JP2005241809A - Tip section machining device of optical fiber - Google Patents

Tip section machining device of optical fiber Download PDF

Info

Publication number
JP2005241809A
JP2005241809A JP2004049565A JP2004049565A JP2005241809A JP 2005241809 A JP2005241809 A JP 2005241809A JP 2004049565 A JP2004049565 A JP 2004049565A JP 2004049565 A JP2004049565 A JP 2004049565A JP 2005241809 A JP2005241809 A JP 2005241809A
Authority
JP
Japan
Prior art keywords
optical fiber
polishing
tip
tip section
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004049565A
Other languages
Japanese (ja)
Inventor
Akira Kashiwazaki
昭 柏崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2004049565A priority Critical patent/JP2005241809A/en
Publication of JP2005241809A publication Critical patent/JP2005241809A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical fiber tip section machining device which is used to simply and economically polish an optical fiber whose tip section has an elliptic tapered shape. <P>SOLUTION: The optical fiber tip section machining device is provided with a fixture having a first through-hole which is used to hold and fix the optical fiber and a second through-hole in which the size is made greater than the first through-hole and the tip section of the optical fiber is projected from one of the openings that are formed into elliptic shapes and a polishing member which is used to polish the tip section of the optical fiber. The tip section of the optical fiber is bent so that the section makes an acute angle with respect to the surface of the polishing member and is rotated on the surface of the polishing member in a sliding manner. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、光ファイバの先端部を楕円テーパ形状に加工する光ファイバ先端部加工装置に関するものである。   The present invention relates to an optical fiber tip portion processing apparatus for processing a tip portion of an optical fiber into an elliptic taper shape.

光通信用の発光源としては、レーザダイオード(以下LDという)が用いられる。一般的にLDからの出射光のパターンは、出射方向に対して光分布が同心円状のガウス分布ではなく縦方向と横方向で異なる楕円ビーム状となることは知られている。典型的な例として波長980nmのLDは2〜4:1の間のアスペクト比を有する出射光のパターンとなり、このような大きなアスペクト比を有するLDと光ファイバとの結合には光ファイバ先端部もLDのアスペクト比に対応した先端形状をしている光ファイバが適している。一般的に良く用いられているのは光ファイバ先端が楔形の形状をしているウェッジファイバが有効である。   As a light source for optical communication, a laser diode (hereinafter referred to as LD) is used. In general, it is known that the pattern of light emitted from the LD is not a concentric Gaussian distribution in the emission direction but an elliptical beam shape that differs in the vertical and horizontal directions. As a typical example, an LD having a wavelength of 980 nm has a pattern of outgoing light having an aspect ratio of 2 to 4: 1. The coupling between an LD having such a large aspect ratio and an optical fiber also includes an optical fiber tip. An optical fiber having a tip shape corresponding to the LD aspect ratio is suitable. In general, a wedge fiber having a wedge-shaped tip at the end of the optical fiber is effective.

このウェッジファイバではLDのスポットサイズにより結合効率が変化することにより効率的集光を目的として、それぞれのスポットサイズにあった先端の傾斜面角度と先端の曲率半径を選定してきた。   In this wedge fiber, the inclination angle of the tip and the radius of curvature of the tip corresponding to each spot size have been selected for the purpose of efficient condensing by changing the coupling efficiency depending on the spot size of the LD.

従来のウェッジファイバの一例を図5に示す。図5(a)は従来のウェッジファイバの先端部における正面図であり、図5(b)はその側面図である。従来のウェッジファイバ10は、光ファイバ1のコア中心や光ファイバの外径の中心となる中心軸(以下、単に中心軸という)3に関して対称で且つ光ファイバ先端に先鋭な稜線を形成する一対の傾斜面11aからなるレンズ11を備えている。   An example of a conventional wedge fiber is shown in FIG. Fig.5 (a) is a front view in the front-end | tip part of the conventional wedge fiber, FIG.5 (b) is the side view. A conventional wedge fiber 10 has a pair of symmetrical edges with respect to a center axis (hereinafter simply referred to as a center axis) 3 that is the center of the core of the optical fiber 1 and the outer diameter of the optical fiber, and forms a sharp ridgeline at the tip of the optical fiber. The lens 11 which consists of the inclined surface 11a is provided.

