JP2005243424A - Manufacturing method of separator for fuel cell, and separator for fuel cell - Google Patents

Manufacturing method of separator for fuel cell, and separator for fuel cell Download PDF

Info

Publication number
JP2005243424A
JP2005243424A JP2004051520A JP2004051520A JP2005243424A JP 2005243424 A JP2005243424 A JP 2005243424A JP 2004051520 A JP2004051520 A JP 2004051520A JP 2004051520 A JP2004051520 A JP 2004051520A JP 2005243424 A JP2005243424 A JP 2005243424A
Authority
JP
Japan
Prior art keywords
graphite
base material
resin base
fuel cell
separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004051520A
Other languages
Japanese (ja)
Inventor
Hideto Kanefusa
英人 金房
Nobuaki Akutsu
伸明 阿久津
Masahiko Iiizumi
雅彦 飯泉
Kazuyoshi Takada
和義 高田
Yuji Sakagami
祐治 阪上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2004051520A priority Critical patent/JP2005243424A/en
Priority to PCT/JP2004/016591 priority patent/WO2005060033A1/en
Publication of JP2005243424A publication Critical patent/JP2005243424A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent the aggravation of conductivity in a separator for a fuel cell. <P>SOLUTION: The separator for the fuel cell is obtained by making graphite and a resin as components and by compression molding these into a prescribed shape. The graphite component is made to be anisotropic graphite particles 15 having the short diameter part d1 and the long diameter part d2, while the resin component is made to be a resin base material 9 provided with a plurality of graphite particle insertion holes 11. A hole diameter of the graphite insertion holes 11 is set to be larger than the short diameter part d1 of the graphite particles 15 and smaller than the long diameter part d2, the graphite particles 15 are incorporated into the graphite particle insertion holes 11 in such a condition that the long diameter part d2 becomes the axis line direction of the graphite particle insertion holes 11, and the graphite containing resin base material 17 is formed. This graphite containing resin base material 17 is laminated in plurality in a molding die, compressed, and molded. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、電解質膜を挟み込む一対の電極に接触する燃料電池用セパレータの製造方法および燃料電池用セパレータに関する。   The present invention relates to a method for producing a fuel cell separator that contacts a pair of electrodes that sandwich an electrolyte membrane, and a fuel cell separator.

燃料電池は、反応ガスである水素含有ガスなどの燃料ガスと、空気などの酸化剤ガスを電気化学的に反応させることにより、燃料の持つ化学エネルギを、直接電気エネルギに変換する装置であり、エネルギ効率を他のエネルギ機関と比べて高くできること、資源の枯渇問題を有する化石燃料を使う必要がないので排出ガスを発生しないなどの優れた特徴を有している。   A fuel cell is a device that converts the chemical energy of fuel directly into electrical energy by electrochemically reacting a fuel gas such as a hydrogen-containing gas that is a reactive gas with an oxidant gas such as air. It has excellent characteristics such as high energy efficiency compared to other energy engines and no generation of exhaust gas because there is no need to use fossil fuels that have a problem of resource depletion.

このような燃料電池は、電解質膜を一対の電極で挟み込み、この電極に接触して電極からの集電に用いるとともに、電極側にガス供給用のガス流路を、電極と反対側に冷却水流路をそれぞれ有するセパレータを備えている。   In such a fuel cell, an electrolyte membrane is sandwiched between a pair of electrodes, used to collect electricity from the electrodes in contact with the electrodes, and a gas flow path for supplying gas is provided on the electrode side, and a cooling water flow is provided on the opposite side of the electrode. A separator having a path is provided.

このような燃料電池用セパレータとして、図6(a)に示すように、導電性を確保するための炭素粉末と、成形性を維持して強度を確保するための熱硬化性樹脂とを混合した材料101を、成形型103(下型103aおよび上型103b)にて所定形状に圧縮成形するものが知られている(例えば下記特許文献1参照)。
特開2003−17085号公報
As such a fuel cell separator, as shown in FIG. 6 (a), carbon powder for ensuring conductivity and a thermosetting resin for maintaining moldability and ensuring strength were mixed. A material 101 is known that is compression-molded into a predetermined shape using a molding die 103 (a lower die 103a and an upper die 103b) (see, for example, Patent Document 1 below).
JP 2003-17085 A

ところで、上記した従来の燃料電池用セパレータでは、図6(a)のA部の拡大図である図6(b)に示すように、樹脂成形体105に含まれる粒状炭素粉末107が、断面楕円形状のいわゆる異方性を有するものであり、下型103aに投入する際に、その長径方向が、重力の影響で矢印B方向を含むセパレータの面と平行な方向に向くこととなる。   By the way, in the above-described conventional fuel cell separator, as shown in FIG. 6B, which is an enlarged view of the portion A in FIG. 6A, the granular carbon powder 107 contained in the resin molded body 105 has an elliptical cross section. It has so-called anisotropy in shape, and when it is put into the lower mold 103a, its major axis direction is directed in a direction parallel to the surface of the separator including the arrow B direction under the influence of gravity.

