JP2005242106A - Projection display device - Google Patents

Projection display device Download PDF

Info

Publication number
JP2005242106A
JP2005242106A JP2004053495A JP2004053495A JP2005242106A JP 2005242106 A JP2005242106 A JP 2005242106A JP 2004053495 A JP2004053495 A JP 2004053495A JP 2004053495 A JP2004053495 A JP 2004053495A JP 2005242106 A JP2005242106 A JP 2005242106A
Authority
JP
Japan
Prior art keywords
light
pbs
plate
polarization
spatial light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004053495A
Other languages
Japanese (ja)
Inventor
Tetsuji Suzuki
鉄二 鈴木
Takashi Aizaki
隆嗣 相崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP2004053495A priority Critical patent/JP2005242106A/en
Publication of JP2005242106A publication Critical patent/JP2005242106A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Projection Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a projection display device which realizes a tight and uniform black screen and a bright and uniform white screen and is high in contrast ratio. <P>SOLUTION: Quarter-wavelength plates 10R, 10G and 10B are arranged among respective spatial optical modulators 61, 62, 63 of R, G and B and PBSs 3 and 4. S polarized light which is reflected light of the PBS 4 is made incident on the wavelength plate 10B for B. The slow axis of the wavelength plate 10B for B is arranged by being set perpendicularly to the polarization direction of the S polarized light. P polarized light which is the transmitted light of the PBS 4 is made incident on the wavelength plate 10R for R. The slow axis of the wavelength plate 10R for R is arranged by being set perpendicularly to the polarization direction of the P polarized light. P polarized light which is the transmitted light of the PBS 3 is made incident on the wavelength plate 10G for G. The slow axis of the wavelength plate 10G for G is arranged by being set perpendicularly to the polarization direction of the P polarized light. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、反射型光変調素子と波長板を用いた投射型表示装置に係り、その投射画像の高コントラスト化に関する。   The present invention relates to a projection display device using a reflective light modulation element and a wave plate, and relates to increasing the contrast of the projected image.

反射型光変調素子を用いた投射型表示装置は、その解像度の高さと高コントラスト比が特徴であり、様々な構成のものが開発され商品化されている。その多くは反射型光変調素子を3枚用いる3板式カラープロジェクタであり、メタルハライドランプ等の強力な光源から得られる白色光を3原色に分解し、その色分解された各光を各対応色に係る映像信号で駆動される液晶パネル等の空間光変調部へ導いて変調し、夫々の変調光を合成して投写する方式を採用している(例えば、特許文献1参照。)。   Projection-type display devices using reflective light modulation elements are characterized by their high resolution and high contrast ratio, and various configurations have been developed and commercialized. Most of them are three-plate type color projectors that use three reflection type light modulation elements, which separates the white light obtained from a powerful light source such as a metal halide lamp into three primary colors, and converts the color-separated light into corresponding colors. A method is adopted in which the light is guided to a spatial light modulator such as a liquid crystal panel driven by such a video signal, modulated, and the modulated light is combined and projected (see, for example, Patent Document 1).

特許文献1による投射型表示装置の構成例を図10に示す。この光学系は、上下に階層構造になっており、上階層には、光源11、コリメートレンズ20、インテグレータ21、コールドミラー22、赤外線カットフィルタ23、3色分解クロスダイクロイックプリズム24、および分解された各色を偏光し下方に反射する偏光ビームスプリッタプリズム12r,12g,12bが配置されている。中階層には、凸レンズ13r,13g,13bと偏光子14r,14g,14bが配置されている。さらに、下階層には各色光毎に偏光ビームスプリッタプリズム15r,15g,15b、波長板16r,16g,16b、反射型表示素子17r,17g,17b、3色合成クロスダイクロイックプリズム25、および投射レンズ18が配置されている。   FIG. 10 shows a configuration example of a projection display device according to Patent Document 1. This optical system has a hierarchical structure up and down, and in the upper layer, the light source 11, the collimating lens 20, the integrator 21, the cold mirror 22, the infrared cut filter 23, the three-color separation cross dichroic prism 24, and the decomposed Polarizing beam splitter prisms 12r, 12g, and 12b that polarize each color and reflect it downward are arranged. Convex lenses 13r, 13g, 13b and polarizers 14r, 14g, 14b are arranged in the middle layer. Further, in the lower layer, the polarization beam splitter prisms 15r, 15g, and 15b, the wave plates 16r, 16g, and 16b, the reflective display elements 17r, 17g, and 17b, the three-color composition cross dichroic prism 25, and the projection lens 18 for each color light. Is arranged.

上階層部の偏光ビームスプリッタプリズム12と偏光子14とで、S偏光の直線偏光とし、下階層部の偏光ビームスプリッタプリズム15内でS偏光が反射して反射型表示素子17に供給され、表示素子の液晶で変調を受けた光が反射して再び偏光ビームスプリッタプリズム15に戻り、変調された成分であるP偏光光を透過して、3色合成ダイクロイックプリズム25に導かれる。   The polarized light beam splitter prism 12 and the polarizer 14 in the upper layer portion make S-polarized linearly polarized light, and the S polarized light is reflected in the polarized beam splitter prism 15 in the lower layer portion and supplied to the reflective display element 17 for display. The light modulated by the liquid crystal of the element is reflected and returned to the polarization beam splitter prism 15 again, and the P-polarized light as the modulated component is transmitted and guided to the three-color synthesis dichroic prism 25.

このとき、反射型表示素子17と偏光ビームスプリッタプリズム15との間には波長板16が配置されている。斜め光成分が偏光ビームスプリッタ膜に入射すると、直線偏光からずれるために、波長板で位相特性を補正し直線に戻す役割をしている。また、液晶のプレチルトの補正も同時に行うものである。このようにして3色合成された光束が投射レンズ18でスクリーンに投影される。   At this time, the wave plate 16 is disposed between the reflective display element 17 and the polarization beam splitter prism 15. When the oblique light component is incident on the polarization beam splitter film, it shifts from the linearly polarized light, so that the phase characteristic is corrected by the wave plate and returned to the straight line. In addition, the pretilt correction of the liquid crystal is also performed at the same time. The light beam synthesized in this way is projected onto the screen by the projection lens 18.

