JP2005243415A - Manufacturing method of separator for fuel cell, and separator for fuel cell - Google Patents

Manufacturing method of separator for fuel cell, and separator for fuel cell Download PDF

Info

Publication number
JP2005243415A
JP2005243415A JP2004051419A JP2004051419A JP2005243415A JP 2005243415 A JP2005243415 A JP 2005243415A JP 2004051419 A JP2004051419 A JP 2004051419A JP 2004051419 A JP2004051419 A JP 2004051419A JP 2005243415 A JP2005243415 A JP 2005243415A
Authority
JP
Japan
Prior art keywords
fuel cell
separator
mold
molding
graphite powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004051419A
Other languages
Japanese (ja)
Inventor
Hideto Kanefusa
英人 金房
Nobuaki Akutsu
伸明 阿久津
Masahiko Iiizumi
雅彦 飯泉
Kazuyoshi Takada
和義 高田
Yuji Sakagami
祐治 阪上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2004051419A priority Critical patent/JP2005243415A/en
Publication of JP2005243415A publication Critical patent/JP2005243415A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent the reduction of conductivity of the whole separator without carrying out repeatedly heating-cooling of a molding die in continuously carrying out molding. <P>SOLUTION: A mixed powder material 13 in which thermosetting resin and graphite powder are mixed and kneaded at a prescribed proportion, is preliminarily molded by a preliminary molding die composed of a lower die 9 and an upper die 11 so as to become to have a larger dimension than the compression direction dimension of the finished product, and the finished product is obtained by heating and compression molding this preformed product 1A molded preliminarily by a final molding die heated beforehand. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、電解質膜を挟み込む一対の電極に接触する燃料電池用セパレータの製造方法および燃料電池用セパレータに関する。   The present invention relates to a method for producing a fuel cell separator that contacts a pair of electrodes that sandwich an electrolyte membrane, and a fuel cell separator.

燃料電池は、反応ガスである水素含有ガスなどの燃料ガスと、空気などの酸化剤ガスを電気化学的に反応させることにより、燃料の持つ化学エネルギを、直接電気エネルギに変換する装置であり、エネルギ効率を他のエネルギ機関と比べて高くできること、資源の枯渇問題を有する化石燃料を使う必要がないので排出ガスを発生しないなどの優れた特徴を有している。   A fuel cell is a device that converts the chemical energy of fuel directly into electrical energy by electrochemically reacting a fuel gas such as a hydrogen-containing gas that is a reactive gas with an oxidant gas such as air. It has excellent characteristics such as high energy efficiency compared to other energy engines and no generation of exhaust gas because there is no need to use fossil fuels that have a problem of resource depletion.

このような燃料電池は、電解質膜を一対の電極で挟み込み、この電極に接触して電極からの集電に用いるとともに、電極側にガス供給用のガス流路を、電極と反対側に冷却水流路をそれぞれ有するセパレータを備えている。なお、冷却水流路は設けないものもある。   In such a fuel cell, an electrolyte membrane is sandwiched between a pair of electrodes, used to collect electricity from the electrodes in contact with the electrodes, and a gas flow path for supplying gas is provided on the electrode side, and a cooling water flow is provided on the opposite side of the electrode. A separator having a path is provided. Some cooling water passages are not provided.

このような燃料電池用セパレータとして、導電性を確保するためのカーボンと、成形性を維持して強度を確保するための熱硬化性樹脂とを混合した材料を、所定形状に加熱圧縮成形するものが、下記特許文献1に記載されている。
特開2003−17085号公報
As such a fuel cell separator, a material in which carbon for ensuring conductivity and a thermosetting resin for maintaining moldability and ensuring strength are mixed in a predetermined shape by heat compression molding Is described in Patent Document 1 below.
JP 2003-17085 A

ところで、上記した燃料電池用セパレータを成形する際に、加熱された状態の成形型に材料を投入すると、型に触れた樹脂が内部の樹脂に先行して反応・硬化し、加圧が充分でない内にセパレータの表層が導電性の低い樹脂で覆われてしまい、セパレータ全体での導電性が低下するという問題がある。   By the way, when molding the above-described fuel cell separator, if the material is put into a heated mold, the resin touching the mold reacts and cures prior to the resin inside, and the pressurization is not sufficient. There is a problem that the surface layer of the separator is covered with a resin having low conductivity, and the conductivity of the entire separator is lowered.