このため粒状炭素粉末107は、図6(b)中で矢印Cで示す上下方向が短径方向となり、長径方向を上下方向とした場合に比較すると、セパレータを同一厚さとして考慮した場合、上下方向に沿って配置される粒状炭素粉末107の数が多くなり、その分粒状炭素粉末107同士の接触部分が上下方向(電気導通方向)に沿って多くなって電気抵抗が増大し、導電性の悪化を引き起こす。   Therefore, in the granular carbon powder 107, the vertical direction indicated by the arrow C in FIG. 6B is the short diameter direction, and when the separator is considered to have the same thickness as compared with the case where the long diameter direction is the vertical direction, The number of the granular carbon powders 107 arranged along the direction increases, and the contact portion between the granular carbon powders 107 increases along the vertical direction (electrical conduction direction), and the electrical resistance increases. Causes deterioration.

なお、粒状炭素粉末として、長径、短径相互の差の少ない等方性の粒状炭素粉末を使用した場合でも、圧縮成形時の荷重により、粒状炭素粉末が圧縮されて上下方向が短径方向となって異方性を有するものに変形し、したがってこの場合でも上記と同様にして電気抵抗が増大するものとなる。   Even when an isotropic granular carbon powder having a small difference between the major axis and the minor axis is used as the granular carbon powder, the granular carbon powder is compressed by the load during compression molding, and the vertical direction is the minor axis direction. Thus, the material is deformed to have anisotropy. Therefore, even in this case, the electrical resistance increases as described above.

そこで、本発明は、燃料電池用セパレータにおける導電性の悪化を防止することを目的としている。   Then, this invention aims at preventing the deterioration of the electroconductivity in the separator for fuel cells.

本発明は、黒鉛および樹脂を成分としてこれらを所定形状に圧縮成形する燃料電池用セパレータの製造方法において、前記黒鉛成分を、短径部および長径部を有する異方性の黒鉛粒とする一方、前記樹脂成分を複数の黒鉛粒挿入孔を備える樹脂基材とし、前記黒鉛粒挿入孔の孔径を、前記黒鉛粒の短径部より大きくかつ長径部より小さく設定し、前記黒鉛粒を、その長径部が前記黒鉛粒挿入孔の軸線方向となる状態で黒鉛粒挿入孔に入り込ませて黒鉛含有樹脂基材を作成し、この黒鉛含有樹脂基材を前記黒鉛粒挿入孔の軸線方向に沿って複数積層して圧縮成形することを最も主要な特徴とする。   The present invention provides a method for producing a separator for a fuel cell in which graphite and a resin as components are compression-molded into a predetermined shape, wherein the graphite component is an anisotropic graphite particle having a short diameter portion and a long diameter portion, The resin component is a resin base material having a plurality of graphite grain insertion holes, the pore diameter of the graphite grain insertion holes is set larger than the minor axis part of the graphite grain and smaller than the major axis part, and the graphite grain has its major axis The graphite containing resin base material is made by entering the graphite grain inserting hole in a state where the portion is in the axial direction of the graphite grain inserting hole, and a plurality of the graphite containing resin base materials are formed along the axial direction of the graphite grain inserting hole. The most important feature is to laminate and compression mold.

本発明によれば、樹脂基材の黒鉛粒挿入孔に、黒鉛粒をその長径部が黒鉛粒挿入孔の軸線方向となる状態で入り込ませて黒鉛含有樹脂基材を作成し、この黒鉛含有樹脂基材を黒鉛粒挿入孔の軸線方向に沿って複数積層して圧縮成形するので、黒鉛粒の長径部側が圧縮成形時の荷重方向と一致し、黒鉛粒同士のセパレータ面と交差する方向の接触部分を少なくでき、電気抵抗が低下して導電性の悪化を防止することができる。   According to the present invention, a graphite-containing resin base material is prepared by inserting graphite grains into the graphite grain insertion holes of the resin base material in a state where the major axis portion is in the axial direction of the graphite grain insertion holes. Since the base material is laminated and compression molded along the axis direction of the graphite grain insertion hole, the major axis side of the graphite grain matches the load direction at the time of compression molding, and the contact in the direction intersecting the separator surface between the graphite grains The number of portions can be reduced, and the electrical resistance can be reduced to prevent deterioration of conductivity.