また、他のウェッジファイバを図6に示す。このウェッジファイバ20は、光ファイバ1の中心軸3に関して対称の一対の傾斜面11aを設けて楔形状とし、これらの傾斜面に対し連続して半円筒状の曲面22を備えてレンズを形成している(特許文献1参照)。   Another wedge fiber is shown in FIG. The wedge fiber 20 is provided with a pair of inclined surfaces 11a symmetrical with respect to the central axis 3 of the optical fiber 1 to form a wedge shape, and a semi-cylindrical curved surface 22 is continuously formed with respect to these inclined surfaces to form a lens. (See Patent Document 1).

また、他のウェッジファイバを図7に示す。このウェッジファイバ30は光ファイバの先端部に、光ファイバ1の中心軸3に対して対称な二つの傾斜面11aと、光ファイバ1の中心軸3に対して垂直な平面部32とから構成され、傾斜面11aと垂直な平面部32とのあいだでなす角度θが10°〜70°からなるレンズを形成している(特許文献2参照)。   Another wedge fiber is shown in FIG. This wedge fiber 30 is composed of two inclined surfaces 11a symmetrical with respect to the central axis 3 of the optical fiber 1 and a plane portion 32 perpendicular to the central axis 3 of the optical fiber 1 at the tip of the optical fiber. A lens having an angle θ between 10 ° and 70 ° formed between the inclined surface 11a and the vertical plane portion 32 is formed (see Patent Document 2).

このようなウェッジファイバ10〜30の作成方法は、従来から図4(a)、(b)に示す治具を用いて形成していた。即ち、まず、光ファイバ1の先端側に固定治具98を固定させるとともに、光ファイバ1を平板の研磨盤2に、その表面と光ファイバ1の中心軸3のなす角度をθになるように当接し、その角度θを保持しながら研磨する。これにより、光ファイバ1の先端の片側に傾斜面11aを形成する。次に180度反対側の光ファイバの傾斜面11aを作成するため、固定治具98に光ファイバ1を固定したままの状態で固定用冶具98を反転させて再度セットし同様に研磨作業をおこなう。   Conventionally, such a method for producing the wedge fibers 10 to 30 has been formed using a jig shown in FIGS. That is, first, the fixing jig 98 is fixed to the distal end side of the optical fiber 1, and the angle formed between the surface of the optical fiber 1 on the flat polishing disk 2 and the central axis 3 of the optical fiber 1 is θ. Abutting and polishing while maintaining the angle θ. Thereby, the inclined surface 11 a is formed on one side of the tip of the optical fiber 1. Next, in order to create the inclined surface 11a of the optical fiber on the opposite side of 180 degrees, the fixing jig 98 is inverted and set again while the optical fiber 1 is fixed to the fixing jig 98, and the polishing operation is similarly performed. .

次に、ウェッジファイバ20のように、その先端部に曲面22を設ける場合には、特許文献3に記載のように先端部を放電加工により溶融し半円筒状の曲面22を形成する。具体的には楔形状に加工した光ファイバを電極間に配置し、放電時間、放電強度を設定して光ファイバ1の溶融量を制御し、先端稜線部に所望の曲率半径をもつ半円筒状22を形成する。溶融での半円筒状曲面22の加工は放電時間、放電強度を制御する事により、容易に精度の高い曲面加工が可能である。また溶融での半円筒状曲面22の加工は傾斜面11aと半円筒状曲面22を連続的な曲面に形成できる。   Next, when the curved surface 22 is provided at the tip portion like the wedge fiber 20, the tip portion is melted by electric discharge machining to form a semi-cylindrical curved surface 22 as described in Patent Document 3. Specifically, an optical fiber processed into a wedge shape is arranged between electrodes, the discharge time and discharge intensity are set to control the melting amount of the optical fiber 1, and a semi-cylindrical shape having a desired radius of curvature at the tip ridge line portion 22 is formed. The processing of the semi-cylindrical curved surface 22 by melting can easily perform highly accurate curved surface processing by controlling the discharge time and the discharge intensity. Moreover, the process of the semi-cylindrical curved surface 22 by melting can form the inclined surface 11a and the semi-cylindrical curved surface 22 into a continuous curved surface.