また、成形型の加熱を材料の投入後に行うことにより、上記したセパレータ表層の樹脂膜形成を抑制することが可能であるが、この場合には、連続して成形を行う際に、成形型の加熱−冷却を繰り返し行うための制御機構が必要となる上、成形時間が長くなることにより、製造コストの増大を招く。   In addition, it is possible to suppress the above-described resin film formation on the separator surface layer by heating the mold after the material is charged. In this case, when the molding is continuously performed, A control mechanism for repeatedly performing heating and cooling is required, and the manufacturing time is increased due to a longer molding time.

そこで、本発明は、連続して成形を行う際に、成形型の加熱−冷却を繰り返し行うことなく、セパレータ全体の導電性の低下を防止することを目的としている。   Therefore, an object of the present invention is to prevent a decrease in the conductivity of the entire separator without repeatedly heating and cooling the molding die when continuously molding.

本発明は、樹脂および黒鉛粉末からなる混合粉末材料を所定形状に圧縮成形する燃料電池用セパレータの製造方法において、前記樹脂および黒鉛粉末を、予備成形型により完成品の圧縮方向寸法より大きい寸法となるよう予備成形し、この予備成形した予備成形品を、あらかじめ加熱してある本成形型により加熱圧縮成形して完成品とすることを最も主要な特徴とする。   The present invention relates to a method for manufacturing a fuel cell separator in which a mixed powder material made of a resin and graphite powder is compression-molded into a predetermined shape. The main feature is that the preform is preliminarily molded and the preform is preliminarily heated and compression-molded by a preheated main mold to form a finished product.

本発明によれば、予備成形型により完成品の圧縮方向寸法より大きい寸法となるよう予備成形した後、この予備成形品を、あらかじめ加熱してある本成形型により加熱圧縮成形するため、加熱を行わない予備成形時に黒鉛粉末と混合している樹脂材料は、表層に集まることなく、全体に分散した状態を確保でき、この状態で加熱圧縮成形することで、セパレータ全体の導電性の低下を防止することができる。   According to the present invention, after preforming with a preforming die so as to have a size larger than the dimension in the compression direction of the finished product, this preformed product is heated and compression-molded with the pre-heated mold so that heating is performed. Resin material mixed with graphite powder at the time of preforming not performed can be kept dispersed throughout without being collected on the surface layer, and heat compression molding in this state prevents deterioration of the conductivity of the entire separator can do.

また、予備成形後に、あらかじめ加熱してある本成形型により加熱圧縮成形するので、連続して成形を行う際に、成形型の加熱−冷却を繰り返し行う必要がなく、したがってそのための制御機構が不要となる上、成形時間も短縮でき、製造コストの増大を防止することができる。   In addition, since heat compression molding is performed with a preheated main mold after pre-molding, there is no need to repeatedly heat and cool the mold when performing continuous molding, and therefore no control mechanism is required In addition, the molding time can be shortened, and an increase in manufacturing cost can be prevented.

以下、本発明の実施の形態を図面に基づき説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の燃料電池用セパレータの製造方法によって製造したセパレータ1を備えた燃料電池の断面図である。この燃料電池は、固体高分子型燃料電池であり、固体高分子電解質膜3を両側から一対の電極5で挟み、さらにその両側に前記したセパレータ1を配置する構造としており、これらで構成する単電池7を多数積層して燃料電池スタックとして使用する。   FIG. 1 is a cross-sectional view of a fuel cell including a separator 1 manufactured by the method for manufacturing a fuel cell separator of the present invention. This fuel cell is a solid polymer fuel cell, and has a structure in which a solid polymer electrolyte membrane 3 is sandwiched between a pair of electrodes 5 from both sides, and the separator 1 is disposed on both sides thereof. A large number of batteries 7 are stacked and used as a fuel cell stack.