以下、本発明の実施の形態を図面に基づき説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の第1の実施形態に係わる燃料電池用セパレータの製造方法によって製造したセパレータ1を備えた燃料電池の断面図である。この燃料電池は、固体高分子型燃料電池であり、固体高分子電解質膜3を両側から一対の電極5で挟み、さらにその両側に前記したセパレータ1を配置する構造としており、これらで構成する単電池7を多数積層して燃料電池スタックとして使用する。   FIG. 1 is a cross-sectional view of a fuel cell including a separator 1 manufactured by the method for manufacturing a fuel cell separator according to the first embodiment of the present invention. This fuel cell is a solid polymer fuel cell, and has a structure in which a solid polymer electrolyte membrane 3 is sandwiched between a pair of electrodes 5 from both sides, and the separator 1 is disposed on both sides thereof. A large number of batteries 7 are stacked and used as a fuel cell stack.

セパレータ1は、黒鉛を含む樹脂成形体であり、電極5側にガス供給用のガス流路1aを、電極5と反対側に冷却水流路1bを、それぞれ備えている。一方のセパレータ1のガス流路1aには、燃料となる水素を供給し、他方のセパレータ1のガス流路1aには酸化剤となる空気を供給する。   The separator 1 is a resin molded body containing graphite, and includes a gas flow path 1 a for supplying gas on the electrode 5 side and a cooling water flow path 1 b on the side opposite to the electrode 5. Hydrogen serving as a fuel is supplied to the gas flow path 1a of one separator 1, and air serving as an oxidant is supplied to the gas flow path 1a of the other separator 1.

このようなセパレータ1の製造方法について、以下に説明する。   The manufacturing method of such a separator 1 is demonstrated below.

図2(a)に示すものは、熱可塑性樹脂材からなるシート状の樹脂基材9である。この樹脂基材9は、図示しない射出成形機にて射出成形した後、例えばレーザ加工により、図2(b)にその一部を拡大した断面図として示すように、後述する黒鉛粒を挿入する黒鉛粒挿入孔11を複数形成する。シート状の樹脂基材9の厚さは、0.05mm〜0.1mm程度である。   What is shown to Fig.2 (a) is the sheet-like resin base material 9 which consists of a thermoplastic resin material. The resin base material 9 is injection-molded by an injection molding machine (not shown), and then, by laser processing, for example, as shown in FIG. A plurality of graphite grain insertion holes 11 are formed. The thickness of the sheet-like resin base material 9 is about 0.05 mm to 0.1 mm.

そして、黒鉛粒挿入孔11を備えたシート状の樹脂基材9を、図3(a)に示すように、容器13に堆積してある黒鉛粒15内に投入し、この状態で容器13を振動させることで、図3(b)のように黒鉛粒挿入孔11に黒鉛粒15を入り込ませる。   Then, as shown in FIG. 3A, the sheet-like resin base material 9 provided with the graphite grain insertion holes 11 is put into the graphite grains 15 deposited in the container 13, and the container 13 is placed in this state. By vibrating, the graphite particles 15 are caused to enter the graphite particle insertion holes 11 as shown in FIG.

ここで、上記した黒鉛粒15は、短径部d1および長径部d2を有する断面楕円形状の異方性の黒鉛粒であり、黒鉛粒挿入孔11の孔径dを、黒鉛粒15の短径部d1より大きくかつ長径部d2より小さく設定している。   Here, the above-described graphite particles 15 are anisotropic graphite particles having an elliptical cross section having a short diameter portion d1 and a long diameter portion d2, and the hole diameter d of the graphite particle insertion hole 11 is set to be the short diameter portion of the graphite particles 15. It is set to be larger than d1 and smaller than the long diameter portion d2.