しかしながら、上記従来方法による作成方法の場合、
レーザ光が光ファイバに入射する際に、接続損失を悪化させる理由から光ファイバ先端部の研磨後の先端部の中心Xと光ファイバ1の中心軸3とのズレを1μm以下としなくてはならないので、光ファイバ1の先端の研磨は、研磨装置によってある程度研磨をした後、光ファイバ1を研磨装置から取り外して研磨精度を確認していた。
However, in the case of the creation method by the conventional method,
When laser light is incident on the optical fiber, the deviation between the center X of the tip end of the optical fiber after polishing and the center axis 3 of the optical fiber 1 must be 1 μm or less because the connection loss is deteriorated. Therefore, the tip of the optical fiber 1 is polished to some extent by a polishing apparatus, and then the optical fiber 1 is removed from the polishing apparatus to confirm the polishing accuracy.

このため、確認後に光ファイバ1を再度、研磨装置に取り付けて研磨を行っても研磨位置決めが困難であり、取り付け位置のばらつきによって研磨精度が悪化してしまうという問題があった。   For this reason, even if the optical fiber 1 is attached to the polishing apparatus again after polishing and polishing is performed, the polishing positioning is difficult, and there is a problem that the polishing accuracy deteriorates due to variations in the mounting position.

また、光ファイバ1を度々取り外すことによって、光ファイバ1に傷が付いたり、折れてしまったりと歩留まりが悪いという問題がある。さらに、取り付け及び取り外しを繰り返して研磨精度の確認を行うことで、研磨時間及び研磨作業が多くなってしまうという問題がある。   Moreover, there is a problem in that the yield is poor when the optical fiber 1 is frequently removed and the optical fiber 1 is damaged or broken. Furthermore, there is a problem that the polishing time and the polishing work are increased by repeating the attachment and detachment to confirm the polishing accuracy.

上記問題を解決するための方法として、光ファイバの先端を研磨加工中に、光ファイバに検査光を導通し、検査光の戻り光を検出することにより研磨状態を確認しながら研磨を行う事によって加工精度を上げる事も提案されている(特許文献4参照)。
特開平8−86923号公報 特開平10−307230号公報 特開2002−228857号公報 特開2003−117792号公報
As a method for solving the above problem, by polishing while checking the polishing state by conducting the inspection light to the optical fiber and detecting the return light of the inspection light while polishing the tip of the optical fiber. It has also been proposed to increase processing accuracy (see Patent Document 4).
JP-A-8-86923 Japanese Patent Laid-Open No. 10-307230 JP 2002-228857 A JP 2003-117792 A

しかしながら、上記改善された作成方法の場合でも従来方法と同様に2つの傾斜面を研磨により作成する工程で一旦、光ファイバ1を取り外す必要があり、また、戻り光検出のために光ファイバ1の先端に金属膜を蒸着する必要があるので構造が複雑化し、しかも戻り光の検出のための装置を別途用意する必要があり、必ずしも量産性に適するものではないという問題点を有していた。   However, even in the case of the improved production method, it is necessary to remove the optical fiber 1 once in the process of producing two inclined surfaces by polishing as in the conventional method, and the optical fiber 1 is used for detecting return light. Since it is necessary to deposit a metal film on the tip, the structure is complicated, and it is necessary to prepare a separate device for detecting the return light, which is not necessarily suitable for mass production.