セパレータ1は、黒鉛を含む樹脂成形体であり、電極5側にガス供給用のガス流路1aを、電極5と反対側に冷却水流路1bを、それぞれ備えている。一方のセパレータ1のガス流路1aには、燃料となる水素を供給し、他方のセパレータ1のガス流路1aには酸化剤となる空気を供給する。   The separator 1 is a resin molded body containing graphite, and includes a gas flow path 1 a for supplying gas on the electrode 5 side and a cooling water flow path 1 b on the side opposite to the electrode 5. Hydrogen serving as a fuel is supplied to the gas flow path 1a of one separator 1, and air serving as an oxidant is supplied to the gas flow path 1a of the other separator 1.

このようなセパレータ1の製造方法の第1の実施形態について、図2,図3を用いて説明する。図2は予備成形工程を、図3は本成形工程をそれぞれ示す。   A first embodiment of a method for manufacturing such a separator 1 will be described with reference to FIGS. FIG. 2 shows a preforming step, and FIG. 3 shows the main forming step.

まず、図2に示すように、予備成形型を構成する下型9と上型11とを用いて予備成形するが、このとき、下型9および上型11の互いに対向する面には、前記図1に示したセパレータ1のガス流路1aや冷却水流路1bを形成するための凸部9aおよび11aを、それぞれ設けてある。また、下型9は、外周側に全周にわたり上型11に向けて突出する側壁部9bを設けている。   First, as shown in FIG. 2, preforming is performed using the lower mold 9 and the upper mold 11 constituting the preforming mold. At this time, the surfaces of the lower mold 9 and the upper mold 11 facing each other are Protrusions 9a and 11a for forming the gas flow path 1a and the cooling water flow path 1b of the separator 1 shown in FIG. 1 are provided. Moreover, the lower mold | type 9 is provided with the side wall part 9b which protrudes toward the upper mold | type 11 over the perimeter on the outer peripheral side.

そして、図2(a)に示すように、上記した下型9の側壁部9bの内側に、熱硬化性樹脂と黒鉛粉末とを所定の割合で混練した混合粉末材料13を投入した後、図2(b)に示すように、下型9と上型11との間で混合粉末材料13を圧縮して予備成形を行う。このとき、予備成形型の加熱は行わない。   Then, as shown in FIG. 2A, after the mixed powder material 13 in which the thermosetting resin and the graphite powder are kneaded at a predetermined ratio is introduced into the inside of the side wall portion 9b of the lower mold 9 described above, As shown in FIG. 2B, the mixed powder material 13 is compressed between the lower mold 9 and the upper mold 11 to perform preforming. At this time, the preforming die is not heated.

上記した予備成形によって得た図2(c)に示す予備成形品1Aは、前記図1に示したセパレータ1のガス流路1aや冷却水流路1bに対応する溝1Aaや1Abを有し、その各部における圧縮方向の厚さ寸法t1が、後述する図3(c)に示す完成品の同寸法t2より大きくなっている。   The preform 1A shown in FIG. 2 (c) obtained by the above preforming has grooves 1Aa and 1Ab corresponding to the gas flow path 1a and the cooling water flow path 1b of the separator 1 shown in FIG. The thickness dimension t1 in the compression direction in each part is larger than the same dimension t2 of the finished product shown in FIG.

なお、図2(c)における上下寸法を図3(c)における同寸法より大きくする部位は、図2(c)にt1として示す部位だけでなく、他の溝1Aa,1Abに対応する部位も同様である。   In addition, the part which makes the vertical dimension in FIG.2 (c) larger than the same dimension in FIG.3 (c) is not only the part shown as t1 in FIG.2 (c), but also the part corresponding to other groove | channels 1Aa and 1Ab. It is the same.

また、予備成形品1Aの各部の上下寸法は、黒鉛粉末の長径部の2倍以上とする。   In addition, the vertical dimension of each part of the preform 1A is at least twice as long as the long diameter part of the graphite powder.