上述の波長板の必要性と補正効果については、例えば、特許文献2に詳細に記載されている。また、波長板を組み込んだ反射型空間光変調素子構造および液晶プロジェクタ装置の構造については、例えば、特許文献3に記載されている。
特開平10−197949号公報 特表平9−508709号公報 特開平11−305674号公報
The necessity and correction effect of the above-described wave plate are described in detail in, for example, Patent Document 2. Further, a reflection type spatial light modulation element structure incorporating a wave plate and a structure of a liquid crystal projector device are described in Patent Document 3, for example.
JP 10-197949 A Japanese National Patent Publication No. 9-508709 JP-A-11-305574

ところで、近年の投射型表示装置は、高輝度化、高コントラスト化に関して非常に高い要求がなされるようになっている。高コントラスト比を実現するために、反射型表示素子と偏光ビームスプリッタプリズムとの間に波長板が配置されており、これにより偏光ビームスプリッタのプリズム偏光分離面への斜め光成分の補正や、液晶のプレチルトの補正を行っている。従って、実際の波長板取付においては、最大のコントラスト比を得るために、特許文献3にあるように、円形の外形形状の波長板を回転して調整を行っていたが、波長板の調整によって、コントラスト比が大きくばらついてしまうという問題があった。   By the way, in recent years, projection-type display devices have come to have very high demands for high brightness and high contrast. In order to realize a high contrast ratio, a wave plate is disposed between the reflective display element and the polarizing beam splitter prism, thereby correcting oblique light components on the prism polarization separation surface of the polarizing beam splitter, and liquid crystal The pretilt is corrected. Therefore, in actual wave plate mounting, in order to obtain the maximum contrast ratio, as described in Patent Document 3, the circular wave plate having a circular outer shape is rotated and adjusted. However, by adjusting the wave plate, There is a problem that the contrast ratio varies greatly.

また、波長板を回転させて調整を行う構造をとるため波長板の取り付けを円状に可動構造としなければならず、波長板周辺の機構が複雑するという問題があった。   In addition, since the wave plate is adjusted by rotating the wave plate, the wave plate must be attached in a circular movable structure, resulting in a complicated mechanism around the wave plate.

さらには、波長板を調整した後円状の可動構造部分を固定するため、振動などにより調整位置がずれてしまうという問題があった。   Furthermore, since the circular movable structure portion is fixed after adjusting the wave plate, there is a problem that the adjustment position is shifted due to vibration or the like.

本発明は、以上の点に鑑みなされたもので、空間光変調素子の画素表示領域に対して、波長板を最適な方向に遅相軸をあわせて配置したことにより、引締った均一な黒画面、明るい均一な白画面を実現し、高コントラスト比の投射型表示装置を提供することを目的とする。   The present invention has been made in view of the above points, and by arranging the wavelength plate in the optimum direction along the slow axis with respect to the pixel display region of the spatial light modulator, the tightened uniform black An object of the present invention is to provide a high-contrast-ratio projection display device that realizes a bright, uniform white screen.

本発明は、上記課題を解決するために、以下の1)〜3)に記載の手段よりなる。
すなわち、
1)光源と、照明光学系と、偏光選択変換手段と、少なくとも2組の空間光変調素子及び前記空間光変調素子に対応した波長板と、を用いた投射型表示装置であって、
前記光源より出射された光を前記照明光学系で略均一な平行光とした後、前記偏光選択変換手段により前記空間光変調素子の組数に応じた色光に選択され、且つ偏光方向を揃え前記波長板及び前記空間光変調素子に順次供給されると共に、
前記波長板のうち少なくとも1組以上の波長板の遅相軸を対応する前記反射型光変調素子の画像表示領域のアスペクトの長辺方向に略一致させ、他の組の波長板の遅相軸を対応する前記アスペクトの短辺方向に略一致させるように構成したことを特徴とする投射型表示装置。
In order to solve the above-mentioned problems, the present invention comprises means described in the following 1) to 3).
That is,
1) A projection display device using a light source, an illumination optical system, polarization selective conversion means, at least two sets of spatial light modulators and a wavelength plate corresponding to the spatial light modulators,
After the light emitted from the light source is made into substantially uniform parallel light by the illumination optical system, it is selected by the polarization selective conversion means as colored light according to the number of sets of the spatial light modulation elements, and the polarization direction is aligned. While being sequentially supplied to the wave plate and the spatial light modulator,
The slow axis of at least one set of the wave plates among the wave plates is made to substantially coincide with the long side direction of the aspect of the image display area of the corresponding reflection type light modulation element, and the slow axis of another set of wave plates Is configured to substantially coincide with the corresponding short side direction of the aspect.

2)光源と、照明光学系と、偏光選択変換手段と、前記光源のうち3原色に対応した3組の空間光変調素子及び前記空間光変調素子に対応した波長板を用いた投射型表示装置であって、
前記光源より出射された光を前記照明光学系で均一な平行光とした後、前記偏光選択変換手段により3組の前記空間光変調素子に応じた色光に選択され、且つ偏光方向を揃え前記波長板及び前記空間光変調素子に順次供給されると共に、
前記3組の波長板うち、2組の波長板の遅相軸を対応する前記反射型光変調素子の画像表示領域のアスペクトの長辺方向に略一致させ、残りの1組の波長板の遅相軸を対応する前記アスペクトの短辺方向に略一致たことを特徴とした投射型表示装置。
2) Projection-type display device using a light source, an illumination optical system, polarization selective conversion means, three sets of spatial light modulation elements corresponding to three primary colors among the light sources, and a wavelength plate corresponding to the spatial light modulation element Because
After the light emitted from the light source is converted into uniform parallel light by the illumination optical system, it is selected by the polarization selective conversion means as color light according to the three sets of the spatial light modulation elements, and the polarization direction is aligned. Sequentially supplied to the plate and the spatial light modulator,
Of the three sets of wave plates, the slow axes of the two sets of wave plates are made to substantially coincide with the long side direction of the aspect of the image display area of the corresponding reflection type light modulation element, and the remaining one set of wave plates is delayed. A projection display device characterized in that the phase axis substantially coincides with the corresponding short side direction of the aspect.