上記に鑑みて本発明の光ファイバ先端部加工装置は、光ファイバを狭持固定する第1の貫通孔と、上記第1の貫通孔よりも大きく、かつ、楕円形状に形成した一方の開口から光ファイバ先端部が突出してなる第2の貫通孔を有する固定治具と、光ファイバ先端部を研磨する研磨盤とを備え、上記光ファイバの先端部を上記研磨盤の表面に対して鋭角となるように撓ませた状態で上記研磨盤の表面を摺動回転させることを特徴とする。   In view of the above, the optical fiber tip processing apparatus according to the present invention includes a first through hole that holds and fixes an optical fiber, and one opening that is larger than the first through hole and has an elliptical shape. A fixing jig having a second through hole formed by projecting the tip of the optical fiber, and a polishing disc for polishing the tip of the optical fiber, the tip of the optical fiber having an acute angle with respect to the surface of the polishing disc The surface of the polishing board is slid and rotated in a state of being bent as described above.

本発明の構成によれば、光ファイバの先端部を上記研磨盤の表面に対して鋭角となるように撓ませた状態で上記研磨盤の表面を摺動回転させると、光ファイバ先端の外周部の全体が研磨面に接触するだけでなく、楕円状の開口により、第1の貫通孔の光ファイバの中心軸から楕円状の開口までの距離が研磨盤の表面を一回転する間に周期的に変化するので光ファイバの先端部の外周は均一に研磨面に接触することがなく研磨角度と研磨量が楕円周期に対応した形状にすることができる。   According to the configuration of the present invention, when the tip of the optical fiber is slid and rotated in a state where the tip of the optical fiber is bent at an acute angle with respect to the surface of the polishing disc, the outer peripheral portion of the tip of the optical fiber Not only in contact with the polishing surface, but also due to the elliptical opening, the distance from the central axis of the optical fiber of the first through hole to the elliptical opening is periodic during one revolution of the surface of the polishing disk. Therefore, the outer periphery of the tip end portion of the optical fiber does not uniformly contact the polishing surface, and the polishing angle and the polishing amount can be shaped corresponding to the elliptical period.

従って、光ファイバを研磨用の固定冶具を工程の途中で取り外し再度セットする事無く、一度セットするだけで光ファイバの先端部を楕円テーパ形状に加工することができ、特別な研磨状態の検出手段を必要とせずに精度良く光ファイバの先端加工を行う事ができる。   Therefore, it is possible to process the tip of the optical fiber into an elliptical taper shape by simply setting it once without removing and fixing the fixing jig for polishing the optical fiber in the middle of the process. The end of the optical fiber can be processed with high accuracy without the need for an optical fiber.

また、研磨工程の途中で光ファイバを度々取り外すことが無くなるため、取り扱いの中で光ファイバに傷が発生したり折れてしまったりする不具合が無くなる。   Further, since the optical fiber is not frequently removed during the polishing process, there is no problem that the optical fiber is damaged or broken during handling.

以下、本発明の実施の形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の光ファイバ先端部加工装置に用いられる光ファイバ固定冶具を示す図である。図1(a)は光ファイバを装着した状態の側面図を示し、図1(b)はその底面図を示し、図1(c)は、光ファイバが研磨されている時の状態を示す断面図を示す。   FIG. 1 is a view showing an optical fiber fixing jig used in the optical fiber tip processing apparatus of the present invention. FIG. 1 (a) shows a side view of a state where an optical fiber is mounted, FIG. 1 (b) shows a bottom view thereof, and FIG. 1 (c) is a cross section showing a state when the optical fiber is polished. The figure is shown.

固定冶具9は、光ファイバ1を狭持固定する第1の貫通孔91を持つ光ファイバ固定部93と、その下部に光ファイバ1を撓ませた状態で光ファイバ1が斜めに接触して支持される第1の貫通孔91よりも大きい第2の貫通孔92を有する光ファイバ支持部94とから構成されている。そして、この第2の貫通孔92は光ファイバ1の先端部を楕円テーパ形状に加工するため空隙部95は断面が楕円形状を有している。   The fixing jig 9 is supported by an optical fiber fixing portion 93 having a first through hole 91 for holding the optical fiber 1 in a sandwiched manner, and the optical fiber 1 in an oblique contact with the optical fiber 1 bent at a lower portion thereof. And an optical fiber support portion 94 having a second through hole 92 larger than the first through hole 91. Since the second through-hole 92 processes the tip of the optical fiber 1 into an elliptical taper shape, the gap 95 has an elliptical cross section.