次に、上記した予備成形品1Aを、図3に示すように、本成形型を構成する下型15と上型17とを用いて本成形を行う。この本成形型においても、下型15および上型17の互いに対向する面に、前記図1に示したセパレータ1のガス流路1aや冷却水流路1bを形成するための凸部15aおよび17aを、それぞれ設けてある。また、下型15は、外周側に全周にわたり上型17に向けて突出する側壁部15bを設けている。また、下型15の下部には、ヒータ19を設置して本成形型を加熱する。   Next, as shown in FIG. 3, the preform 1A described above is subjected to main molding using a lower mold 15 and an upper mold 17 constituting the main mold. Also in this main mold, convex portions 15a and 17a for forming the gas flow path 1a and the cooling water flow path 1b of the separator 1 shown in FIG. 1 are formed on the surfaces of the lower mold 15 and the upper mold 17 facing each other. , Respectively. Moreover, the lower mold | type 15 is provided with the side wall part 15b which protrudes toward the upper mold | type 17 over a perimeter on the outer peripheral side. Further, a heater 19 is installed below the lower mold 15 to heat the main mold.

本成形型を用いた本成形では、図3(a)に示すように、予備成形品1Aを、ヒータ19であらかじめ加熱してある下型15にセットする。このとき、下型15の凸部15aが予備成形品1Aの溝1Abに、上型17の凸部17aが予備成形品1Aの溝1Aaに、それぞれ入り込む。   In the main molding using the main molding die, as shown in FIG. 3A, the preform 1 </ b> A is set on the lower die 15 that has been heated in advance by the heater 19. At this time, the convex portion 15a of the lower mold 15 enters the groove 1Ab of the preform 1A, and the convex portion 17a of the upper mold 17 enters the groove 1Aa of the preform 1A.

そして、図3(b)に示すように、下型15と上型17との間で、加熱圧縮成形を行うことで、図3(c)に示す完成品、すなわち燃料電池用セパレータ1を得る。   And as shown in FIG.3 (b), the finished product shown in FIG.3 (c), ie, the separator 1 for fuel cells, is obtained by performing heat compression molding between the lower mold | type 15 and the upper mold | type 17. .

上記した実施形態によれば、予備成形時において予備成形型を加熱していないことから、下型9および上型11に触れた樹脂が内部の樹脂に先行して反応・硬化することがなく、このため樹脂が、完成品(セパレータ1)の表層に集まることなく、全体に分散した状態を維持でき、この状態で加熱圧縮成形することで、セパレータ1全体の導電性の低下を防止することができる。   According to the above-described embodiment, since the preforming mold is not heated at the time of preforming, the resin touching the lower mold 9 and the upper mold 11 is not reacted and cured prior to the internal resin, Therefore, the resin can be kept dispersed throughout the surface of the finished product (separator 1) without being collected, and heat compression molding in this state can prevent a decrease in conductivity of the separator 1 as a whole. it can.

また、予備成形後に、あらかじめ加熱してある本成形型により加熱圧縮成形するので、連続して成形を行う際に、成形型の加熱−冷却を繰り返し行う必要がなく、したがってそのための制御機構が不要となる上、成形時間も短縮でき、製造コストの増大を防止することができる。   In addition, since heat compression molding is performed with a preheated main mold after pre-molding, there is no need to repeatedly heat and cool the mold when performing continuous molding, and therefore no control mechanism is required In addition, the molding time can be shortened, and an increase in manufacturing cost can be prevented.

図4は、この発明の第2の実施形態に係わる燃料電池用セパレータの製造方法を示す。この実施形態は、図4(a)に示すように前記図2の予備成形工程、または、図4(b)に示すように前記図3の本成形工程において、これら各成形作業前に、黒鉛粉末21を、水分を含有させた状態で噴霧して型表面に付着させる。   FIG. 4 shows a method of manufacturing a fuel cell separator according to the second embodiment of the present invention. In this embodiment, as shown in FIG. 4 (a), in the preforming step of FIG. 2 or in the main forming step of FIG. 3 as shown in FIG. The powder 21 is sprayed in a state of containing moisture to adhere to the mold surface.

