的とする。   Therefore, the present invention has been made in view of the above problems, and by providing a lightning detector in a conventional power supply system, completely eliminates the effects of lightning surges, and copes with the occurrence of lightning at a long distance or close range. It is an object of the present invention to provide a power supply system including lightning generation detection means that can be performed by the power supply system itself and can stably supply power without instantaneous interruption even when a power failure occurs.

本発明による雷発生検知手段を備えた電源システムは、雷発生を検知する雷発生検知手段と、主電力の供給を遮断可能な遮断手段を備えた主電力供給手段と、補助用電力を発生する発電手段と、充電可能な蓄電手段を内蔵して停電時に蓄電手段から電力を負荷に供給することが可能な無停電電源供給手段と、前記主電力供給手段若しくは前記無停電電源供給手段または前記発電手段の2種類の電力から1種類の電力に切り替えて供給する系統切替手段とを有することを特徴とする。   A power supply system having a lightning occurrence detection means according to the present invention generates lightning occurrence detection means for detecting the occurrence of lightning, main power supply means having a cutoff means capable of shutting off the supply of main power, and auxiliary power. A power generation means, an uninterruptible power supply means capable of supplying power from the power storage means to a load in the event of a power failure, and the main power supply means or the uninterruptible power supply means or the power generation System switching means for switching from two types of electric power to one type of electric power for supply.

また、本発明による雷発生検知手段を備えた電源システムの前記雷発生検知手段は、遠地の落雷によって送電線に生じた一定値以上の衝撃性電磁波を検知する電波検出型雷発生検知手段および至近距離の落雷直前の静電界の変化を検知する静電界検出型雷発生検知手段の少なくとも1つから成ることを特徴とする。   Further, the lightning occurrence detection means of the power supply system provided with the lightning occurrence detection means according to the present invention includes a radio wave detection type lightning occurrence detection means for detecting an impact electromagnetic wave exceeding a certain value generated in a transmission line due to a lightning strike in a distant place, and a close proximity. It is characterized by comprising at least one electrostatic field detection type lightning generation detecting means for detecting a change in electrostatic field immediately before a lightning strike at a distance.

また、本発明による雷発生検知手段を備えた電源システムは、前記雷発生検知手段により雷を検知したとき、前記主電力供給手段の電力供給を前記遮断手段により遮断し、前記発電手段を始動して電力を発生し、前記発電手段の出力電圧の安定後に前記系統切替手段により前記発電手段からの電力を前記無停電電源供給手段に供給し、前記発電手段の出力電圧が安定するまで、前記無停電電源供給手段の蓄電手段により負荷に電力を供給することを特徴とする。   Further, the power supply system comprising the lightning occurrence detection means according to the present invention shuts off the power supply of the main power supply means by the interruption means when the lightning occurrence detection means detects the lightning, and starts the power generation means. After the output voltage of the power generation means is stabilized, the power from the power generation means is supplied to the uninterruptible power supply means by the system switching means until the output voltage of the power generation means becomes stable. Electric power is supplied to the load by the power storage means of the power failure power supply means.

また、本発明による雷発生検知手段を備えた電源システムは、前記電波検出型雷発生検知手段により遠地の落雷を検知したとき、前記発電手段を始動して電力を発生し、前記静電界検出型雷発生検知手段により至近距離の落雷直前の静電界の変化を検知したとき、前記主電力供給手段の電力供給を前記遮断手段により遮断して、前記系統切替手段により前記発電手段からの電力を前記無停電電源供給手段に供給し、前記無停電電源供給手段の蓄電手段および発電手段からの電力により負荷に電力を供給することを特徴とする。   Further, the power supply system comprising the lightning occurrence detection means according to the present invention, when the lightning detection lightning detection means detects a lightning strike in a distant place, the power generation means is started to generate electric power, and the electrostatic field detection type When a change in electrostatic field immediately before a lightning strike at a close distance is detected by the lightning occurrence detection means, the power supply of the main power supply means is shut off by the cutoff means, and the power from the power generation means is reduced by the system switching means. The power is supplied to the uninterruptible power supply means, and the load is supplied with the power from the power storage means and the power generation means of the uninterruptible power supply means.

また、本発明による雷発生検知手段を備えた電源システムは、前記雷発生検知手段からの雷検知信号を検知後、雷検知信号が所定の時間内に発生しないときは、前記主電力供給手段の電力供給を確認後、前記系統切替手段により自動的に無停電電源供給手段の電力供給を前記主電力供給手段に切り替えて、前記発電手段の電力発生動作を停止することを特徴とする。   Further, the power supply system including the lightning occurrence detection unit according to the present invention may detect the lightning detection signal from the lightning occurrence detection unit, and when the lightning detection signal is not generated within a predetermined time, the main power supply unit After confirming the power supply, the system switching means automatically switches the power supply of the uninterruptible power supply means to the main power supply means, and stops the power generation operation of the power generation means.

また、本発明による雷発生検知手段を備えた電源システムは、前記無停電電源供給手段および前記発電手段を前記主電力供給手段の主電力の周波数および位相と同一の周波数信号で制御を行い、前記無停電電源供給手段および前記発電手段の出力電源の周波数および位相が、主電力の周波数および位相と同一となるようにしたことを特徴とする。   Further, the power supply system comprising the lightning occurrence detection means according to the present invention controls the uninterruptible power supply means and the power generation means with the same frequency signal as the frequency and phase of the main power of the main power supply means, The frequency and phase of the uninterruptible power supply means and the output power supply of the power generation means are the same as the frequency and phase of the main power.

本発明による雷発生検知手段を備えた電源システムによれば、雷検知器の位置から見た遠地の落雷によって生じる一定値以上の衝撃性電磁波を避雷器から検出して、発電装置を始動させて、落雷による停電に備え、また、至近距離の落雷直前の静電界の変化を検知して、主電力入力ラインを完全に遮断して、自動的に発電装置から無停電電源装置に補助電力が供給されるため、負荷に無停電で電力を供給することができる。また、主電力入力ラインを完全に遮断することにより雷サージの影響を受けない。   According to the power supply system equipped with the lightning occurrence detection means according to the present invention, the shock absorber detects a shocking electromagnetic wave of a certain value or more caused by a lightning strike in a distant place seen from the position of the lightning detector, starts the power generator, In preparation for a power failure due to a lightning strike, a change in electrostatic field immediately before a lightning strike at a close distance is detected, the main power input line is completely shut off, and auxiliary power is automatically supplied from the power generator to the uninterruptible power supply. Therefore, electric power can be supplied to the load without any interruption. In addition, it is not affected by lightning surges by completely shutting off the main power input line.

また、従来の雷検知は、一定の検知範囲内で雷が発生した場合に警報を発して電源システムを運用していたため、無駄な運転も多く効率が悪かった。本発明による雷発生検知手段を備えた電源システムは、遠地、至近距離での雷の発生に応じて電源システムを運用できるため、無駄な運転を無くして効率よく運用することができる。   In addition, the conventional lightning detection is not efficient because there is a lot of useless operation because the power supply system is operated by issuing an alarm when a lightning occurs within a certain detection range. Since the power supply system including the lightning occurrence detection means according to the present invention can operate the power supply system in response to the occurrence of lightning at a long distance or close distance, it can be efficiently operated without useless operation.

また、静電界の変化を検知することにより、至近距離での落雷前に雷の発生を検知できるため、主電力入力ラインの遮断、補助電力の供給等の事前制御が可能となる。   In addition, since the occurrence of lightning can be detected before a lightning strike at a close distance by detecting a change in the electrostatic field, it is possible to perform advance control such as shutting off the main power input line and supplying auxiliary power.

また、発電装置の起始動後、発電装置の出力電圧が安定するまで間、一定時間の停電をバックアップするため無停電電源装置を具備しているため、瞬断を起こすことなく負荷に電力供給することができる。   In addition, since the power generator is equipped with an uninterruptible power supply to back up power outages for a certain period of time until the output voltage of the power generator stabilizes, power is supplied to the load without causing an instantaneous interruption. be able to.

また、雷が所定の時間内に発生しないときには、電源システム自身が負荷の電力供給を主電力入力ラインに切り替えて、発電装置の運転を停止するため、作業員による操作が不要となる。   Further, when lightning does not occur within a predetermined time, the power supply system itself switches the power supply of the load to the main power input line and stops the operation of the power generator, so that no operation by the worker is necessary.