このため黒鉛粒15は、容器13を振動させることで、図3(b)に示すように、その長径部d2が黒鉛粒挿入孔11の軸線方向(図3(b)中で上下方向)となる状態で黒鉛粒挿入孔11に入り込み、これにより樹脂基材9と黒鉛粒15とからなる黒鉛含有樹脂基材17が得られる。   Therefore, the graphite particles 15 are vibrated by vibrating the container 13 so that the long diameter portion d2 thereof is in the axial direction of the graphite particle insertion hole 11 (vertical direction in FIG. 3B) as shown in FIG. In this state, it enters the graphite particle insertion hole 11, whereby a graphite-containing resin substrate 17 composed of the resin substrate 9 and the graphite particles 15 is obtained.

その後、図3に示すように、容器13の下部に設置してあるヒータ19により、黒鉛含有樹脂基材17を、樹脂が熱硬化を生じないように、熱可塑性樹脂の反応温度(約180℃)まで加熱する。   Thereafter, as shown in FIG. 3, the heater 19 installed at the lower part of the container 13 causes the graphite-containing resin base material 17 to be reacted with the reaction temperature (about 180 ° C.) of the thermoplastic resin so that the resin does not thermally cure. ) Until heated.

加熱後、図4に示すように、下型21と上型23とを用いて圧縮成形するが、このとき、下型21および上型23の互いに対向する面には、前記図1に示したセパレータ1のガス流路1aや冷却水流路1bを形成するための凸部21aおよび23aを、それぞれ設けてある。また、下型21は、外周側に全周にわたり上型23に向けて突出する側壁部21bを設けている。   After the heating, as shown in FIG. 4, compression molding is performed using the lower mold 21 and the upper mold 23. At this time, the opposing surfaces of the lower mold 21 and the upper mold 23 are shown in FIG. Protrusions 21a and 23a for forming the gas flow path 1a and the cooling water flow path 1b of the separator 1 are provided, respectively. Moreover, the lower mold | type 21 is provided with the side wall part 21b which protrudes toward the upper mold | type 23 over the perimeter on the outer peripheral side.

そして、図4(a)に示すように、下型21の側壁部21bの内側に、前記した加熱後の黒鉛含有樹脂基材17を積層状態で多数セットする。このとき黒鉛粒15は、前記図3(b)に示すように、黒鉛含有樹脂基材17の面にほぼ直交する方向に長径部d2が向いた状態となっている。その後、多数積層した黒鉛含有樹脂基材17を、図4(b)に示すように、下型21と上型23との間で圧縮成形することで、図4(c)に示すセパレータ1を得る。   And as shown to Fig.4 (a), many above described graphite containing resin base materials 17 after a heating are set inside the side wall part 21b of the lower mold | type 21 in a laminated state. At this time, as shown in FIG. 3B, the graphite particles 15 are in a state in which the long diameter portion d2 faces in a direction substantially perpendicular to the surface of the graphite-containing resin base material 17. Thereafter, as shown in FIG. 4B, a large number of graphite-containing resin base materials 17 are compression-molded between the lower mold 21 and the upper mold 23, so that the separator 1 shown in FIG. obtain.

このようにして製造した燃料電池用のセパレータ1は、それぞれの黒鉛含有樹脂基材17における黒鉛粒15の長径部d2が、図4中で上下方向(セパレータ1の面に対してほぼ直交する方向)に向いているので、短径部d1が図4中で上下方向に向いている場合に比較して、セパレータを同一厚さとして考慮した場合、上下方向に沿って配置される黒鉛粒15の数が少なくなり、その分黒鉛粒15同士の電気的導通方向の接触部分が少なくなって電気抵抗が低下し、導電性の悪化を防止することができる。   In the separator 1 for a fuel cell manufactured in this way, the long diameter portion d2 of the graphite particle 15 in each graphite-containing resin base material 17 is in the vertical direction (a direction substantially perpendicular to the surface of the separator 1) in FIG. When the separator is considered to have the same thickness as compared with the case where the short diameter portion d1 is oriented in the vertical direction in FIG. 4, the graphite grains 15 arranged along the vertical direction Accordingly, the number of graphite particles 15 in the electrical conduction direction is reduced by that amount, and the electrical resistance is lowered, thereby preventing deterioration of conductivity.