3)前記波長板の位相差は、前記色光の中心波長において、略1/4波長の位相差を有することを特徴とする1)又は2)に記載の投射型表示装置。   3) The projection display device according to 1) or 2), wherein the phase difference of the wave plate has a phase difference of approximately ¼ wavelength at the center wavelength of the color light.

本発明の「投射型表示装置」によれば、反射型光変調素子と2組以上の波長板とを用い、少なくとも1組以上の波長板の遅相軸を対応する反射型光変調素子のアスペクトの長辺方向に略一致させ、1組以上の波長板遅相軸を対応する反射型光変調素子のアスペクトの短辺方向に略一致たことにより、高いコントラスト比を得ることが可能な投射型表示装置を提供することができる。   According to the “projection type display device” of the present invention, the aspect of the reflection type light modulation element using the reflection type light modulation element and two or more sets of wave plates and corresponding to the slow axis of at least one set of wave plates. A projection type capable of obtaining a high contrast ratio by substantially matching the long-side direction of the light source and substantially matching one or more pairs of wave plate slow axes with the short-side direction of the aspect of the corresponding reflective light modulation element A display device can be provided.

また、空間光変調素子の画素表示領域に対して、波長板を矩形形状に形成し微調して固定するようにしたので、従来の円盤状の波長板を回転して調整後固定するという機構を用いなくともよいため、高いコントラスト比を得た後性能が維持でき、信頼性の高い投射型表示装置を提供することができる。   In addition, since the wavelength plate is formed in a rectangular shape and finely adjusted and fixed to the pixel display region of the spatial light modulator, a mechanism for rotating and fixing the conventional disk-shaped wavelength plate after adjustment is provided. Since it does not have to be used, performance can be maintained after obtaining a high contrast ratio, and a projection display device with high reliability can be provided.

以下、本発明に係る投射型表示装置の発明を実施するための最良の形態につき、好ましい実施例により説明する。   The best mode for carrying out the invention of the projection type display apparatus according to the present invention will be described below with reference to preferred embodiments.

図1は本実施例に適用される投射型表示装置の構成を示した概略平面図である。同図に示すように、左から可視光を含んで発光する光源11、光源11から発した光を色分解合成光学系1に向かって均一な平行光として照射する照明光学系19、照明光を3原色に分解し3個の空間光変調素子61,62,63に導き、画像信号に応じて変調された各光束を色合成する色分解合成光学系1、図示しないスクリーンに向け画像光を投射する投射レンズ18よりなる。色分解合成部分は、4個の偏光ビームスプリッタ(以下、PBSと記す)と4枚の波長選択性位相板より構成される。   FIG. 1 is a schematic plan view showing the configuration of a projection display device applied to this embodiment. As shown in the figure, a light source 11 that emits light including visible light from the left, an illumination optical system 19 that irradiates light emitted from the light source 11 toward the color separation / synthesis optical system 1 as uniform parallel light, and illumination light. Color separation / combination optical system 1 that separates the light into three primary colors, guides it to three spatial light modulators 61, 62, 63, and color-combines each light beam modulated according to the image signal, and projects image light onto a screen (not shown) The projection lens 18 is made up of. The color separation / synthesis part is composed of four polarization beam splitters (hereinafter referred to as PBS) and four wavelength selective phase plates.

即ち、立方体または角柱状の第1、第2、第3、第4の4個のPBS2、3、4、5を、各PBSの偏光分離面21、31、41、51、が略X字状に交差するように配置している。この場合、第1のPBS2が入射側PBSであり、その対角の位置に配置された第4のPBS5が出射側PBSである。   That is, the four first, second, third, and fourth PBSs 2, 3, 4, and 5 having a cubic or prism shape, and the polarization separating surfaces 21, 31, 41, and 51 of each PBS are substantially X-shaped. It is arranged to intersect. In this case, the first PBS 2 is the incident side PBS, and the fourth PBS 5 arranged at the diagonal position is the outgoing side PBS.

なお、入射側PBSをいずれに選択するかは自由であるが、そのいずれの場合にも入射側PBSの対角に位置するPBSが必ず出射側PBSの関係となる。   Note that it is free to select the incident side PBS, but in any case, the PBS located diagonally with respect to the incident side PBS is always in the relationship with the outgoing side PBS.

第1のPBS2(入射側PBS)の4つの透光面2a,2b,2c,2dのうち選択された一の透光面2a(入射側面)の前方、及び第4のPBS5(出射側PBS)の4つの透光面5a,5b,5c,5dのうち選択された一の透光面5c(出射側面)の後方にはG光の偏波面を90°回転させる第1の波長選択性偏光変換手段(以下、G用位相板という)6、7が配置されている。   The front side of one light-transmitting surface 2a (incident side surface) selected from the four light-transmitting surfaces 2a, 2b, 2c, and 2d of the first PBS 2 (incident side PBS) and the fourth PBS 5 (outgoing side PBS) The first wavelength-selective polarization conversion that rotates the polarization plane of the G light by 90 ° behind one of the four translucent surfaces 5a, 5b, 5c, and 5d. Means (hereinafter referred to as G phase plate) 6 and 7 are arranged.

また、第1のPBS2と第3のPBS4との間、及び第3のPBS4と第4のPBS5との間には、共にR光の偏波面を90°回転させる第2の波長選択性偏光変換手段(以下、R用位相板という)8、9を備えている。   Further, between the first PBS 2 and the third PBS 4 and between the third PBS 4 and the fourth PBS 5, the second wavelength selective polarization conversion that rotates the polarization plane of the R light by 90 °. Means (hereinafter referred to as R phase plate) 8 and 9 are provided.

この場合、G光に対応した空間光変調素子61は、第2のPBS3の透光面3cの側面に配置され、R光対応の空間光変調素子62は、第3のPBS4の透光面4b、またB光対応の空間光変調素子63は、第3のPBS4の透光面4aの側面に配置されることにる。   In this case, the spatial light modulation element 61 corresponding to the G light is disposed on the side surface of the light transmission surface 3c of the second PBS 3, and the spatial light modulation element 62 corresponding to the R light is the light transmission surface 4b of the third PBS 4. In addition, the spatial light modulation element 63 corresponding to the B light is arranged on the side surface of the light transmitting surface 4 a of the third PBS 4.