以下、本発明による雷発生検知手段を備えた電源システムの実施の形態について図1乃至図6を参照して説明する。図1は、本発明による雷発生検知手段を備えた電源システムのブロック構成を示す図、図2は、雷発生検知手段を備えた電源システムの各ブロックの詳細を示す図である。なお、従来の電源システム20と同一構成および機能を有するものについては、同じ符号を付して説明する。   Hereinafter, an embodiment of a power supply system provided with lightning occurrence detection means according to the present invention will be described with reference to FIGS. FIG. 1 is a diagram showing a block configuration of a power supply system provided with lightning occurrence detection means according to the present invention, and FIG. 2 is a diagram showing details of each block of the power supply system provided with lightning occurrence detection means. In addition, what has the same structure and function as the conventional power supply system 20 is attached | subjected and demonstrated with the same code | symbol.

図1に示すように、本発明による雷発生検知手段を備えた電源システム1は、主電力電源22からの電力の供給を行う主電力供給手段としての主電力入力部3と、補助用電力を発生する発電手段としての発電装置7と、蓄電手段としてのバッテリ等を内蔵して停電時にバッテリから電力を負荷25に供給する無停電電源供給手段としての無停電電源装置(UPS)9と、主電力入力部3または発電装置7の電力を切り替えて無停電電源装置9に電力を供給する系統切替手段としての系統切替器6と、遠地、至近距離の雷発生を検知する雷発生検知手段としての雷検知器12とで構成されている。   As shown in FIG. 1, a power supply system 1 having a lightning occurrence detection unit according to the present invention includes a main power input unit 3 as a main power supply unit that supplies power from a main power source 22, and auxiliary power. A power generation device 7 as a power generation means to generate, an uninterruptible power supply (UPS) 9 as an uninterruptible power supply means for supplying power from the battery to the load 25 in the event of a power failure by incorporating a battery or the like as a power storage means, System switching unit 6 serving as a system switching unit that switches power of the power input unit 3 or the power generation device 7 to supply power to the uninterruptible power supply 9, and a lightning generation detection unit that detects the occurrence of lightning at a long distance It consists of a lightning detector 12.

図1および図2に示すように、主電力入力部3の主電力入力ライン3a上には、主電力電源22を遮断する遮断手段としての遮断器3dと、保守点検等で主電力電源22からの電圧を遮断するための回路遮断器3e(図2に示す)と、主電力電源22からの電圧を下げたり、入力側と出力側との電気的な絶縁を行う電源トランス3bと、電源トランス3bの一次側(入力)に接続された主電力電源22からの雷サージを低減するための避雷器(アレスタ)3cとが接続されている。遮断器3dは、電磁石の吸引力により接点を開閉する電磁接触器等であり、雷検知器12の雷検知部16からの雷検出信号により回路の遮断動作が制御される。避雷器(アレスタ)3cは、主電力電源22からの雷サージを低減するためのものでり、また、後述する検出部17を構成している。   As shown in FIG. 1 and FIG. 2, on the main power input line 3 a of the main power input unit 3, a circuit breaker 3 d as a shut-off means for cutting off the main power power supply 22, and a main power supply 22 for maintenance and inspection. A circuit breaker 3e (shown in FIG. 2) for cutting off the voltage of the power supply, a power transformer 3b for lowering the voltage from the main power supply 22 and for electrical insulation between the input side and the output side, and a power transformer A lightning arrester (arrester) 3c for reducing lightning surge from the main power supply 22 connected to the primary side (input) of 3b is connected. The circuit breaker 3d is an electromagnetic contactor or the like that opens and closes a contact by the attractive force of an electromagnet, and the circuit breaking operation is controlled by a lightning detection signal from the lightning detector 16 of the lightning detector 12. The lightning arrester (arrester) 3c is for reducing a lightning surge from the main power supply 22 and constitutes a detector 17 described later.

雷検知器12は、遠地または至近距離の雷の発生を検出する検出部17と、検出部17の出力から雷の発生を検知して雷検出信号を発する雷検知部16とで構成されている。   The lightning detector 12 includes a detection unit 17 that detects the occurrence of lightning at a long distance or a close distance, and a lightning detection unit 16 that detects the occurrence of lightning from the output of the detection unit 17 and generates a lightning detection signal. .

無停電電源装置(UPS)9は、停電時にバッテリ等から電力を負荷25に供給するためのものである。図2に示すように、無停電電源装置(UPS)9は、系統切替器6から出力される交流電圧が印加される入力端子9gと、負荷25に交流電圧を供給する出力端子9hとを有している。入力端子9gと出力端子9hとの間には、入力端子9gからの交流入力電圧の遮断用のブレーカ9d,9eと、交流電圧を直流電圧に変換するAC/DC変換部(コンバータ)9aと、AC/DC変換部9a或いはバッテリ9cからの直流電圧を交流電圧に変換するDC/AC変換部(インバータ)9bとが直列に順次接続されている。また、入力端子9gからの交流電圧をAC/DC変換部9aとDC/AC変換器9bで変換せずにそのまま出力端子9hに供給する自動バイパス回路9iがACスイッチ9fに接続されている。ACスイッチ9fは、自動バイパス回路9iの出力端若しくはDC/AC変換器9bの出力端のいずれか一方に切り替えて交流電圧を出力端子9hに出力するものである。   The uninterruptible power supply (UPS) 9 is for supplying electric power from a battery or the like to the load 25 at the time of a power failure. As shown in FIG. 2, the uninterruptible power supply (UPS) 9 has an input terminal 9 g to which an AC voltage output from the system switch 6 is applied, and an output terminal 9 h that supplies an AC voltage to the load 25. doing. Between the input terminal 9g and the output terminal 9h, breakers 9d and 9e for cutting off the AC input voltage from the input terminal 9g, an AC / DC converter (converter) 9a for converting the AC voltage into a DC voltage, A DC / AC converter (inverter) 9b that converts a DC voltage from the AC / DC converter 9a or the battery 9c into an AC voltage is sequentially connected in series. An automatic bypass circuit 9i that supplies the AC voltage from the input terminal 9g to the output terminal 9h without being converted by the AC / DC converter 9a and the DC / AC converter 9b is connected to the AC switch 9f. The AC switch 9f switches to either the output end of the automatic bypass circuit 9i or the output end of the DC / AC converter 9b and outputs an AC voltage to the output terminal 9h.

また、UPS9にはバッテリ9cが内蔵されており、バッテリ9cの正極側端は、AC/DC変換部9aとDC/AC変換器9bとの接続点に接続される。また、UPS9は内部に入力端子9gに入力される交流電力の停電、瞬停を監視する電圧監視回路(図示せず)が内蔵されており、交流電力の停電、瞬停が発生したときには、バッテリ9cにより出力端子9hにDC/AC変換器9bからの交流電圧を出力するようになっている。なお、UPS9は、蓄電手段としてバッテリ9cの他に大容量のコンデンサを使用するようにしてもよい。   Further, the battery 9c is built in the UPS 9, and the positive end of the battery 9c is connected to a connection point between the AC / DC converter 9a and the DC / AC converter 9b. Further, the UPS 9 has a built-in voltage monitoring circuit (not shown) for monitoring the AC power failure and instantaneous power failure input to the input terminal 9g. 9c outputs an AC voltage from the DC / AC converter 9b to the output terminal 9h. The UPS 9 may use a large-capacity capacitor in addition to the battery 9c as the power storage means.

また、UPS9の別の実施例として、ACスイッチ9fにて自動バイパス回路(9i)を切り離した状態で、入力端子9gからの交流電力を高力率のAC/DC変換部9aにより直流電力に変換して、これをバッテリ9cの充電に使用すると共に、DC/AC変換部9bにより再び交流電力に変換して、出力端子9hに供給する常時インバータ給電方式の構成にすることも可能である。常時インバータ給電方式では、入力電力による障害が出力端子9hの後段にある負荷25に伝わることがなく、また、入力電力が停電、瞬停した場合でも、バッテリ9cからの直流電力が瞬断することなくDC/AC変換部9bに送り出されて、負荷25に安定した電力を供給することができる。   As another example of the UPS 9, AC power from the input terminal 9g is converted into DC power by the AC / DC converter 9a having a high power factor in a state where the automatic bypass circuit (9i) is disconnected by the AC switch 9f. Then, this can be used for charging the battery 9c, and it can be converted into alternating current power again by the DC / AC converter 9b and supplied to the output terminal 9h. In the constant inverter power supply method, the failure due to the input power is not transmitted to the load 25 at the subsequent stage of the output terminal 9h, and the DC power from the battery 9c is momentarily interrupted even when the input power is blacked out or momentarily stopped. Without being sent to the DC / AC converter 9b, stable power can be supplied to the load 25.