また、黒鉛粒15が、圧縮成形時の荷重により圧縮されたとしても、上下方向が長径方向となっているため、短径部が上下方向となっている場合に比較して、圧縮成形後であっても黒鉛粒15の上下方向の寸法が大きく、このためセパレータを同一厚さとして考慮した場合、上下方向に沿って配置される黒鉛粒15の数が少なくなるので、上記と同様にして黒鉛粒15同士の接触部分が少なくなって電気抵抗が低下し、導電性の悪化を防止することができる。   Further, even if the graphite particles 15 are compressed by a load at the time of compression molding, since the vertical direction is the major axis direction, compared to the case where the minor axis part is the vertical direction, after the compression molding Even if there are, the size of the graphite grains 15 in the vertical direction is large. For this reason, when the separator is considered to have the same thickness, the number of graphite grains 15 arranged along the vertical direction is reduced. The contact portion between the grains 15 is reduced, the electrical resistance is lowered, and the deterioration of conductivity can be prevented.

前記した黒鉛粒挿入孔11の形成方法の第2の実施形態として、シート状の樹脂基材9を射出成形する際に、熱可塑性樹脂材に発泡性材料を混入する。これによりシート状の樹脂基材9は、多数の黒鉛粒挿入孔11を備える、いわゆる多孔質となる。   As a second embodiment of the method of forming the graphite grain insertion hole 11 described above, a foamable material is mixed into the thermoplastic resin material when the sheet-like resin base material 9 is injection-molded. As a result, the sheet-like resin base material 9 becomes so-called porous including a large number of graphite grain insertion holes 11.

黒鉛粒挿入孔11を備えるシート状の多孔質の樹脂基材9を成形した後は、前記図3および図4に示した第1の実施形態と同様の製造工程となる。   After the sheet-like porous resin base material 9 having the graphite grain insertion holes 11 is formed, the manufacturing process is the same as that of the first embodiment shown in FIGS.

図5は、第3の実施形態による、前記図4(a)に相当する製造工程図である。   FIG. 5 is a manufacturing process diagram corresponding to FIG. 4A according to the third embodiment.

前記した燃料電池用セパレータ1は、図1に示したように、ガス流路1aや冷却水流路1bを備えるため、図4にて圧縮成形する際に、これら各流路1a,1bとなる凹部に対応する部位25と、その両側の凸部に対応する部位27とで、圧縮率が互いに異なる。   Since the fuel cell separator 1 includes the gas flow path 1a and the cooling water flow path 1b as shown in FIG. 1, the recesses that become the flow paths 1a and 1b when compression molding is performed in FIG. The compression rate is different between the portion 25 corresponding to, and the portions 27 corresponding to the convex portions on both sides thereof.

そこで、この圧縮率を全体で均一化するために、凸部に対応する部位27の突出部分27aに相当する部位については、図5(a)に示すように、黒鉛含有樹脂基材17を凸部の幅寸法に合わせて適宜切断した基材片17aを、上記した圧縮率の相違に応じて積層状態で複数セットする。   Therefore, in order to make the compression ratio uniform throughout, the portion corresponding to the protruding portion 27a of the portion 27 corresponding to the convex portion is made convex with the graphite-containing resin base material 17 as shown in FIG. A plurality of base material pieces 17a appropriately cut according to the width dimension of the part are set in a laminated state in accordance with the difference in the compression rate described above.

この状態で、以後前記図4(b)と同様にして圧縮成形することで、図4(c)と同様な形状のセパレータ1が得られる。   In this state, the separator 1 having the same shape as in FIG. 4C is obtained by performing compression molding in the same manner as in FIG. 4B.

この実施形態では、圧縮成形前の状態で、ガス流路1aや冷却水流路1bの両側の凸部に相当する部位27に、適宜切断した基材片17aを積層しているので、各流路1a,1bに対応する部位25と、その両側の凸部に対応する部位27とで、圧縮率を互い同等とすることができる。このため、樹脂に対する黒鉛粒15の密度分布が全体で均一化し、導電性向上に寄与することができる。   In this embodiment, since the base material piece 17a appropriately cut is laminated on the portions 27 corresponding to the convex portions on both sides of the gas flow path 1a and the cooling water flow path 1b before compression molding, The compression ratio can be made equal to each other at the portion 25 corresponding to 1a and 1b and the portion 27 corresponding to the convex portions on both sides thereof. For this reason, the density distribution of the graphite grains 15 with respect to the resin can be made uniform as a whole, which can contribute to the improvement of conductivity.