色分解光合成学系1は、次のようにして白色光からR、G、B光を色分解し、さらに合成する作用をなす。   The color separation photosynthesis system 1 performs the function of color-separating R, G, B light from white light and further synthesizing it as follows.

先ず、白色光のS偏光が、G用位相板6に対して与えられる。この場合、G用位相板6はG光のみの偏波面を90°回転させる機能を有するものであるため、G用位相板6を透過した白色光のうちG光のみが偏光変換されてS偏光からP偏光に変わる。一方、R光及びB光はS偏光のままである。   First, S-polarized light of white light is given to the G phase plate 6. In this case, since the G phase plate 6 has a function of rotating the plane of polarization of only the G light by 90 °, only the G light out of the white light transmitted through the G phase plate 6 is subjected to polarization conversion to be S-polarized light. To P-polarized light. On the other hand, the R light and B light remain S-polarized light.

以後、それぞれの色光について個別にその光路及び偏波面の変移について説明する。   Hereinafter, the transition of the optical path and the plane of polarization of each color light will be described individually.

先ず、G用位相板6を透過したG光について説明する。   First, the G light transmitted through the G phase plate 6 will be described.

G光は、上記したようにP偏光に変換されている。G光は、第1及び第2のPBS2、3の偏光分離面21、31を透過直進して、第2のPBS3の透光面3cより出射してG対応の反射型空間光変調素子61に入射する。そして、当該反射型空間光変調素子61においてG対応の映像信号に応じた光変調を受けて反射される。   The G light is converted to P-polarized light as described above. The G light travels straight through the polarization separation surfaces 21 and 31 of the first and second PBSs 2 and 3, exits from the light transmission surface 3 c of the second PBS 3, and enters the G-type reflective spatial light modulator 61. Incident. Then, the reflection type spatial light modulation element 61 receives light modulation according to the video signal corresponding to G and reflects the light.

光変調されて生成したG光のS偏光成分は、第2のPBS3の偏光分離面31で反射され、第4のPBS5に入射する。そして、第4のPBS5の偏光分離面51において反射され、第4のPBS5の透光面5cより出射し、後段に配置したG用位相板7に入射する。   The S-polarized component of the G light generated by the light modulation is reflected by the polarization separation surface 31 of the second PBS 3 and enters the fourth PBS 5. Then, the light is reflected by the polarization separation surface 51 of the fourth PBS 5, is emitted from the light-transmitting surface 5 c of the fourth PBS 5, and is incident on the G phase plate 7 disposed in the subsequent stage.

G用位相板7は前述したようにG光に係る偏波面を90°回転させる機能を有するものであるので、G光のS偏光はP偏光に変換されて出射する。   Since the G phase plate 7 has a function of rotating the polarization plane of the G light by 90 ° as described above, the S polarized light of the G light is converted into P polarized light and emitted.

次に、R光について説明する。   Next, the R light will be described.

G用位相板6を透過したS偏光のR光は、第1のPBS2の偏光分離面21で反射されR用位相板8に入射する。ここで、R用位相板8はR光の偏波面を90°回転させる機能を有するものであるため、R光はS偏光からP偏光に偏光変換されてこれを出射し、第3のPBS4に入射する。さらに、P偏光のR光は第3のPBS4の偏光分離面41を直進透過して透光面4bより出射し、R対応の反射型空間光変調素子62に入射する。そして、当該反射型空間光変調素子62においてR対応の映像信号に応じた光変調を受けて反射される。   The S-polarized R light transmitted through the G phase plate 6 is reflected by the polarization separation surface 21 of the first PBS 2 and enters the R phase plate 8. Here, since the R phase plate 8 has a function of rotating the polarization plane of the R light by 90 °, the R light is converted from S-polarized light to P-polarized light, and is emitted therefrom. Incident. Further, the P-polarized R light travels straight through the polarization separation surface 41 of the third PBS 4, exits from the light-transmitting surface 4 b, and enters the R-compatible reflective spatial light modulator 62. Then, the reflection type spatial light modulator 62 receives light modulation corresponding to the R-compatible video signal and reflects the light.

光変調されたR光のS偏光成分は、第3のPBS4の偏光分離面41で反射され、R用位相板9に入射する。当該R用位相板9は上記したようにR光の偏波面を変換する機能を有するものであるため、R光のS偏光成分はP偏光に偏光変換されて第4のPBS5に入射する。そして、第4のPBS5の偏光分離面51を透過直進して、第4のPBS5の透光面5cより出射し、後段に配置したG用位相板7に入射する。   The light-modulated S-polarized component of the R light is reflected by the polarization separation surface 41 of the third PBS 4 and enters the R phase plate 9. Since the R phase plate 9 has the function of converting the polarization plane of the R light as described above, the S polarization component of the R light is converted into P polarization and enters the fourth PBS 5. Then, the light travels straight through the polarization separation surface 51 of the fourth PBS 5, exits from the light transmission surface 5 c of the fourth PBS 5, and enters the G phase plate 7 disposed in the subsequent stage.

G用位相板7は前述したようにR光には何ら作用せず、R光はP偏光のままこれを出射する。   As described above, the G phase plate 7 does not act on the R light, and the R light is emitted as P-polarized light.

次に、B光について説明する。G用位相板6を透過したS偏光のB光は、第1のPBS2の偏光分離面21で反射されR用位相板8に入射する。ここで、R用位相板8は上記したようにB光には何ら作用せず、B光は偏光変換されることなくS偏光のままこれを出射し、第3のPBS4に入射する。   Next, the B light will be described. The S-polarized B light transmitted through the G phase plate 6 is reflected by the polarization separation surface 21 of the first PBS 2 and enters the R phase plate 8. Here, as described above, the R phase plate 8 does not act on the B light at all, and the B light is emitted as it is with S polarization without being subjected to polarization conversion, and is incident on the third PBS 4.