図2に示すように、補助電力を発電する発電装置7は、ディーゼルエンジン7b等により発電機7aを回転させて発電を行い、発電機7aからの出力電圧の大きさ、周波数を所定の値となるように自動電圧調整器7cにより自動的に調整する。自動電圧調整器7cから出力される電源は、回路遮断器(ブレーカ)7eを介して系統切替器6に出力される。回路遮断器(ブレーカ)7eは、発電装置7の出力が過負荷状態になったときに、出力ラインを遮断して発電装置7を保護するためのものである。発電装置7は、停電検出器7fにより主電力入力部3の停電を検知して、停電検出器7fにより発電装置7のエンジン7bが始動されて、発電が行われる。   As shown in FIG. 2, the power generation device 7 that generates auxiliary power generates power by rotating the generator 7 a with a diesel engine 7 b or the like, and sets the magnitude and frequency of the output voltage from the generator 7 a to predetermined values. Thus, the automatic voltage regulator 7c automatically adjusts. The power output from the automatic voltage regulator 7c is output to the system switch 6 via a circuit breaker (breaker) 7e. The circuit breaker (breaker) 7e is for protecting the power generation device 7 by interrupting the output line when the output of the power generation device 7 is overloaded. The power generation device 7 detects a power failure of the main power input unit 3 with the power failure detector 7f, and the power failure detector 7f starts the engine 7b of the power generation device 7 to generate power.

図1および図2に示す系統切替器6は、主電力入力部3と発電装置7との2種類の電力を切り替えてUPS9に電力を供給するものである。系統切替器6は、電源の切替を高速に行うことができる無瞬断型を使用することにより、制御装置(図示せず)からの信号により自動的に電源の切替を行う。無瞬断型の系統切替器6を使用することにより、電源切替に伴う電源の瞬断を防ぐことができる。   The system switch 6 shown in FIGS. 1 and 2 supplies power to the UPS 9 by switching between two types of power of the main power input unit 3 and the power generator 7. The system switcher 6 automatically switches the power supply by a signal from a control device (not shown) by using a non-instantaneous type that can switch the power supply at high speed. By using the non-instantaneous system switch 6, it is possible to prevent an instantaneous power interruption associated with power switching.

次に、主電力入力部3の主電力入力ライン3aに流れ込む電流、電圧から雷を検知する雷検知手段について図3および図4を用いて説明する。なお、雷検知器に関する構成、動作は、特許文献1に詳述されているので、詳細な説明は省略する。   Next, lightning detection means for detecting lightning from the current and voltage flowing into the main power input line 3a of the main power input unit 3 will be described with reference to FIGS. In addition, since the structure and operation | movement regarding a lightning detector are explained in full detail in patent document 1, detailed description is abbreviate | omitted.

雷の発生を検知する雷検知器は、図3に示す遠地の落雷を検出する電波検出型雷検知器および図4に示す至近距離の落雷直前の静電界の変化を検知する静電界検出型雷検知器からなる。電波検出型雷検知器は、遠地の落雷により発生する衝撃性電磁波を検出する電波検出部と電波検出部からの衝撃性電磁波から雷を検知する雷検知部とで構成されており、また、静電界検出型雷検知器は、至近距離の静電界の変化を検出する静電界検出部と静電界検出部の静電界の変化から雷を検知する雷検知部とで構成されている。   The lightning detector for detecting the occurrence of lightning is a radio wave detection type lightning detector for detecting lightning strikes in the far field shown in FIG. It consists of a detector. The radio wave detection type lightning detector consists of a radio wave detection unit that detects impact electromagnetic waves generated by lightning strikes in remote areas, and a lightning detection unit that detects lightning from impact electromagnetic waves from the radio wave detection unit. The electric field detection type lightning detector includes an electrostatic field detector that detects a change in electrostatic field at a close distance and a lightning detector that detects lightning from the change in electrostatic field of the electrostatic field detector.

図3は、電波検出部18にローパスフィルタ18aを使用した電波検出型雷検知器13の構成を示すブロック図である。図4は、静電界検出部19に放電部19bを使用した静電界検出型雷検知器14の構成を示すブロック図である。図3および図4に示すように、雷検知部16は、電磁界、静電界の強度変化を検出するコヒーラ16aとコーヒア(導通)したコヒーラ16aの絶縁性を回復するためのデコヒーラ16bとコヒーラ16aからの信号変化で起動して一定時間雷検知を伝えるタイマ回路16cと、タイマ回路16cの信号を外部に出力する信号出力回路16dとから構成される。   FIG. 3 is a block diagram showing a configuration of the radio wave detection type lightning detector 13 that uses the low-pass filter 18 a for the radio wave detection unit 18. FIG. 4 is a block diagram showing the configuration of the electrostatic field detection type lightning detector 14 using the discharge unit 19b in the electrostatic field detection unit 19. As shown in FIG. As shown in FIGS. 3 and 4, the lightning detection unit 16 includes a coherer 16a that detects a change in the strength of an electromagnetic field and an electrostatic field, and a decoherer 16b and a coherer 16a for recovering the insulating properties of the coherer 16a that has been cohered. The timer circuit 16c is activated by a signal change from the timer to transmit lightning detection for a certain time, and the signal output circuit 16d outputs the signal of the timer circuit 16c to the outside.

図3に示す遠地の落雷を検知する電波検出型雷検知器13の電波検出部18は、主電力入力部3から避雷器(アレスタ)3cと接地点の間に接地したローパスフィルタ(トランス)18aからの電圧を検出するものである。遠地の落雷により発生する衝撃性電磁波からの電圧は、アレスタ3cに吸収されて、電流としてローパスフィルタ18aを構成するトランスの一次側を流れて、接地点に流れ込む。   The radio wave detection unit 18 of the radio wave detection type lightning detector 13 for detecting a lightning strike in a distant place shown in FIG. 3 includes a low-pass filter (transformer) 18a grounded between the main power input unit 3 and a lightning arrester (arrester) 3c and a ground point. It detects the voltage of. The voltage from the impact electromagnetic wave generated by the lightning strike in the far field is absorbed by the arrester 3c, flows as a current through the primary side of the transformer constituting the low-pass filter 18a, and flows into the grounding point.

図3に示す電波検出部18のトランス18aは、一次側に入力された約1MHz以下の周波数の信号を二次側に出力して、1MHzを超える周波数の信号を二次側に出力しないローパスフィルタ特性を有している。   The transformer 18a of the radio wave detection unit 18 shown in FIG. 3 outputs a signal having a frequency of about 1 MHz or less inputted to the primary side to the secondary side and does not output a signal having a frequency exceeding 1 MHz to the secondary side. It has characteristics.

遠地の落雷の発する電磁波による誘導電圧は送電線の送電電圧に重畳されて主電力入力部3に到達する。誘導電圧は雷サージとしてアレスタ3cに電流として流れ、図3に示すトランスからなるローパスフィルタ18aを通って接地点に流れる。トランスは1MHz以下の周波数成分の電圧が選択されて雷検知部16のコヒーラ16aに印加される。一方、このトランス18aは弱い落雷である誘導雷からコヒーラを保護する役割も果たす。コヒーラ16aは印加電圧の変化により固着通電状態に遷移(コヒーア)する。このとき、コヒーラ16aの通電状態をトランジスタ等のスイッチング動作で検出してタイマ回路16cを起動するようにする。また、デコヒーラ16bにより通電状態のコヒーラ16aに振動を与えて絶縁回復状態にして、次の雷電磁波入力に備える。コヒーラ16aの通電状態をトランジスタで検出することにより、遠地の落雷を検知することができる。   The induced voltage due to the electromagnetic wave generated by the lightning strike in the remote area is superimposed on the transmission voltage of the transmission line and reaches the main power input unit 3. The induced voltage flows as a current to the arrester 3c as a lightning surge, and flows to the ground point through the low-pass filter 18a formed of a transformer shown in FIG. For the transformer, a voltage having a frequency component of 1 MHz or less is selected and applied to the coherer 16 a of the lightning detector 16. On the other hand, the transformer 18a also serves to protect the coherer from induced lightning, which is a weak lightning. The coherer 16a transitions to the fixed energized state (coherence) due to a change in the applied voltage. At this time, the energization state of the coherer 16a is detected by a switching operation of a transistor or the like to start the timer circuit 16c. In addition, the decoherer 16b vibrates the energized coherer 16a to restore the insulation, and prepares for the next lightning electromagnetic wave input. By detecting the energization state of the coherer 16a with a transistor, it is possible to detect a lightning strike in a distant place.