この光ファイバ1を固定冶具9に取り付け、第2の貫通孔92の開口から突出した光ファイバ1の先端を研磨面21に当接させて撓ませた状態で固定冶具9を周方向に回転させると、光ファイバの先端部が研磨面21に対して摺動回転する。このとき、光ファイバ1の側面は、光ファイバ支持部94の回転方向と逆の側の楕円状の支持部位92aを修道士ながら固定冶具9とともに回転する。具体的には、楕円状の支持部位92aにより、光ファイバ固定部93に固定されている光ファイバ1の中心軸3から支持部位93までの距離が一回転の間に周期的に変化するので光ファイバ1の先端部の外周は均一に研磨面に接触することがなく研磨角度と研磨量が楕円周期に対応した形状となる。   The optical fiber 1 is attached to the fixing jig 9, and the fixing jig 9 is rotated in the circumferential direction in a state where the tip of the optical fiber 1 protruding from the opening of the second through hole 92 is brought into contact with the polishing surface 21 and is bent. Then, the tip of the optical fiber slides and rotates with respect to the polishing surface 21. At this time, the side surface of the optical fiber 1 rotates together with the fixing jig 9 while being a monk on the elliptical support portion 92a on the side opposite to the rotation direction of the optical fiber support 94. Specifically, the distance from the central axis 3 of the optical fiber 1 fixed to the optical fiber fixing portion 93 to the support portion 93 is periodically changed during one rotation by the elliptical support portion 92a. The outer periphery of the tip of the fiber 1 does not uniformly contact the polishing surface, and the polishing angle and the polishing amount have a shape corresponding to the elliptical period.

その結果、研磨された光ファイバの先端部は図2に示すように光ファイバ1の先端部端面が楕円形状となる。このようにして作成された光ファイバ先端部は、従来からの図5〜図7にて述べた光ファイバ1と同様の機能を持つ。   As a result, the end of the polished optical fiber has an elliptical end surface as shown in FIG. The tip portion of the optical fiber thus created has the same function as the optical fiber 1 described with reference to FIGS.

この時の光ファイバ1の先端部の研磨角度は研磨面への当接角度θによって決定され、研磨量は研磨面への当接圧力と当接面積によって決定される。具体的には研磨角度及び研磨量は光ファイバが固定部93に固定されている光ファイバ1の中心軸3から支持部位92aまでの最短距離、支持部位92aから研磨面21までの高さ、光ファイバ1の第1の貫通孔91から突出した光ファイバ先端までの長さ、光ファイバの剛性、固定冶具の回転速度、さらには光ファイバと研磨面との摩擦係数によって決定される。   At this time, the polishing angle of the tip of the optical fiber 1 is determined by the contact angle θ with the polishing surface, and the polishing amount is determined by the contact pressure and the contact area with the polishing surface. Specifically, the polishing angle and the polishing amount are the shortest distance from the central axis 3 of the optical fiber 1 where the optical fiber is fixed to the fixing portion 93 to the support portion 92a, the height from the support portion 92a to the polishing surface 21, the light It is determined by the length from the first through hole 91 of the fiber 1 to the tip of the optical fiber, the rigidity of the optical fiber, the rotational speed of the fixing jig, and the coefficient of friction between the optical fiber and the polished surface.