S偏光のB光は第3のPBS4の偏光分離面41で反射され透光面4aより出射し、B対応の反射型空間光変調素子63に入射する。そして、当該反射型空間光変調素子63においてB対応の映像信号に応じた光変調を受けて反射される。   The S-polarized B light is reflected by the polarization separation surface 41 of the third PBS 4, exits from the light transmitting surface 4 a, and enters the B-type reflective spatial light modulator 63. Then, the reflection type spatial light modulation element 63 receives the light modulation corresponding to the video signal corresponding to B and is reflected.

光変調されて生成されたB光のP偏光成分は、第3のPBS4の偏光分離面41を透過直進しR用位相板9に入射する。当該R用位相板9は上記したようにB光に対しては何ら作用せず、B光はP偏光のままこれを出射して第4のPBS5に入射する。そして、第4のPBS5の偏光分離面51を透過直進して、第4のPBS5の透光面5cより出射し、後段に配置したG用位相板7に入射する。   The P-polarized component of the B light generated by the light modulation passes straight through the polarization separation surface 41 of the third PBS 4 and enters the R phase plate 9. The R phase plate 9 does not act on the B light as described above, and the B light exits from the P-polarized light and enters the fourth PBS 5. Then, the light travels straight through the polarization separation surface 51 of the fourth PBS 5, exits from the light transmission surface 5 c of the fourth PBS 5, and enters the G phase plate 7 disposed in the subsequent stage.

G用位相板7は前述したようにB光には何ら作用せず、B光はP偏光のままこれを出射する。   As described above, the G phase plate 7 does not act on the B light, and the B light is emitted as it is P-polarized light.

このようにして、白色光は色分解合成光学系1において色分解された後、再合成され、R、G、B光の偏波面が共にP偏光に揃えられて色分解合成光学系1を出射する。このようにして3色合成された光束が投射レンズ18で図示しないスクリーンに投影される。   In this way, the white light is color-separated in the color separation / synthesis optical system 1 and then recombined, and the polarization planes of the R, G, and B light are all aligned with the P-polarized light and emitted from the color separation / synthesis optical system 1. To do. The light beam synthesized in this way is projected onto a screen (not shown) by the projection lens 18.

各々の空間光変調素子とPBSの間には1/4波長板10R,10G,10Bが配置されており、従来例のようにPBSとの斜め光補正と液晶の複屈折分の補正を行っている。このような色分解合成光学系に、黒表示レベルの入力を行い、投射光路中にセンサをおいて、各色とも順次その帯域の色フィルタをセンサの前に設置して、各々の波長板を360度回転させコントラスト比の測定をしたところ、表1の結果を得た。各色でコントラスト比の高いところは、波長板を反射型光変調素子の画像エリアのアスペクト比の長辺方向に略遅相軸を合わせた場合と、短辺方向に遅相軸を合わせた場合の2通りあり、各色の組合せは合計で遅延軸1〜遅延軸8の8通りとなる。その結果から、A,B,Cのランク分けをした。特に非常に良好なものは遅延軸2の組合せで、次が遅延軸4の組合せであった。   Quarter-wave plates 10R, 10G, and 10B are arranged between each spatial light modulator and PBS, and oblique light correction with PBS and birefringence correction of liquid crystal are performed as in the conventional example. Yes. A black display level is input to such a color separation / combination optical system, a sensor is placed in the projection optical path, and a color filter for each color is sequentially installed in front of the sensor. When the contrast ratio was measured after rotating the lens, the results shown in Table 1 were obtained. The high contrast ratio for each color is obtained when the wavelength plate is aligned with the slow axis in the long side direction of the aspect ratio of the image area of the reflective light modulator and when the slow axis is aligned in the short side direction. There are two combinations, and there are a total of eight combinations of delay axes 1 to 8 in total. From the results, A, B, and C were ranked. A particularly good combination was the combination of the delay axes 2 and the next was the combination of the delay axes 4.

Figure 2005242106
Figure 2005242106

表1の測定結果から得られた知見について説明する。反射型光変調素子に入射する光束の偏光方向と、対応する波長板の遅相軸方向とを、略垂直にする方が黒レベルが低下しコントラスト比を高めることがわかる。この現象は色によってその差異が異なり、Rでは約2倍のコントラスト差があるが、B,Gでは少ない。従来はこの関係が不明であったために、黒に落ちる調整のうち最適でない方向にて調整していたことになる。   The knowledge obtained from the measurement results in Table 1 will be described. It can be seen that the black level decreases and the contrast ratio increases when the polarization direction of the light beam incident on the reflection type light modulation element and the slow axis direction of the corresponding wave plate are substantially perpendicular. This phenomenon differs depending on the color, and there is a contrast difference of about twice in R, but it is small in B and G. Conventionally, since this relationship is unknown, adjustment is performed in a non-optimal direction among the adjustments that fall into black.

本実施例では、上記結果に基づき、1/4波長板の遅相軸を、表1の組合せ遅延軸2である図1に示すような方向に配置して微調整したことを特徴としている。   The present embodiment is characterized in that the slow axis of the quarter-wave plate is arranged and finely adjusted in the direction as shown in FIG.

B用波長板は、PBSの反射光であるS偏光が入射する。B用波長板の遅相軸はS偏光の偏光方向と垂直(紙面に平行)に設定して配置している。R用波長板は、PBSの透過光であるP偏光が入射する。このときR用波長板の遅相軸はP偏光の偏光方向と垂直(紙面に垂直)に設定して配置している。G用波長板は、PBSの透過光であるP偏光が入射する。このときG用波長板の遅相軸はP偏光の偏光方向と垂直(紙面に平行)に設定して配置している。さらに最大のコントラスト比を得るには、液晶複屈折補正分などの微調整が必要であり、投射光路中にセンサをおいて、黒表示を行い最低値を示すように回転調整するので、先に述べた偏光方向と平行角度から数度程度回転している。反射型光変調素子は紙面に対して垂直方向に長辺が向くように配置している。   S-polarized light, which is reflected light from PBS, enters the B wavelength plate. The slow axis of the B wavelength plate is set perpendicular to the polarization direction of S-polarized light (parallel to the paper surface). The R wave plate is incident with P-polarized light that is transmitted through PBS. At this time, the slow axis of the R wave plate is set perpendicular to the polarization direction of the P-polarized light (perpendicular to the paper surface). The G wave plate is incident with P-polarized light that is transmitted through PBS. At this time, the slow axis of the G wavelength plate is set perpendicular to the polarization direction of the P-polarized light (parallel to the paper surface). In order to obtain the maximum contrast ratio, fine adjustment of the liquid crystal birefringence correction is necessary, and a sensor is placed in the projection optical path, and the rotation is adjusted to display the black value and show the minimum value. It is rotated several degrees from the parallel angle with the described polarization direction. The reflection type light modulation elements are arranged so that the long sides thereof face in the direction perpendicular to the paper surface.