なお、コヒーラ16aの通電状態を検出するトランジスタは、予め可変抵抗器にてバイアス電圧が調整されており、トランジスタのスイッチング動作に閾値を設定することができる。これにより、一定値以上の電圧に対してコヒーラ16aの通電状態を検知することができる。電磁波強度は電圧に変換されているため、トランジスタのバイアス電圧を調整することにより、一定値以上の衝撃性電磁波を検出することが可能となる。   Note that the bias voltage of the transistor that detects the energization state of the coherer 16a is adjusted in advance by a variable resistor, and a threshold value can be set for the switching operation of the transistor. Thereby, the energization state of the coherer 16a can be detected with respect to a voltage of a certain value or more. Since the electromagnetic wave intensity is converted into a voltage, it is possible to detect a shocking electromagnetic wave of a certain value or more by adjusting the bias voltage of the transistor.

また、雷検知部16のタイマ回路16cのタイマ時間は可変することができるようになっている。なお、雷を検出してタイマ時間内に再度雷を検出した場合には、最後に雷を検出したときからのタイマ時間が有効となる。   Further, the timer time of the timer circuit 16c of the lightning detector 16 can be varied. When lightning is detected and lightning is detected again within the timer time, the timer time from when the last lightning was detected becomes valid.

図4に示す至近距離の落雷直前の静電界の変化を検知する静電界検出型雷検知器14の静電界検出部19は、主電力入力部3からの避雷器(アレスタ)3cと接地点の間に接地した放電部(気中放電ギャップ)19bからの放電を検出するものである。   The electrostatic field detector 19 of the electrostatic field detection type lightning detector 14 that detects a change in electrostatic field immediately before a lightning strike at a short distance shown in FIG. 4 is connected between a lightning arrester (arrester) 3c from the main power input unit 3 and a ground point. The discharge from the discharge portion (air discharge gap) 19b grounded to the ground is detected.

図4に示す放電部(気中放電ギャップ)19bには、至近距離の落雷直前の雷雲と大地間の電圧の変化によって静電界の変化が起こり、コロナ放電が生じる。このため、放電部(気中放電ギャップ)19bで生じたコロナ放電により電磁波が発生して、雷検知部16のコヒーラ16aはコヒーアする。コヒーラ16aの通電状態をトランジスタで検出することにより、至近距離の雷を検知することができる。   In the discharge part (air discharge gap) 19b shown in FIG. 4, a change in electrostatic field occurs due to a change in voltage between a thundercloud and the ground immediately before a lightning strike at a close distance, and corona discharge occurs. For this reason, electromagnetic waves are generated by corona discharge generated in the discharge part (air discharge gap) 19b, and the coherer 16a of the lightning detection part 16 cohers. By detecting the energization state of the coherer 16a with a transistor, it is possible to detect lightning at close range.

次に、以上の構成から成る雷発生検知手段を備えた電源システム1の雷検出における電力の制御動作について説明する。なお、以下に述べる雷検出における電力の制御は、雷発生検知手段を備えた電源システム1に内蔵された制御装置(図示せず)により行われる。   Next, the power control operation in the lightning detection of the power supply system 1 provided with the lightning occurrence detection means having the above configuration will be described. The power control in the lightning detection described below is performed by a control device (not shown) built in the power supply system 1 provided with the lightning occurrence detection means.

図5は、雷発生検知手段を備えた電源システムの雷検出における電力の制御動作を示すフローチャートである。図5に示すように、最初に遠地の落雷を検知する電波検出型検知器13の遠地雷検出信号が“ON”しているかをチェックする(ステップS1)。電波検出型検知器13の遠地雷検出信号が“ON”していない場合、すなわち“OFF”のときには、遠地雷検出信号チェック以外の他の処理、例えば停電検出等を行い、他の処理を行った後に電波検出型検知器13の遠地雷検出信号をチェックするようにする。電波検出型検知器13の遠地雷検出信号が“ON”している場合には、発電装置7が運転を停止しているかを確認して(ステップS2)、発電装置7が運転中の場合には、ステップS4に移行する。発電装置7の運転停止を確認後、発電装置7の始動を行って、補助電力の供給が行えるようにして、落雷等による停電に備える(ステップS3)。   FIG. 5 is a flowchart showing the power control operation in the lightning detection of the power supply system provided with the lightning occurrence detection means. As shown in FIG. 5, it is first checked whether or not the far lightning detection signal of the radio wave detection type detector 13 that detects a lightning strike in the far place is “ON” (step S1). When the remote mine detection signal of the radio wave detection type detector 13 is not “ON”, that is, when it is “OFF”, other processing than the remote mine detection signal check, such as power failure detection, is performed, and other processing is performed. After that, the remote landmine detection signal of the radio wave detection type detector 13 is checked. If the far-field lightning detection signal of the radio wave detection type detector 13 is “ON”, it is confirmed whether the power generation device 7 has stopped operating (step S2), and when the power generation device 7 is in operation. Shifts to step S4. After confirming that the power generation device 7 has stopped operating, the power generation device 7 is started so that auxiliary power can be supplied to prepare for a power failure due to a lightning strike or the like (step S3).

次に、発電装置7の始動後、至近距離の落雷直前の静電界の変化を検知する静電界検出型雷検知器14の至近雷検出信号が“ON”しているかをチェックする(ステップS4)。静電界検出型雷検知器14の至近雷検出信号が“ON”していない場合は、電波検出型検知器13の遠地雷検出信号が“OFF”になっているかをチェックする(ステップS5)。電波検出型検知器13の遠地雷検出信号が“OFF”の場合には、落雷の発生頻度が低くなったため、ステップS17に移行して、発電装置7の運転を停止するようにする(ステップS17)。また、電波検出型検知器13の遠地雷検出信号が“ON”のときには、ステップS4へ移行する。ステップS4で静電界検出型雷検知器14の至近雷検出信号が“ON”している場合には、落雷の影響を受けないようにするために、主電力入力部3の電磁接触器3dを解放して、主電力入力ライン3aを遮断するようにする(ステップS6)。主電力入力ライン3aを遮断することにより、UPS9には主電力電源22が供給されないため、UPS9自身が停電を検出して、バッテリ運転に切り替えて、負荷25に電力を供給する(ステップS7)。   Next, after the power generation device 7 is started, it is checked whether or not the closest lightning detection signal of the electrostatic field detection type lightning detector 14 that detects a change in electrostatic field immediately before a lightning strike at a close distance is “ON” (step S4). . If the closest lightning detection signal of the electrostatic field detection type lightning detector 14 is not “ON”, it is checked whether the far ground lightning detection signal of the radio wave detection type detector 13 is “OFF” (step S5). When the far ground lightning detection signal of the radio wave detection type detector 13 is “OFF”, the frequency of lightning strikes is low, so the process proceeds to step S17 to stop the operation of the power generation device 7 (step S17). ). When the far landmine detection signal of the radio wave detection type detector 13 is “ON”, the process proceeds to step S4. If the near-field lightning detection signal of the electrostatic field detection type lightning detector 14 is “ON” in step S4, the electromagnetic contactor 3d of the main power input unit 3 is turned off so as not to be affected by lightning. The main power input line 3a is disconnected to release (step S6). By cutting off the main power input line 3a, the main power source 22 is not supplied to the UPS 9, so the UPS 9 itself detects a power failure, switches to battery operation, and supplies power to the load 25 (step S7).