そして、この状態で予備成形、または本成形を行うことで、予備成形品1Aまたは完成品(セパレータ)1の表面に、黒鉛粉末21が、第1の実施形態に比べて多く存在する状態となる。これにより、燃料電池用セパレータ1として、前記図1に示した電極5に接触する部位の黒鉛粉末21が多量となることから、導電性がさらに向上する。   Then, by performing preforming or main molding in this state, a large amount of graphite powder 21 is present on the surface of the preformed product 1A or the finished product (separator) 1 as compared with the first embodiment. . As a result, as the fuel cell separator 1, the graphite powder 21 at the portion in contact with the electrode 5 shown in FIG.

本発明によれば、前記予備成形工程と前記本成形工程との少なくとも一方の成形作業前に、成形品表面に接触する型表面に前記黒鉛粉末を供給することで、予備成形品または完成品の表面に、黒鉛粉末がより多く存在することになり、燃料電池用セパレータとして導電性がさらに向上する。   According to the present invention, before the molding operation of at least one of the preforming step and the main molding step, the graphite powder is supplied to the mold surface that is in contact with the surface of the molded product. More graphite powder is present on the surface, and the conductivity of the fuel cell separator is further improved.

前記黒鉛粉末を水分を含有させて噴霧して型表面に付着させることで、黒鉛粉末を型表面に確実に供給することができる。   By spraying the graphite powder containing water and adhering it to the mold surface, the graphite powder can be reliably supplied to the mold surface.

また、樹脂材料として熱硬化性樹脂を用いた燃料電池用セパレータの導電性低下を防止することができる。   Moreover, the electroconductivity fall of the separator for fuel cells using the thermosetting resin as a resin material can be prevented.

本発明の燃料電池用セパレータの製造方法によって製造したセパレータを備えた燃料電池の断面図である。It is sectional drawing of the fuel cell provided with the separator manufactured by the manufacturing method of the separator for fuel cells of this invention. 本発明の第1の実施形態に係わる燃料電池用セパレータの製造方法における予備成形工程図である。It is a preforming process figure in the manufacturing method of the separator for fuel cells concerning the 1st Embodiment of this invention. 図2の予備成形工程に続く本成形工程図である。FIG. 3 is a main molding process diagram following the preliminary molding process of FIG. 2. 本発明の第2の実施形態に係わる燃料電池用セパレータの製造方法を示す製造工程図で、(a)は図2の予備成形時に型表面に黒鉛粉末を供給する状態、(b)は図3の本成形時に型表面に黒鉛粉末を供給する状態をそれぞれ示す。FIGS. 3A and 3B are manufacturing process diagrams showing a method for manufacturing a fuel cell separator according to a second embodiment of the present invention, wherein FIG. 3A is a state in which graphite powder is supplied to the mold surface during the pre-molding of FIG. 2, and FIG. The state of supplying graphite powder to the mold surface at the time of the main molding is shown.

符号の説明Explanation of symbols

1 セパレータ
9 下型(予備成形型)
11 上型(予備成形型)
15 下型(本成形型)
17 上型(本成形型)
21 黒鉛粉末
1 Separator 9 Lower mold (Preliminary mold)
11 Upper mold (preliminary mold)
15 Lower mold (main mold)
17 Upper mold (main mold)
21 Graphite powder

Claims (5)