本発明によれば、シート状の樹脂基材を単に積層しただけでは、圧縮成形時に、凹凸を有するセパレータの部位よる圧縮率の相違が発生するが、シート状とした樹脂基材を適宜切断し、この切断した基材片をセパレータの凸部に対応する部位に積層することことで、圧縮率を凹部と凸部とで互いに同等とすることができ、樹脂に対する黒鉛粒の密度分布が全体で均一化し、導電性向上に寄与することができる。   According to the present invention, simply by laminating a sheet-like resin base material causes a difference in compression rate due to the uneven part of the separator during compression molding, but the sheet-like resin base material is appropriately cut. By laminating the cut pieces of the base material on the part corresponding to the convex part of the separator, the compressibility can be made equal between the concave part and the convex part, and the density distribution of the graphite grains relative to the resin is as a whole. Uniformity can contribute to the improvement of conductivity.

前記黒鉛粒挿入孔は、樹脂基材を成形した後、加工するので、孔形状を高精度なものとすることができる。   Since the graphite grain insertion hole is processed after the resin base material is molded, the hole shape can be made highly accurate.

前記樹脂基材を、発砲材料を含む熱可塑性樹脂を射出成形して作成し、このとき発生する空孔を黒鉛粒挿入孔とするので、黒鉛粒挿入孔を備える樹脂基材の製造が容易なものとなる。   The resin base material is prepared by injection molding a thermoplastic resin containing a foaming material, and the holes generated at this time are used as graphite grain insertion holes. Therefore, it is easy to manufacture a resin base material having graphite grain insertion holes. It will be a thing.

前記シート状の樹脂基材を、前記黒鉛粒を堆積してある容器内に投入し、この容器を振動させることで、黒鉛粒がシート状の樹脂基材の黒鉛粒挿入孔に容易に入り込む。   The sheet-like resin substrate is put into a container in which the graphite particles are deposited, and the container is vibrated, whereby the graphite particles easily enter the graphite particle insertion holes of the sheet-like resin substrate.

前記黒鉛含有樹脂基材は、前記黒鉛粒を前記樹脂基材の黒鉛粒挿入孔に挿入後、加熱するので、樹脂と黒鉛粒とが確実に結合する。   Since the graphite-containing resin base material is heated after the graphite grains are inserted into the graphite grain insertion holes of the resin base material, the resin and the graphite grains are reliably bonded.

前記燃料電池用セパレータは、少なくとも一方の面に凸部を複数備えるとともに、この各凸部相互間にガス流路となる凹部を備え、前記凸部に対応する部位は、前記シート状の樹脂基材からなる前記黒鉛含有樹脂基材を切断した基材片を積層して構成するので、圧縮率を凹部と凸部とで互いに同等とすることができ、樹脂に対する黒鉛粒の密度分布が全体で均一化し、導電性向上に寄与することができる。   The fuel cell separator includes a plurality of convex portions on at least one surface, and includes a concave portion serving as a gas flow path between the convex portions, and the portion corresponding to the convex portion has the sheet-like resin base. Since the base material piece made by cutting the graphite-containing resin base material made of a material is laminated, the compressibility can be made equal between the concave portion and the convex portion, and the density distribution of the graphite particles relative to the resin can be made as a whole. Uniformity can contribute to the improvement of conductivity.

本発明の第1の実施形態に係わる燃料電池用セパレータの製造方法によって製造したセパレータを備えた燃料電池の断面図である。It is sectional drawing of the fuel cell provided with the separator manufactured by the manufacturing method of the separator for fuel cells concerning the 1st Embodiment of this invention. (a)はシート状の樹脂基材を示す側面図、(b)はその一部を拡大した断面図である。(A) is a side view which shows a sheet-like resin base material, (b) is sectional drawing which expanded the part. (a)は黒鉛粒を堆積してある容器内にシート状の樹脂基材を投入した状態を示す製造工程図、(b)は(a)によって樹脂基材の黒鉛粒挿入孔に黒鉛粒が入り込んだ状態を示す断面図である。(A) is a manufacturing process diagram showing a state in which a sheet-like resin base material is put into a container in which graphite particles are deposited, and (b) is a graph showing a state in which graphite particles are inserted into the graphite particle insertion holes of the resin base material according to (a). It is sectional drawing which shows the state which entered. 図3に続く製造工程図で、(a)は図3(b)のようして得た黒鉛含有樹脂基材を下型に積層してセットした状態、(b)は(a)の状態から圧縮成形している状態、(c)は圧縮成形後のセパレータ、をそれぞれ示す。FIG. 3 is a manufacturing process diagram following FIG. 3, (a) is a state in which the graphite-containing resin base material obtained as shown in FIG. 3 (b) is laminated and set on the lower mold, and (b) is from the state of (a). A state where compression molding is performed, (c) shows a separator after compression molding. 第3の実施形態による図4(a)に相当する製造工程図である。It is a manufacturing process figure corresponding to Drawing 4 (a) by a 3rd embodiment. (a)は従来の燃料電池用セパレータの製造方法を示す断面図、(b)は(a)のA部の拡大図である。(A) is sectional drawing which shows the manufacturing method of the conventional separator for fuel cells, (b) is an enlarged view of the A section of (a).