次に、主電力入力ライン3aを遮断後に発電装置7からの出力電圧が安定しているかをチェックして(ステップS8)、発電装置7からの出力電圧が安定した後、系統切替器6を発電装置7側に自動で切り替えてUPS9に発電装置7からの補助電力を供給するようにする(ステップS9)。UPS9は、発電装置7から補助電力が供給されるため、電力供給が回復したことによりバッテリ運転から発電装置7からの補助電力運転に切り替えて負荷25に電力を供給する(ステップS10)。これにより、雷を検出後に主電力入力ライン3aが遮断されて、UPS9には発電装置7からの補助電力が供給される。   Next, after the main power input line 3a is cut off, it is checked whether the output voltage from the power generator 7 is stable (step S8), and after the output voltage from the power generator 7 is stabilized, the system switch 6 is generated. Automatic switching to the device 7 side is performed to supply auxiliary power from the power generation device 7 to the UPS 9 (step S9). Since the auxiliary power is supplied from the power generation device 7, the UPS 9 switches from the battery operation to the auxiliary power operation from the power generation device 7 when the power supply is restored, and supplies power to the load 25 (step S <b> 10). Thereby, after detecting lightning, the main power input line 3a is cut off, and auxiliary power from the power generator 7 is supplied to the UPS 9.

次に、主電力入力部3の主電力電源22が停電していないかをチェックする(ステップS11)。これは、落雷により変電所からの送電がストップしていないかを確認するためのものである。主電力電源22が停電している場合には、発電装置7からの補助電力の供給を継続して、主電力電源22の停電が回復するまで待機する。主電力電源22が正常に入力されているときには、静電界検出型雷検知器14の至近雷検出信号が“OFF”であるかをチェックする(ステップS12)。なお、静電界検出型雷検知器14は所定の時間内に雷を検知しない場合には、至近雷検出信号は“OFF”となる。静電界検出型雷検知器14の至近雷検出信号が“ON”の場合には、ステップS11に移行して、静電界検出型雷検知器14の至近雷検出信号が“OFF”になるまで待つようにする。   Next, it is checked whether or not the main power source 22 of the main power input unit 3 has a power failure (step S11). This is to confirm whether the power transmission from the substation has been stopped by lightning. When the main power source 22 has a power failure, the supply of auxiliary power from the power generator 7 is continued, and the system waits until the main power source 22 recovers from the power failure. When the main power supply 22 is normally input, it is checked whether the closest lightning detection signal of the electrostatic field detection type lightning detector 14 is “OFF” (step S12). When the electrostatic field detection type lightning detector 14 does not detect lightning within a predetermined time, the closest lightning detection signal is “OFF”. If the close lightning detection signal of the electrostatic field detection type lightning detector 14 is “ON”, the process proceeds to step S11 and waits until the close lightning detection signal of the electrostatic field detection type lightning detector 14 becomes “OFF”. Like that.

次に、ステップS12で静電界検出型雷検知器14の至近雷検出信号が“OFF”の場合には、前もって設定した運転モードをチェックする。運転モードとは、ステップS12で至近雷検出信号が“OFF”のときに、主電力電源22に切り替えるか、遠地雷検出信号をチェックして、主電力電源22に切り替えるかを指定するものである。運転モードが“0”のときには、遠地雷検出信号をチェックするようにする。また、運転モードが“0”以外のときには、主電力電源22に切り替えるようにする。運転モードが“0”であるかをチェックして(ステップS13)、運転モードが“0”以外のときには、ステップ15に移行する。運転モードが“0”のときには、電波検出型検知器13の遠地雷検出信号が“OFF”であるかをチェックする(ステップS14)。電波検出型検知器13は所定の時間内に雷を検知しない場合には、遠地雷検出信号は“OFF”となる。電波検出型検知器13の遠地雷検出信号が“ON”の場合には、電波検出型検知器13の遠地雷検出信号が“OFF”になるまで待つようにする。   Next, when the closest lightning detection signal of the electrostatic field detection type lightning detector 14 is “OFF” in step S12, the preset operation mode is checked. The operation mode specifies whether to switch to the main power source 22 or to check the far landmine detection signal and switch to the main power source 22 when the closest lightning detection signal is “OFF” in step S12. . When the operation mode is “0”, the far landmine detection signal is checked. When the operation mode is other than “0”, the main power supply 22 is switched. It is checked whether the operation mode is “0” (step S13). If the operation mode is other than “0”, the process proceeds to step 15. When the operation mode is “0”, it is checked whether the far landmine detection signal of the radio wave detection type detector 13 is “OFF” (step S14). When the radio wave detection type detector 13 does not detect lightning within a predetermined time, the far landmine detection signal is “OFF”. When the far landmine detection signal of the radio wave detection type detector 13 is “ON”, it waits until the far landmine detection signal of the radio wave detection type detector 13 becomes “OFF”.

電波検出型検知器13の遠地雷検出信号が“OFF”の場合には、主電力電源22が正常に入力されているため、主電力入力部3の電磁接触器3dを閉じる(ステップS15)。   When the far-ground lightning detection signal of the radio wave detection type detector 13 is “OFF”, the main power source 22 is normally input, so the electromagnetic contactor 3d of the main power input unit 3 is closed (step S15).

次に、系統切替器6を主電力入力部3に自動で切り替えてUPS9に主電力電源22を供給する(ステップS16)。主電力入力部3の電力がUPS9に供給されて、UPS9は主電力入力部3の電力を負荷25に供給する。主電力電源22が正常に復帰したため、発電装置7の補助電力は必要としないので、発電装置7の運転を停止するようにする(ステップS17)。   Next, the system switch 6 is automatically switched to the main power input unit 3 to supply the main power source 22 to the UPS 9 (step S16). The power of the main power input unit 3 is supplied to the UPS 9, and the UPS 9 supplies the power of the main power input unit 3 to the load 25. Since the main power supply 22 has returned to normal, auxiliary power for the power generation device 7 is not required, so the operation of the power generation device 7 is stopped (step S17).

以上述べた雷発生検知手段を備えた電源システムの雷検出における電力の制御動作の各信号のタイミングチャートを図6に示す。なお、図6に示すタイミングチャートは、運転モードが“0”の場合を示す。図6に示すように、電波検出型検知器13の遠地雷検出信号がt1で“ON”した場合には、発電装置7の始動を行って、電力の供給をできるようにする。静電界検出型雷検知器14の至近雷検出信号がt2で“ON”した場合には、主電力入力部3の電磁接触器3dの接点を解放して主電力電源22を遮断するようにする。UPS9は、UPS9には電力が供給されないため、UPS9自身が停電を検出して、バッテリ運転に切り替える。発電装置7からの出力電圧が安定した後、系統切替器6を発電装置7側に自動で切り替えてUPS9に発電装置7からの電力を供給するようにする。UPS9は、発電装置7から電力が供給されるため、バッテリ運転から通常運転に切り替える。また、発電装置7の始動を行って、電力の供給をできるようにする。   FIG. 6 shows a timing chart of each signal of the power control operation in the lightning detection of the power supply system provided with the lightning generation detecting means described above. The timing chart shown in FIG. 6 shows a case where the operation mode is “0”. As shown in FIG. 6, when the far landmine detection signal of the radio wave detection type detector 13 is “ON” at t <b> 1, the power generation device 7 is started so that power can be supplied. When the nearest lightning detection signal of the electrostatic field detection type lightning detector 14 is “ON” at t2, the contact of the electromagnetic contactor 3d of the main power input unit 3 is released to shut off the main power source 22. . Since the UPS 9 is not supplied with power, the UPS 9 detects a power failure and switches to battery operation. After the output voltage from the power generation device 7 is stabilized, the system switch 6 is automatically switched to the power generation device 7 side to supply power from the power generation device 7 to the UPS 9. The UPS 9 is switched from battery operation to normal operation because power is supplied from the power generation device 7. In addition, the power generation device 7 is started so that power can be supplied.

次に、静電界検出型雷検知器14の至近雷検出信号が図6に示すt3で“OFF”であることを確認後、電波検出型検知器13の遠地雷検出信号が図6に示すt4で“OFF”であることを確認して、主電力入力部3の電磁接触器3dの接点を閉じて主電力電源22を通電するようにする。電磁接触器3dの接点を切り替え後、系統切替器6を自動的に主電力入力部3に切り替えてUPS9に電力を供給する。UPS9は、通常運転に切り替わり、主電力電源22が負荷25に供給される。系統切替器6を電力入力部3に切り替え後、発電装置の運転を停止する。   Next, after confirming that the closest lightning detection signal of the electrostatic field detection type lightning detector 14 is “OFF” at t3 shown in FIG. 6, the far field lightning detection signal of the radio wave detection type detector 13 becomes t4 shown in FIG. Is confirmed to be “OFF”, the contact of the electromagnetic contactor 3d of the main power input unit 3 is closed, and the main power source 22 is energized. After switching the contact of the electromagnetic contactor 3d, the system switch 6 is automatically switched to the main power input unit 3 to supply power to the UPS 9. The UPS 9 is switched to normal operation, and the main power supply 22 is supplied to the load 25. After switching the system switch 6 to the power input unit 3, the operation of the power generator is stopped.