樹脂および黒鉛粉末からなる混合粉末材料を所定形状に圧縮成形する燃料電池用セパレータの製造方法において、前記樹脂および黒鉛粉末を、予備成形型により完成品の圧縮方向寸法より大きい寸法となるよう予備成形し、この予備成形した予備成形品を、あらかじめ加熱してある本成形型により加熱圧縮成形して完成品とすることを特徴とする燃料電池用セパレータの製造方法。   In a method of manufacturing a fuel cell separator in which a mixed powder material made of resin and graphite powder is compression-molded into a predetermined shape, the resin and graphite powder are preformed so as to have a size larger than the size in the compression direction of the finished product by a preforming mold. A method for manufacturing a separator for a fuel cell, wherein the preformed preform is heat-compressed with a preheated main mold to obtain a finished product. 前記予備成形工程と前記本成形工程との少なくとも一方の成形作業前に、成形品表面に接触する型表面に前記黒鉛粉末を供給することを特徴とする請求項1記載の燃料電池用セパレータの製造方法。   2. The fuel cell separator according to claim 1, wherein the graphite powder is supplied to a mold surface in contact with a surface of a molded product before at least one of the preforming step and the main forming step. Method. 前記黒鉛粉末を水分を含有させて噴霧して型表面に付着させることを特徴とする請求項2記載の燃料電池用セパレータの製造方法。   The method for producing a separator for a fuel cell according to claim 2, wherein the graphite powder is sprayed with water contained therein and adhered to the mold surface. 前記樹脂は、熱硬化性樹脂であることを特徴とする請求項1ないし3のいずれか1項に記載の燃料電池用セパレータの製造方法。   The method for producing a fuel cell separator according to any one of claims 1 to 3, wherein the resin is a thermosetting resin. 請求項1ないし4のいずれか1項に記載の燃料電池用セパレータの製造方法によって製造することを特徴とする燃料電池用セパレータ。   A fuel cell separator manufactured by the method for manufacturing a fuel cell separator according to any one of claims 1 to 4.
JP2004051419A 2004-02-26 2004-02-26 Manufacturing method of separator for fuel cell, and separator for fuel cell Pending JP2005243415A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004051419A JP2005243415A (en) 2004-02-26 2004-02-26 Manufacturing method of separator for fuel cell, and separator for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004051419A JP2005243415A (en) 2004-02-26 2004-02-26 Manufacturing method of separator for fuel cell, and separator for fuel cell

Publications (1)

Publication Number Publication Date
JP2005243415A true JP2005243415A (en) 2005-09-08

Family

ID=35024927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004051419A Pending JP2005243415A (en) 2004-02-26 2004-02-26 Manufacturing method of separator for fuel cell, and separator for fuel cell

Country Status (1)

Country Link
JP (1) JP2005243415A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006286545A (en) * 2005-04-04 2006-10-19 Nissan Motor Co Ltd Manufacturing method of separator for fuel cell, and manufacturing device of separator for fuel cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006286545A (en) * 2005-04-04 2006-10-19 Nissan Motor Co Ltd Manufacturing method of separator for fuel cell, and manufacturing device of separator for fuel cell

Similar Documents

Publication Publication Date Title
CN1183617C (en) Fuel cell gas separator
CN1159789C (en) Fuel cell stack with separator of laminate structure
US20030027030A1 (en) Fuel-cell separator, production of the same, and fuel cell
JP3751911B2 (en) Polymer electrolyte fuel cell and method of manufacturing separator plate thereof
US9147889B2 (en) Composite separator for polymer electrolyte membrane fuel cell and method for manufacturing the same
JP5368828B2 (en) Separation plate for fuel cell stack and method for producing the same
JP2004079196A (en) Fuel cell separator and solid polymer fuel cell
JP3731255B2 (en) Manufacturing method of current collector for fuel cell
WO2008029818A1 (en) Electrolyte membrane, membrane electrode assembly, and methods for manufacturing the same
JP3847311B2 (en) Fuel cell manufacturing method and manufacturing equipment
KR101743924B1 (en) Carbon fiber felt integrated bipolar plate for batteries and method for manufacturing same
US20080073812A1 (en) Manufacturing method of separator for fuel cell using preform and separator manufactured by the same
JP4792445B2 (en) Fuel cell separator
JP2006196328A (en) Method and apparatus for manufacturing battery cell
JP2005243415A (en) Manufacturing method of separator for fuel cell, and separator for fuel cell
JP4131665B2 (en) Fuel cell separator
WO2018042975A1 (en) Membrane electrode assembly, fuel cell provided with same and method for producing membrane electrode assembly
JP2007026899A (en) Fuel cell and manufacturing method of separator therefor
JP2006216257A (en) Manufacturing method of separator for fuel cell
KR100928041B1 (en) Separator for fuel cell and fuel cell comprising the same
JP2003142117A (en) High polymer electrolyte type fuel cell and its manufacturing device
JP4630029B2 (en) Fuel cell manufacturing method and manufacturing equipment
JPH07335234A (en) Fuel cell
JP2005174821A (en) Manufacturing method of separator for fuel cell and separator for fuel cell
JP2005203296A (en) Manufacturing method of separator