このとき、反射型光変調素子の画像エリアのアスペクト比と波長板遅相軸方向を図2に示す。   At this time, the aspect ratio of the image area of the reflective light modulation element and the direction of the slow axis of the wave plate are shown in FIG.

図3には表1の組合せ遅延軸4の構成を示す。図4にその遅相軸方向を示す。図1に比べ、Gの波長板の遅相軸が90度異なっている。この構成も良好なコントラスト比を得ることができる。この組合せではR素子のみが長辺に平行である。   FIG. 3 shows the configuration of the combination delay axis 4 in Table 1. FIG. 4 shows the slow axis direction. Compared to FIG. 1, the slow axis of the G wave plate is different by 90 degrees. This configuration can also provide a good contrast ratio. In this combination, only the R element is parallel to the long side.

波長板としては、水晶などの複屈折結晶、あるいはポリカーボネート系樹脂、ポリオレフィン系樹脂などの有機系材料、など様々な材料のものを用いることができる。有機系材料のものは、樹脂フィルムをガラス基板の一方の面に張り合わせた構成か、または樹脂フィルムをガラス基板で挟んだ構成をとる。   As the wave plate, various materials such as birefringent crystals such as quartz or organic materials such as polycarbonate resin and polyolefin resin can be used. An organic material has a structure in which a resin film is bonded to one surface of a glass substrate or a structure in which a resin film is sandwiched between glass substrates.

各1/4波長板の位相差は、各色の略中心波長にて1/4波長の位相差を持つように構成する。R用波長板はRの中心波長620nmに対し、1/4の約155nmの位相差をもつ。G用波長板はGの中心波長550nmに対し、1/4の約138nmの位相差をもつ。B用波長板はBの中心波長460nmに対し、その1/4で約115nmの位相差をもつ。各帯域の全波長域に渡って理想的1/4を保つのは難しく、中心波長の定義も適用する表示装置の所望性能で変わるので、現実的には上記に近いバランスの取れた位相差を選ぶ構成とすればよい。従って、各波長域においては、各色の略中心波長にて1/4以下の位相差になる波長域もあれば、1/4以上の位相差になる帯域の組合わせも存在する。   The phase difference of each ¼ wavelength plate is configured to have a ¼ wavelength phase difference at substantially the center wavelength of each color. The wavelength plate for R has a phase difference of about 155 nm, which is 1/4, with respect to the center wavelength of R of 620 nm. The wavelength plate for G has a phase difference of about 138 nm, which is 1/4 with respect to the center wavelength of G of 550 nm. The wavelength plate for B has a phase difference of about 115 nm at 1/4 of the center wavelength of B of 460 nm. It is difficult to maintain an ideal quarter over the entire wavelength range of each band, and the definition of the center wavelength changes depending on the desired performance of the display device to which the definition is applied. The configuration can be selected. Accordingly, in each wavelength region, there are wavelength regions in which the phase difference is ¼ or less at substantially the center wavelength of each color, and there are combinations of bands in which the phase difference is ¼ or more.

波長板の両面には反射防止膜を施して、空気界面での反射ロスを減らすと共に、スクリーンに向けての不要反射光を減らすようにしている。   Antireflection films are provided on both sides of the wave plate to reduce reflection loss at the air interface and to reduce unnecessary reflected light toward the screen.

図5に1組のPBSプリズムと1色分の空間光変調素子との構成を詳細に示し、構造を説明する。本実施例では、反射型空間光変調素子と波長板が一体化してパッケージされており、部材間はシール材でホコリやゴミが入らないように密閉構造にしている。   FIG. 5 shows in detail the configuration of a set of PBS prisms and a spatial light modulator for one color, and the structure will be described. In the present embodiment, the reflective spatial light modulator and the wave plate are integrated and packaged, and a sealing structure is used between the members so as to prevent dust and dust from entering.

波長板10は上述の説明のように、位相差フィルム10dをガラス基板10cで両側から挟みこんだ構造になっている。反射型空間光変調素子65は、マトリクス状に画素を配置した画素基板65cと対向面に透明共通電極65あとを有し、夫々の基板の間隙に液晶を封入した液晶層65bで構成されている。さらに、画素基板65cの液晶層65bに対して裏面には冷却のためのヒートシンク54が設けられている。反射型空間光変調素子65と一体化されたヒートシンク54及び波長板10がパッケージ53に納められ、PBS50にシール材51を介して密閉固定されている。本実施例の波長板10は、画像を表示する画素基板65cと略同一の面積の矩形であるので、波長板固定部材52によりパッケージ53に固定している。この際、従来の円盤状の波長板を回転して調整後固定するという機構を用いなくともよいため、簡素な機構の固定部材でよい。   As described above, the wave plate 10 has a structure in which the retardation film 10d is sandwiched from both sides by the glass substrate 10c. The reflective spatial light modulator 65 includes a pixel substrate 65c in which pixels are arranged in a matrix and a transparent common electrode 65 on the opposite surface, and a liquid crystal layer 65b in which liquid crystal is sealed in the gap between the substrates. . Further, a heat sink 54 for cooling is provided on the back surface of the liquid crystal layer 65b of the pixel substrate 65c. A heat sink 54 and a wave plate 10 integrated with the reflective spatial light modulator 65 are housed in a package 53, and are hermetically fixed to the PBS 50 via a seal material 51. Since the wavelength plate 10 of the present embodiment is a rectangle having substantially the same area as the pixel substrate 65c for displaying an image, it is fixed to the package 53 by the wavelength plate fixing member 52. At this time, since it is not necessary to use a mechanism for rotating and fixing a conventional disc-shaped wave plate after adjustment, a simple fixing member may be used.