なお、図5および図6に示す実施の形態では、最初に遠地雷検出信号をチェックしているが、例えば、直下型の雷のように至近雷が発生して、遠地雷検出信号が“OFF”の状態で、至近雷検出信号が“ON”した場合には、発電装置7を始動して、図5に示すステップS6からの制御を行うようにしてもよい。   In the embodiment shown in FIG. 5 and FIG. 6, the far mine detection signal is checked first. However, for example, a close lightning occurs like a direct type lightning, and the far mine detection signal is “OFF”. In the state of “”, when the closest lightning detection signal is “ON”, the power generation device 7 may be started and the control from step S6 shown in FIG. 5 may be performed.

以上述べたように、本発明による遠地及び至近の雷発生検知手段を備えた電源システムによれば、遠地で発生した雷を検知して、発電装置を始動して、停電等に備えるようにし、至近距離の落雷前に主電力電源22の遮断を行うことにより、完全に雷サージの影響を無くし、雷発生時の対応を電源システム自身で行うことができる。また、停電発生時でも、停電なしに電力を安定して供給することが可能となる。   As described above, according to the power supply system provided with the lightning occurrence detection means in the remote area and the close according to the present invention, the lightning generated in the remote area is detected, the power generation device is started, and it is prepared for a power failure, By shutting off the main power supply 22 before a lightning strike at a close distance, it is possible to completely eliminate the influence of the lightning surge and to cope with the occurrence of lightning by the power supply system itself. In addition, even when a power failure occurs, it is possible to stably supply power without a power failure.

本発明による雷発生検知手段を備えた電源システムは、遠地、至近距離での雷の発生に応じて電源システムを運用できるため、無駄な運転を無くして効率よく運用することができる。   Since the power supply system including the lightning occurrence detection means according to the present invention can operate the power supply system in response to the occurrence of lightning at a long distance or close distance, it can be efficiently operated without useless operation.

また、静電界の変化を検知することにより、至近距離での落雷前に雷の発生を検知できるため、主電力入力ラインの遮断、補助電力の供給等の事前制御が可能となる。   In addition, since the occurrence of lightning can be detected before a lightning strike at a close distance by detecting a change in the electrostatic field, it is possible to perform advance control such as shutting off the main power input line and supplying auxiliary power.

以上述べた遠地及び至近の雷発生検知手段を備えた電源システムの雷検出は、主電力入力部3の主電力入力ライン3bの入力電源からアレスタ3cに検出部17を配設して行うようにしたものであるが、特許文献1に開示されている検出部17にアンテナを使用して衝撃性電磁波を受信するようにしてもよい。   The lightning detection of the power supply system provided with the far and near lightning generation detection means described above is performed by disposing the detection unit 17 in the arrester 3c from the input power source of the main power input line 3b of the main power input unit 3. However, you may make it receive an impact electromagnetic wave using the antenna for the detection part 17 currently disclosed by patent document 1. FIG.

次に、主電力電源の周波数に同期して無停電電源装置および発電装置を制御することにより、電力切替時に発生する瞬停を防止する周波数同期式の雷発生検知手段を備えた電源システムについて述べる。図7は、周波数同期式の雷発生検知手段を備えた電源システムを構成するブロックを示す図である。なお、図1および図2に示す雷発生検知手段を備えた電源システムと同一構成および機能を有するものについては、同じ符号を付して説明する。図7に示す基準同期電源周波数発生部10は、主電力入力部3の遮断器3dの出力側より入力した主電力電源22の周波数、位相を検出して、主電力電源22と同一の周波数、位相を出力する発信器である。基準同期電源周波数発生部10は、主電力電源22が遮断された際にも、継続して周波数信号を出力する。基準同期電源周波数発生部10の周波数信号は、UPS9の外部制御型DC/AC変換器9jおよび発電装置7の電圧周波数調整器7gに出力される。UPS9の外部制御型DC/AC変換器9jは、基準同期電源周波数発生部10の周波数信号と同期して交流生成のためのスイッチングを行うため、主電力電源22の周波数と同一で、位相が揃った交流電源が出力される。また、発電装置7の電圧周波数調整器7gは、基準同期電源周波数発生部10の周波数信号により発電電力の周波数を調整を行い、主電力電源22の周波数と同一で、位相が揃った交流電源が出力される。   Next, a power supply system equipped with frequency-synchronized lightning generation detection means for preventing an instantaneous interruption occurring during power switching by controlling the uninterruptible power supply and the power generator in synchronization with the frequency of the main power supply will be described. . FIG. 7 is a diagram showing blocks constituting a power supply system including a frequency-synchronized lightning occurrence detection unit. In addition, what has the same structure and function as a power supply system provided with the lightning generation | occurrence | production detection means shown in FIG.1 and FIG.2 is attached | subjected and demonstrated with the same code | symbol. 7 detects the frequency and phase of the main power source 22 input from the output side of the circuit breaker 3d of the main power input unit 3, and detects the same frequency as the main power source 22. It is a transmitter that outputs a phase. The reference synchronous power supply frequency generator 10 continuously outputs a frequency signal even when the main power supply 22 is shut off. The frequency signal of the reference synchronous power supply frequency generator 10 is output to the external control type DC / AC converter 9j of the UPS 9 and the voltage frequency adjuster 7g of the power generator 7. Since the external control type DC / AC converter 9j of the UPS 9 performs switching for generating alternating current in synchronization with the frequency signal of the reference synchronous power supply frequency generator 10, it is the same as the frequency of the main power supply 22 and has the same phase. AC power is output. In addition, the voltage frequency adjuster 7g of the power generation device 7 adjusts the frequency of the generated power by the frequency signal of the reference synchronous power supply frequency generation unit 10, and an AC power supply having the same phase as that of the main power supply 22 is aligned. Is output.

雷検知器12から雷検出信号が出力させた場合には、主電力入力部3の遮断器3dにより主電力電源22が遮断されて、UPS9のバッテリ9cから電力が供給され、また、発電装置7が始動して補助電力が出力されて、系統切替器6で発電装置7の補助電力に切り替えて負荷25に供給する。このとき、UPS9から出力される電源及び発電装置7から出力される補助電力は、主電源の周波数と同一で、位相が揃っているため、UPS9のバッテリ運転開始時、系統切替器6の電力切替時で電圧および周波数が同一のため、瞬停が発生しない。   When a lightning detection signal is output from the lightning detector 12, the main power source 22 is shut off by the circuit breaker 3d of the main power input unit 3, and power is supplied from the battery 9c of the UPS 9, and the power generator 7 Is started and auxiliary power is output, and is switched to auxiliary power of the power generator 7 by the system switch 6 and supplied to the load 25. At this time, the power output from the UPS 9 and the auxiliary power output from the power generation device 7 are the same in frequency as the main power supply and have the same phase. Therefore, when the UPS 9 starts battery operation, the power switch of the system switch 6 is switched. Because the voltage and frequency are the same at the moment, no instantaneous interruption occurs.

以上述べたように、本発明による周波数同期式の雷発生検知手段を備えた電源システムを使用することにより、雷検出時、停電時の電力切替時に瞬停が発生しないため、安定した電力を供給することができる。   As described above, by using the power supply system equipped with the frequency-synchronized lightning detection means according to the present invention, stable power is supplied because no power failure occurs when power is switched at the time of lightning detection or power failure. can do.