符号の説明Explanation of symbols

1 燃料電池用セパレータ
9 シート状の樹脂基材
11 黒鉛粒挿入孔
13 容器
15 黒鉛粒
17 黒鉛含有樹脂基材
25 凹部に対応する部位
27 凸部に対応する部位
d1 黒鉛粒の短径部
d2 黒鉛粒の長径部
DESCRIPTION OF SYMBOLS 1 Fuel cell separator 9 Sheet-like resin base material 11 Graphite grain insertion hole 13 Container 15 Graphite grain 17 Graphite-containing resin base material 25 Part corresponding to a concave part 27 Part corresponding to a convex part d1 Short diameter part of a graphite grain d2 Graphite Long diameter part of grain

Claims (8)

黒鉛および樹脂を成分としてこれらを所定形状に圧縮成形する燃料電池用セパレータの製造方法において、前記黒鉛成分を、短径部および長径部を有する異方性の黒鉛粒とする一方、前記樹脂成分を複数の黒鉛粒挿入孔を備える樹脂基材とし、前記黒鉛粒挿入孔の孔径を、前記黒鉛粒の短径部より大きくかつ長径部より小さく設定し、前記黒鉛粒を、その長径部が前記黒鉛粒挿入孔の軸線方向となる状態で黒鉛粒挿入孔に入り込ませて黒鉛含有樹脂基材を作成し、この黒鉛含有樹脂基材を前記黒鉛粒挿入孔の軸線方向に沿って複数積層して圧縮成形することを特徴とする燃料電池用セパレータの製造方法。   In a method for producing a separator for a fuel cell in which graphite and a resin are used as components and compression-molded into a predetermined shape, the graphite component is an anisotropic graphite particle having a short diameter portion and a long diameter portion, while the resin component is A resin base material having a plurality of graphite grain insertion holes, the pore diameter of the graphite grain insertion hole is set larger than the short diameter part of the graphite grain and smaller than the long diameter part, and the long diameter part of the graphite grain is the graphite A graphite-containing resin base material is created by entering the graphite grain insertion hole in a state where the grain insertion hole is in the axial direction, and a plurality of graphite-containing resin base materials are laminated along the axial direction of the graphite grain insertion hole and compressed. A method for producing a separator for a fuel cell, comprising molding. 前記樹脂基材をシート状とし、このシート状の樹脂基材に前記黒鉛粒挿入孔が貫通形成されていることを特徴とする請求項1記載の燃料電池用セパレータの製造方法。   2. The method for producing a fuel cell separator according to claim 1, wherein the resin base material is formed into a sheet shape, and the graphite grain insertion hole is formed through the sheet-shaped resin base material. 前記黒鉛粒挿入孔は、樹脂基材を成形した後、加工することを特徴とする請求項1または2記載の燃料電池用セパレータの製造方法。   3. The method for producing a separator for a fuel cell according to claim 1, wherein the graphite grain insertion hole is processed after the resin base material is molded. 前記樹脂基材を、発泡材料を含む熱可塑性樹脂を射出成形して作成し、このとき発生する空孔を前記黒鉛粒挿入孔とすることを特徴とする請求項1または2記載の燃料電池用セパレータの製造方法。   The fuel cell according to claim 1 or 2, wherein the resin base material is prepared by injection molding a thermoplastic resin containing a foam material, and the holes generated at this time are used as the graphite grain insertion holes. Separator manufacturing method. 前記シート状の樹脂基材を、前記黒鉛粒を堆積してある容器内に投入し、この容器を振動させることで、前記黒鉛粒を前記シート状の樹脂基材の黒鉛粒挿入孔に入り込ませることを特徴とする請求項2記載の燃料電池用セパレータの製造方法。   The sheet-shaped resin base material is put into a container in which the graphite particles are deposited, and the container is vibrated to allow the graphite particles to enter the graphite particle insertion holes of the sheet-shaped resin base material. The method for producing a fuel cell separator according to claim 2. 前記黒鉛含有樹脂基材は、前記黒鉛粒を前記樹脂基材の黒鉛粒挿入孔に挿入後、加熱して得ることを特徴とする請求項5記載の燃料電池用セパレータの製造方法。   6. The method for producing a fuel cell separator according to claim 5, wherein the graphite-containing resin base material is obtained by heating the graphite grains after inserting the graphite grains into the graphite grain insertion holes of the resin base material. 前記燃料電池用セパレータは、少なくとも一方の面に凸部を複数備えるとともに、この各凸部相互間にガス流路となる凹部を備え、前記凸部に対応する部位は、前記シート状の樹脂基材からなる前記黒鉛含有樹脂基材を切断した基材片を積層して構成することを特徴とする請求項2記載の燃料電池用セパレータの製造方法。   The fuel cell separator includes a plurality of convex portions on at least one surface, and includes a concave portion serving as a gas flow path between the convex portions, and the portion corresponding to the convex portion has the sheet-like resin base. The method for producing a fuel cell separator according to claim 2, wherein the base material piece is made by laminating the graphite-containing resin base material made of a material. 請求項1ないし7のいずれか1項に記載の燃料電池用セパレータの製造方法によって製造することを特徴とする燃料電池用セパレータ。   A fuel cell separator manufactured by the method for manufacturing a fuel cell separator according to any one of claims 1 to 7.
JP2004051520A 2003-12-15 2004-02-26 Manufacturing method of separator for fuel cell, and separator for fuel cell Pending JP2005243424A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004051520A JP2005243424A (en) 2004-02-26 2004-02-26 Manufacturing method of separator for fuel cell, and separator for fuel cell
PCT/JP2004/016591 WO2005060033A1 (en) 2003-12-15 2004-11-09 Separator for fuel cell, its molding method, its producing method, and its producing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004051520A JP2005243424A (en) 2004-02-26 2004-02-26 Manufacturing method of separator for fuel cell, and separator for fuel cell