図6に、空間光変調素子を2枚用いて2板式とした表示装置の構成例を示す。B-G用の第1の素子66と、R用の第2の素子62との2板からなる構成で、PBSプリズム6の照明光入射側にR光をそのまま通し、BおよびG光に対しては時分割で出力光を切り替えるフィルタ60が配置してある。   FIG. 6 shows a configuration example of a display device in which two spatial light modulation elements are used and a two-plate type is used. The structure is composed of two plates of a first element 66 for BG and a second element 62 for R, and the R light is passed through the illumination light incident side of the PBS prism 6 as it is. In this case, a filter 60 for switching output light in a time division manner is arranged.

図7に波長板のその遅相軸方向を示す。2枚の波長板で、正面からみた時の軸がお互いに略直交した関係にあるように配置している。   FIG. 7 shows the slow axis direction of the wave plate. Two wave plates are arranged such that the axes when viewed from the front are in a substantially orthogonal relationship with each other.

図8に3板構成の別の実施例を示す。第1のPBS(入射側PBS)で行う入射光を色分解する構成をダイクロイックミラー12に置き換えた構成である。また、入射照明光の入射方向も90°変更されている。その他の構成は同様であり、第2の偏光PBS(主PBS)32a、第3のPBS(主PBS)32b、第4のPBS(射出側PBS)32c、空間光変調素子52R,52G,52B、それらに対応した波長板で構成されている。   FIG. 8 shows another embodiment having a three-plate configuration. In this configuration, the dichroic mirror 12 replaces the configuration for color-separating incident light performed by the first PBS (incident side PBS). The incident direction of incident illumination light is also changed by 90 °. Other configurations are the same, and the second polarization PBS (main PBS) 32a, the third PBS (main PBS) 32b, the fourth PBS (exit side PBS) 32c, the spatial light modulation elements 52R, 52G, and 52B, It is comprised with the wave plate corresponding to them.

このとき、反射型光変調素子の画像エリアのアスペクト比と波長板遅相軸方向を図9に示す。   At this time, the aspect ratio of the image area of the reflective light modulation element and the direction of the slow axis of the wave plate are shown in FIG.

以上述べたように、本発明の投射型表示装置は、波長板を最適な方向に遅相軸をあわせて配置したことにより、引締った均一な黒画面、明るい均一な白画面を実現し、高コントラスト比の表示装置を提供するものである。   As described above, the projection type display device of the present invention realizes a tightened uniform black screen and a bright uniform white screen by arranging the wave plate with the slow axis in the optimum direction. A display device having a high contrast ratio is provided.

本発明は、図1に示したような色分解合成光学系のみならず、従来例として示した図10のような構成にも適用できる。   The present invention can be applied not only to the color separation / synthesis optical system as shown in FIG. 1, but also to the configuration as shown in FIG. 10 as a conventional example.

また、図8に示すように、入射光を色分解する構成をダイクロイックミラーに置き換えた構成であっても、全く同様に機能する。その他、様々な3板構成(空間光変調素子を3枚用いる構成)のみならず、2板構成、単板構成であっても同様の効果を得るものである。   Further, as shown in FIG. 8, even if the configuration in which the color separation of the incident light is replaced with a dichroic mirror, it functions in exactly the same way. In addition, the same effect can be obtained not only in various three-plate configurations (a configuration using three spatial light modulation elements) but also in a two-plate configuration and a single-plate configuration.

本発明は、投射型表示装置、投射型表示装置の一種であるリアプロジェクションテレビなどの他に、空間光変調素子を用いた画像出力装置としてプリンタ、または空間光変調素子を用いた画像入力装置として、カメラやスキャナー、などにも応用できる可能性がある。   The present invention is a projection display device, a rear projection television which is a kind of projection display device, and the like, as a printer as an image output device using a spatial light modulation element, or as an image input device using a spatial light modulation element. There is a possibility that it can be applied to cameras and scanners.

本実施例に適用される投射型表示装置の概略構成を示す図である。It is a figure which shows schematic structure of the projection type display apparatus applied to a present Example. 図1における反射型空間光変調素子と波長板との関係を示す図である。It is a figure which shows the relationship between the reflection type spatial light modulation element and wavelength plate in FIG. 図1投射型表示装置において、波長板の遅延軸を変化させた概略構成を示す図である。1 is a diagram showing a schematic configuration in which the delay axis of the wave plate is changed in the projection display device. 図3における反射型空間光変調素子と波長板との関係を示す図である。It is a figure which shows the relationship between the reflection type spatial light modulation element and wavelength plate in FIG. 本実施例に適用される投射型表示装置の反射型空間光変調素子と波長板との詳細な構成例を示す図である。It is a figure which shows the detailed structural example of the reflection type spatial light modulation element and wavelength plate of a projection type display apparatus which are applied to a present Example. 空間光変調素子を2枚用いて2板式とした表示装置の構成例を示す図である。It is a figure which shows the structural example of the display apparatus made into the 2 plate type using two spatial light modulation elements. 図6における反射型空間光変調素子と波長板との関係を示す図である。It is a figure which shows the relationship between the reflection type spatial light modulation element and wavelength plate in FIG. 別の実施例に適用される投射型表示装置の概略構成を示す図である。It is a figure which shows schematic structure of the projection type display apparatus applied to another Example. 図8における反射型空間光変調素子と波長板との関係を示す図である。It is a figure which shows the relationship between the reflection type spatial light modulation element and wavelength plate in FIG. 従来例を示す図である。It is a figure which shows a prior art example.