本発明による雷発生検知手段を備えた電源システムのブロック構成を示す図である。It is a figure which shows the block configuration of the power supply system provided with the lightning generation | occurrence | production detection means by this invention. 雷発生検知手段を備えた電源システムの各ブロックの詳細を示す図である。It is a figure which shows the detail of each block of a power supply system provided with the lightning generation | occurrence | production detection means. 電波検出部にローパスフィルタを使用した電波検出型雷検知器の構成を示すブロック図である。It is a block diagram which shows the structure of the electromagnetic wave type lightning detector which uses a low-pass filter for an electromagnetic wave detection part. 静電界検出部に放電部を使用した静電界検出型雷検知器の構成を示すブロック図である。It is a block diagram which shows the structure of the electrostatic field detection type lightning detector which uses the discharge part for the electrostatic field detection part. 雷発生検知手段を備えた電源システムの雷検出における電源の制御動作を示すフローチャートである。It is a flowchart which shows the control operation of the power supply in the lightning detection of the power supply system provided with the lightning generation | occurrence | production detection means. 雷発生検知手段を備えた電源システムの雷検出における電源の制御動作の各信号のタイミングチャートを示す図である。It is a figure which shows the timing chart of each signal of the control operation of a power supply in the lightning detection of a power supply system provided with the lightning generation | occurrence | production detection means. 周波数同期式の雷発生検知手段を備えた電源システムを構成するブロックを示す図である。It is a figure which shows the block which comprises the power supply system provided with the frequency synchronous type lightning generation | occurrence | production detection means. 従来の電源システムの要部をブロック構成で示した図である。It is the figure which showed the principal part of the conventional power supply system with the block configuration. 従来の電源システムの構成を示す図である。It is a figure which shows the structure of the conventional power supply system.

符号の説明Explanation of symbols

1 雷発生検知手段を備えた電源システム
3 主電力入力部
3a 主電力入力ライン
3b 電源トランス
3c 避雷器(アレスタ)
3d 遮断器(電磁接触器)
3e、7e、9d、9e,25a 回路遮断器(ブレーカ)
6 系統切替器
7 発電装置
7a 発電機(ACG)
7b エンジン(ENG)
7c 自動電圧調整器
7d 電圧検出器
7f 停電検出器
7g 電圧周波数調整器
9 無停電電源装置(UPS)
9a AC/DC変換器
9b DC/AC変換器
9c バッテリ
9f ACスイッチ
9g 入力端子
9h 出力端子
9i 自動バイパス回路
9j 外部制御型DC/AC変換器
10 基準同期電源周波数発生部
12 雷検知器
13 電波検出型雷検知器
14 静電界検出型雷検知器
16 雷検知部
16a コヒーラ
16b デコヒーラ
16c タイマ回路
16d 信号出力回路
17 検出部
18 電波検出部
18a ローパスフィルタ(トランス)
19 静電界検出部
19b 放電部(気中放電ギャップ)
20 従来の電源システム
21 主電力入力部
21a 耐雷トランス
22 主電力電源
23 商用交流電源
25 負荷


DESCRIPTION OF SYMBOLS 1 Power supply system provided with lightning generation detection means 3 Main power input part 3a Main power input line 3b Power transformer 3c Lightning arrester (arrester)
3d circuit breaker (electromagnetic contactor)
3e, 7e, 9d, 9e, 25a Circuit breaker (breaker)
6 System switch 7 Power generator 7a Generator (ACG)
7b Engine (ENG)
7c Automatic voltage regulator 7d Voltage detector 7f Power failure detector 7g Voltage frequency regulator 9 Uninterruptible power supply (UPS)
9a AC / DC converter 9b DC / AC converter 9c Battery 9f AC switch 9g Input terminal 9h Output terminal 9i Automatic bypass circuit 9j External control type DC / AC converter 10 Reference synchronous power supply frequency generator 12 Lightning detector 13 Radio wave detection Type lightning detector 14 electrostatic field detection type lightning detector 16 lightning detector 16a coherer 16b decoherer 16c timer circuit 16d signal output circuit 17 detector 18 radio wave detector 18a low-pass filter (transformer)
19 Electrostatic field detector 19b Discharge unit (air discharge gap)
20 Conventional power supply system 21 Main power input unit 21a Lightning transformer 22 Main power supply 23 Commercial AC power supply 25 Load


Claims (6)

雷発生を検知する雷発生検知手段と、主電力の供給を遮断可能な遮断手段を備えた主電力供給手段と、補助用電力を発生する発電手段と、充電可能な蓄電手段を内蔵して停電時に蓄電手段から電力を負荷に供給することが可能な無停電電源供給手段と、前記主電力供給手段若しくは前記無停電電源供給手段または前記発電手段の2種類の電力から1種類の電力に切り替えて供給する系統切替手段とを有することを特徴とする雷発生検知手段を備えた電源システム。   Power outage with built-in lightning generation detection means for detecting the occurrence of lightning, main power supply means with a means for shutting off the main power supply, power generation means for generating auxiliary power, and chargeable power storage means An uninterruptible power supply means that can sometimes supply power from the power storage means to the load, and the main power supply means or the uninterruptible power supply means or the power generation means are switched from one type of power to one type of power. A power supply system comprising lightning generation detection means, comprising: a system switching means for supply. 前記雷発生検知手段は、遠地の落雷によって送電線に生じた一定値以上の衝撃性電磁波を検知する電波検出型雷発生検知手段および至近距離の落雷直前の静電界の変化を検知する静電界検出型雷発生検知手段の少なくとも1つから成ることを特徴とする請求項1記載の雷発生検知手段を備えた電源システム。   The lightning generation detection means is a radio wave detection type lightning generation detection means for detecting shock electromagnetic waves of a certain value or more generated in a transmission line due to a lightning strike in a distant place, and an electrostatic field detection for detecting a change in electrostatic field immediately before a lightning strike at a close distance. 2. The power supply system with lightning occurrence detection means according to claim 1, comprising at least one type of lightning occurrence detection means. 前記雷発生検知手段により雷を検知したとき、前記主電力供給手段の電力供給を前記遮断手段により遮断し、前記発電手段を始動して電力を発生し、前記発電手段の出力電圧の安定後に前記系統切替手段により前記発電手段からの電力を前記無停電電源供給手段に供給し、前記発電手段の出力電圧が安定するまで、前記無停電電源供給手段の蓄電手段により負荷に電力を供給することを特徴とする請求項1記載の雷発生検知手段を備えた電源システム。   When lightning is detected by the lightning generation detection means, the power supply of the main power supply means is shut off by the cutoff means, the power generation means is started to generate power, and after the output voltage of the power generation means is stabilized, Supplying power from the power generation means to the uninterruptible power supply means by system switching means, and supplying power to the load by the power storage means of the uninterruptible power supply means until the output voltage of the power generation means is stabilized. The power supply system provided with the lightning generation | occurrence | production detection means of Claim 1 characterized by the above-mentioned. 前記電波検出型雷発生検知手段により遠地の落雷を検知したとき、前記発電手段を始動して電力を発生し、前記静電界検出型雷発生検知手段により至近距離の落雷直前の静電界の変化を検知したとき、前記主電力供給手段の電力供給を前記遮断手段により遮断して、前記系統切替手段により前記発電手段からの電力を前記無停電電源供給手段に供給し、前記無停電電源供給手段の蓄電手段および発電手段からの電力により負荷に電力を供給することを特徴とする請求項1記載の雷発生検知手段を備えた電源システム。   When a lightning strike at a distant place is detected by the radio wave detection type lightning occurrence detection means, the power generation means is started to generate electric power, and the electrostatic field detection type lightning occurrence detection means detects a change in electrostatic field immediately before the lightning strike at a close distance. When detected, the power supply of the main power supply means is shut off by the shut-off means, the power from the power generation means is supplied to the uninterruptible power supply means by the system switching means, the uninterruptible power supply means 2. The power supply system with lightning generation detection means according to claim 1, wherein electric power is supplied to the load by electric power from the power storage means and the power generation means. 前記雷発生検知手段からの雷検知信号を検知後、雷検知信号が所定の時間内に発生しないときは、前記主電力供給手段の電力供給を確認後、前記系統切替手段により自動的に無停電電源供給手段の電力供給を前記主電力供給手段に切り替えて、前記発電手段の電力発生動作を停止することを特徴とする請求項1記載の雷発生検知手段を備えた電源システム。   After detecting the lightning detection signal from the lightning generation detection means, if the lightning detection signal does not occur within a predetermined time, after confirming the power supply of the main power supply means, the system switching means automatically 2. The power supply system with lightning generation detection means according to claim 1, wherein the power supply means switches the power supply to the main power supply means and stops the power generation operation of the power generation means. 前記無停電電源供給手段および前記発電手段を前記主電力供給手段の主電力の周波数および位相と同一の周波数信号で制御を行い、前記無停電電源供給手段および前記発電手段の出力電源の周波数および位相が、主電力の周波数および位相と同一となるようにしたことを特徴とする請求項1記載の雷発生検知手段を備えた電源システム。



The uninterruptible power supply means and the power generation means are controlled with the same frequency signal as the main power frequency and phase of the main power supply means, and the frequency and phase of the output power of the uninterruptible power supply means and the power generation means 2. The power supply system with lightning occurrence detection means according to claim 1, wherein the power supply frequency is the same as the frequency and phase of the main power.