Publications (1)

Publication Number Publication Date
JP2005243424A true JP2005243424A (en) 2005-09-08

Family

ID=35024935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004051520A Pending JP2005243424A (en) 2003-12-15 2004-02-26 Manufacturing method of separator for fuel cell, and separator for fuel cell

Country Status (1)

Country Link
JP (1) JP2005243424A (en)

Similar Documents

Publication Publication Date Title
US8790846B2 (en) Gas diffusion layer and process for production thereof, and fuel cell
CN1183617C (en) Fuel cell gas separator
EP2475036B1 (en) Membrane electrode assembly, production method for same, and fuel cell
US8703360B2 (en) Method for producing an electrode-membrane-frame assembly
JP2008218304A (en) Solid polymer fuel cell
CN110635149B (en) Unit cell of fuel cell and method for manufacturing the same
US6660420B1 (en) Separator for a fuel cell and a method of producing the same
JP2007172996A (en) Fluid distribution plate and method of manufacturing fluid distribution plate
US10826097B2 (en) Fuel cell
JP2004079196A (en) Fuel cell separator and solid polymer fuel cell
JP4784625B2 (en) Fuel cell separator
JP2000082475A (en) Separator for expansive graphite fuel cell and its manufacture
JP2005243424A (en) Manufacturing method of separator for fuel cell, and separator for fuel cell
JP2005011624A (en) Cell member for solid polymer fuel battery and manufacturing method of the same
JP2003142117A (en) High polymer electrolyte type fuel cell and its manufacturing device
JP2004152569A (en) Fuel cell
JP2009140849A (en) Fuel cell and fuel cell separator
JP2010040249A (en) Fuel cell, flow channel member, and method for manufacturing flow channel member
KR100928041B1 (en) Separator for fuel cell and fuel cell comprising the same
JP4921827B2 (en) Fuel cell stack and method for producing carbon separator
JP5924444B1 (en) Phosphoric acid fuel cell and manufacturing method of phosphoric acid fuel cell
JP5389417B2 (en) Metal separator for fuel cell using metal sphere and fuel cell using the same
JP2005216732A (en) Manufacturing method of separator for cell of fuel cell and separator for cell of fuel cell
JP2005011741A (en) Gas diffusion member for solid polymer fuel cell and manufacturing method of the same
JP2007184214A (en) Separator for fuel cell