符号の説明Explanation of symbols

1…色分解合成光学系
2…第1のPBS(入射側PBS)
3…第2の偏光PBS(主PBS)
4…第3のPBS(主PBS)
5…第4のPBS(射出側PBS)
6,7,16,17…第1の波長選択性偏光変換手段(G用位相板)
8,9…第2の波長選択性偏光変換手段(R用位相板)
14,15…第3の波長選択性偏光変換手段(B用位相板)
10…接合部材
12…緩衝部材

DESCRIPTION OF SYMBOLS 1 ... Color separation synthetic | combination optical system 2 ... 1st PBS (incident side PBS)
3 ... 2nd polarization PBS (main PBS)
4 ... Third PBS (main PBS)
5 ... Fourth PBS (Ejection side PBS)
6, 7, 16, 17... First wavelength selective polarization conversion means (G phase plate)
8, 9... Second wavelength selective polarization conversion means (R phase plate)
14, 15 ... third wavelength selective polarization conversion means (phase plate for B)
10 ... Joining member 12 ... Buffer member

Claims (3)

光源と、照明光学系と、偏光選択変換手段と、少なくとも2組の空間光変調素子及び前記空間光変調素子に対応した波長板と、を用いた投射型表示装置であって、
前記光源より出射された光を前記照明光学系で略均一な平行光とした後、前記偏光選択変換手段により前記空間光変調素子の組数に応じた色光に選択され、且つ偏光方向を揃え前記波長板及び前記空間光変調素子に順次供給されると共に、
前記波長板のうち少なくとも1組以上の波長板の遅相軸を対応する前記反射型光変調素子の画像表示領域のアスペクトの長辺方向に略一致させ、他の組の波長板の遅相軸を対応する前記アスペクトの短辺方向に略一致させるように構成したことを特徴とする投射型表示装置。
A projection display device using a light source, an illumination optical system, polarization selective conversion means, at least two sets of spatial light modulators and a wavelength plate corresponding to the spatial light modulators,
After the light emitted from the light source is made into substantially uniform parallel light by the illumination optical system, it is selected by the polarization selective conversion means as colored light according to the number of sets of the spatial light modulation elements, and the polarization direction is aligned. While being sequentially supplied to the wave plate and the spatial light modulator,
The slow axis of at least one set of the wave plates among the wave plates is made to substantially coincide with the long side direction of the aspect of the image display area of the corresponding reflection type light modulation element, and the slow axis of another set of wave plates Is configured to substantially coincide with the corresponding short side direction of the aspect.
光源と、照明光学系と、偏光選択変換手段と、前記光源のうち3原色に対応した3組の空間光変調素子及び前記空間光変調素子に対応した波長板を用いた投射型表示装置であって、
前記光源より出射された光を前記照明光学系で均一な平行光とした後、前記偏光選択変換手段により3組の前記空間光変調素子に応じた色光に選択され、且つ偏光方向を揃え前記波長板及び前記空間光変調素子に順次供給されると共に、
前記3組の波長板うち、2組の波長板の遅相軸を対応する前記反射型光変調素子の画像表示領域のアスペクトの長辺方向に略一致させ、残りの1組の波長板の遅相軸を対応する前記アスペクトの短辺方向に略一致たことを特徴とした投射型表示装置。
A projection display device using a light source, an illumination optical system, polarization selective conversion means, three sets of spatial light modulators corresponding to three primary colors of the light sources, and a wavelength plate corresponding to the spatial light modulator. And
After the light emitted from the light source is converted into uniform parallel light by the illumination optical system, it is selected by the polarization selective conversion means as color light according to the three sets of the spatial light modulation elements, and the polarization direction is aligned. Sequentially supplied to the plate and the spatial light modulator,
Of the three sets of wave plates, the slow axes of the two sets of wave plates are made to substantially coincide with the long-side direction of the aspect of the image display area of the corresponding reflection type light modulation element, and the remaining one set of wave plates is delayed. A projection display device characterized in that the phase axis substantially coincides with the corresponding short side direction of the aspect.
前記波長板の位相差は、前記色光の中心波長において、略1/4波長の位相差を有することを特徴とする請求項1又は2に記載の投射型表示装置。

3. The projection display device according to claim 1, wherein the phase difference of the wave plate has a phase difference of approximately ¼ wavelength at a center wavelength of the color light.

JP2004053495A 2004-02-27 2004-02-27 Projection display device Pending JP2005242106A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004053495A JP2005242106A (en) 2004-02-27 2004-02-27 Projection display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004053495A JP2005242106A (en) 2004-02-27 2004-02-27 Projection display device

Publications (1)

Publication Number Publication Date
JP2005242106A true JP2005242106A (en) 2005-09-08

Family

ID=35023889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004053495A Pending JP2005242106A (en) 2004-02-27 2004-02-27 Projection display device

Country Status (1)

Country Link
JP (1) JP2005242106A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012155063A (en) * 2011-01-25 2012-08-16 Seiko Epson Corp Projector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012155063A (en) * 2011-01-25 2012-08-16 Seiko Epson Corp Projector

Similar Documents

Publication Publication Date Title
US6905211B2 (en) Color separation device, imaging optical engine, and projection apparatus
KR100241641B1 (en) Efficient optical system for a high resolution projection display employing reflection light valves
US7255444B2 (en) Optical unit and projection-type image display apparatus using the same
KR100221376B1 (en) Image projection apparatus
US6678015B2 (en) Color separating/synthesizing apparatus
JPH11326861A (en) Liquid crystal projector device
JP2004020621A (en) Reflection type image projection apparatus, projection type image display using the same, and light source apparatus to be used therefor
KR20060012613A (en) Highly efficient single panel and two panel projection engines
US7916392B2 (en) Polarization control system and projector incorporating reflective liquid crystal element and birefringent elements
JP2006276826A (en) Reflection type projection display apparatus
JP2006145644A (en) Polarization splitter and projection display apparatus using the same
JP3573190B2 (en) LCD projector
US20020089679A1 (en) Color separating/synthesizing apparatus
JP2005250061A (en) Optical unit, projection image display device and optical element used therefor
US11592735B2 (en) Image display apparatus and image display unit
US6819365B1 (en) Color LCD projector with micro display light engine
US20070182933A1 (en) Color separation optical system and image projection apparatus
JP2005017502A (en) Liquid crystal projector
JP2004045907A (en) Image display device
JP2001066551A (en) Picture display device and illuminator
JP2005242106A (en) Projection display device
JP2004309751A (en) Color separating and synthesizing optical system and picture display device
KR100429213B1 (en) optics system of projector
JP2006323283A (en) Optical apparatus and projector
WO2023058587A1 (en) Light source device and projection-type video display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070911

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080129