JP2004349607A 2004-01-28 2004-12-02 Power supply system with lightning detection means Active JP4361470B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004349607A JP4361470B2 (en) 2004-01-28 2004-12-02 Power supply system with lightning detection means

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004019937 2004-01-28
JP2004349607A JP4361470B2 (en) 2004-01-28 2004-12-02 Power supply system with lightning detection means

Publications (2)

Publication Number Publication Date
JP2005245190A true JP2005245190A (en) 2005-09-08
JP4361470B2 JP4361470B2 (en) 2009-11-11

Family

ID=35026300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004349607A Active JP4361470B2 (en) 2004-01-28 2004-12-02 Power supply system with lightning detection means

Country Status (1)

Country Link
JP (1) JP4361470B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009219204A (en) * 2008-03-07 2009-09-24 Shimizu Corp Isolated operation system of distributed power supply
JP2010193632A (en) * 2009-02-18 2010-09-02 Hakusan Mfg Co Ltd Lightening protection device for uninterruptible power supply device for catv system, and the uninterruptible power supply device equipped with the same
CN103441568A (en) * 2013-09-03 2013-12-11 凤冈县黔北新能源有限责任公司 Uninterruptible automatic-switchover control system for photovoltaic power supply and electric supply
US8767362B2 (en) 2009-08-07 2014-07-01 Shimizu Corporation Islanded power system with distributed power supply
JP5968581B1 (en) * 2015-07-24 2016-08-10 株式会社辰巳菱機 Power generation system, load test method
CN106230109A (en) * 2016-08-26 2016-12-14 中科合肥微小型燃气轮机研究院有限责任公司 Can the test bench for gas turbine electric power system of uninterrupted power supply
WO2017017975A1 (en) * 2015-07-24 2017-02-02 株式会社辰巳菱機 Power generation system and load testing method
JP2017121106A (en) * 2015-12-28 2017-07-06 パーパス株式会社 Power supply device, control method for the same and control program
JP2017221053A (en) * 2016-06-09 2017-12-14 日東工業株式会社 Load protective system
JP2018127986A (en) * 2017-02-10 2018-08-16 エムエイチアイ ヴェスタス オフショア ウィンド エー/エス Wind power generation equipment and operation method of wind power generation equipment
WO2019159513A1 (en) * 2018-02-14 2019-08-22 ソニー株式会社 Power storage control device, power storage control method, and computer program
JP2021090289A (en) * 2019-12-04 2021-06-10 日鉄エンジニアリング株式会社 Control device of on-site power generation equipment, control method of on-site power generation equipment, and program
CN115528801A (en) * 2022-11-28 2022-12-27 深圳市兴晟图信息技术有限公司 Power dynamic monitoring system
KR20230024558A (en) * 2021-08-12 2023-02-21 주식회사 주원테크 Control system based on lighting forecast and control method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110311377B (en) * 2019-08-09 2020-12-22 国网江苏省电力有限公司苏州供电分公司 Source network load storage control and load flexible switching method and system under lightning weather

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009219204A (en) * 2008-03-07 2009-09-24 Shimizu Corp Isolated operation system of distributed power supply
JP2010193632A (en) * 2009-02-18 2010-09-02 Hakusan Mfg Co Ltd Lightening protection device for uninterruptible power supply device for catv system, and the uninterruptible power supply device equipped with the same
US8767362B2 (en) 2009-08-07 2014-07-01 Shimizu Corporation Islanded power system with distributed power supply
CN103441568A (en) * 2013-09-03 2013-12-11 凤冈县黔北新能源有限责任公司 Uninterruptible automatic-switchover control system for photovoltaic power supply and electric supply
JP5968581B1 (en) * 2015-07-24 2016-08-10 株式会社辰巳菱機 Power generation system, load test method
WO2017017975A1 (en) * 2015-07-24 2017-02-02 株式会社辰巳菱機 Power generation system and load testing method
JP2017121106A (en) * 2015-12-28 2017-07-06 パーパス株式会社 Power supply device, control method for the same and control program
JP2017221053A (en) * 2016-06-09 2017-12-14 日東工業株式会社 Load protective system
CN106230109A (en) * 2016-08-26 2016-12-14 中科合肥微小型燃气轮机研究院有限责任公司 Can the test bench for gas turbine electric power system of uninterrupted power supply
JP2018127986A (en) * 2017-02-10 2018-08-16 エムエイチアイ ヴェスタス オフショア ウィンド エー/エス Wind power generation equipment and operation method of wind power generation equipment
US20180230968A1 (en) * 2017-02-10 2018-08-16 Mhi Vestas Offshore Wind A/S Wind turbine power generation facility and method of operating the same
US10767629B2 (en) 2017-02-10 2020-09-08 Mhi Vestas Offshore Wind A/S Wind turbine power generation facility and method of operating the same
WO2019159513A1 (en) * 2018-02-14 2019-08-22 ソニー株式会社 Power storage control device, power storage control method, and computer program
JP2021090289A (en) * 2019-12-04 2021-06-10 日鉄エンジニアリング株式会社 Control device of on-site power generation equipment, control method of on-site power generation equipment, and program
JP7289259B2 (en) 2019-12-04 2023-06-09 日鉄エンジニアリング株式会社 ON-SITE GENERATOR CONTROL DEVICE, ON-SITE GENERATOR CONTROL METHOD, AND PROGRAM
KR20230024558A (en) * 2021-08-12 2023-02-21 주식회사 주원테크 Control system based on lighting forecast and control method thereof
KR102668140B1 (en) 2021-08-12 2024-05-23 (주)버들시스템 Control system based on lighting forecast and control method thereof
CN115528801A (en) * 2022-11-28 2022-12-27 深圳市兴晟图信息技术有限公司 Power dynamic monitoring system

Also Published As

Publication number Publication date
JP4361470B2 (en) 2009-11-11

Similar Documents

Publication Publication Date Title
JP4361470B2 (en) Power supply system with lightning detection means
US7372177B2 (en) Control system, method and product for uninterruptible power supply
US9001480B2 (en) Distributed energy resources control apparatus and distributed energy resources control method
KR101864624B1 (en) Determination circuit of electric leakage for electric leakage circuit breaker
JPH1051949A (en) Power reception protective device
JP2008054498A (en) Synchronous machine
CN103573551A (en) Braking system of wind driven generator and braking method
EP2681825A2 (en) Fast bus transfer method and device
KR101859053B1 (en) Standby generator synchronizing operation of closed transition transfer switch
EP2892121B1 (en) Earth leakage circuit breaker
JP7218497B2 (en) Ground fault protection relay system
KR101227537B1 (en) Cabinet panel of built-in neutral line repair function
EP2621048B1 (en) Device and method for the disconnection and subsequent reconnection of an inverter to/from an electrical network
US7256977B2 (en) Device for protection from thunder
CN110870154B (en) Power conversion device, power system, and method for suppressing reactive power in power system
JP4182517B2 (en) Lightning protection device
KR20120028254A (en) Remote power recovery system using telephone ring signal of an electronic exchanger
WO2019159513A1 (en) Power storage control device, power storage control method, and computer program
EP4279324A1 (en) Charging station for electric vehicles
RU2305354C2 (en) Method for protecting self-excited generator
KR101415814B1 (en) Cabinet panel of built-in neutral line repair function and control method thereof
JP2771124B2 (en) Power fluctuation suppression control device
WO2023174966A1 (en) Charging station for electric vehicles
JP3438288B2 (en) Uninterruptible switching system between different power supplies
JP5517865B2 (en) Power plant generator voltage control system

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041222

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20041222

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090807

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090812

R150 Certificate of patent or registration of utility model

Ref document number: 4361470

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130821

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250