このような装置を用いて作成すれば、作成の途中で一旦光ファイバを取り外す必要がないため、光ファイバを度々取り外すことによって、光ファイバに傷が発生したり折れてしまったりと歩留まりが悪いという問題が発生しない。また研磨自体は、光ファイバの光軸中心の周りに軸対称に外周研磨が行われていくため、楔形状の両側辺面部をそれぞれ研磨する従来方法に比較した場合、原理的に光ファイバ先端部の研磨先端部の中心と光ファイバコア部中心とのズレ量が小さくする事が容易となる。従って、取り付け及び取り外しを繰り返して研磨精度の確認を行うという作業も必要無くなる。   If it is made using such an apparatus, it is not necessary to remove the optical fiber once in the middle of the production, and it is said that the yield is poor when the optical fiber is damaged or broken by frequently removing the optical fiber. There is no problem. In addition, the polishing itself is performed in an axially symmetrical manner around the optical axis center of the optical fiber. Therefore, in principle, the tip of the optical fiber is compared with the conventional method of polishing both side surfaces of the wedge shape. It is easy to reduce the amount of deviation between the center of the polishing tip and the center of the optical fiber core. Accordingly, it is not necessary to check the polishing accuracy by repeatedly attaching and removing.

本発明の光ファイバ先端部加工装置の構造について図3を用いて具体的に示す。図3は、上述の光ファイバ1をセットした固定冶具9を装着した状態の加工装置を示す中央横断面図である。   The structure of the optical fiber tip processing apparatus of the present invention will be specifically described with reference to FIG. FIG. 3 is a central cross-sectional view showing the processing apparatus in a state in which the fixing jig 9 on which the optical fiber 1 is set is mounted.

光ファイバ先端部加工装置は、固定治具9を回転させる光ファイバ回転板12と、光ファイバ回転板12に回転駆動を与える駆動部17、駆動伝達部18から主に構成されており、駆動部17に連結した駆動伝達部18を介し光ファイバ回転板12に連結し、駆動部17に連動して、光ファイバ回転板12が回転板中心軸16を中心として回転運動をする構成になっている。光ファイバ回転板12は回転板支持板20と回転板押さえ部19によって固定されている。   The optical fiber tip processing apparatus mainly comprises an optical fiber rotating plate 12 for rotating the fixing jig 9, a driving unit 17 for applying rotational driving to the optical fiber rotating plate 12, and a drive transmitting unit 18. The optical fiber rotating plate 12 is connected to the optical fiber rotating plate 12 through a drive transmission unit 18 connected to the rotating shaft 17, and in conjunction with the driving unit 17, the optical fiber rotating plate 12 rotates about the rotating plate central axis 16. . The optical fiber rotating plate 12 is fixed by a rotating plate support plate 20 and a rotating plate holding part 19.

光ファイバ回転板12の中心から所定の距離離れた位置に固定冶具挿入穴(不図示)が空けられており、固定冶具9が光ファイバ回転板12の固定冶具挿入穴(不図示)に垂直に挿入固定されているため、光ファイバ回転板12が回転運動を行うに伴い、固定治具9が回転公転円運動する。同時に光ファイバ1の先端部は、光ファイバ研磨板2上に当接し、研磨面21上に円軌道の軌跡を描く運動をする。公転を繰り返す事により、光ファイバ1の先端部は円錐形状に研磨される。   A fixing jig insertion hole (not shown) is formed at a predetermined distance away from the center of the optical fiber rotating plate 12, and the fixing jig 9 is perpendicular to the fixing jig insertion hole (not shown) of the optical fiber rotating plate 12. Since it is inserted and fixed, the fixing jig 9 rotates and revolves as the optical fiber rotating plate 12 rotates. At the same time, the tip of the optical fiber 1 abuts on the optical fiber polishing plate 2 and moves on the polishing surface 21 to draw a locus of a circular orbit. By repeating the revolution, the tip of the optical fiber 1 is polished into a conical shape.

この時、光ファイバ1は支持部94の進行方向(回転方向)と逆の側に支点92を持ちながら光ファイバ1の先端部を撓ませて固定冶具9とともに回転する。なお、その際、ファイバ固定部93の第1の貫通孔93aに光ファイバを狭持固定しているので、この回転に伴っても光ファイバ自体は自転することはない。   At this time, the optical fiber 1 is rotated together with the fixing jig 9 by bending the distal end portion of the optical fiber 1 while holding the fulcrum 92 on the side opposite to the traveling direction (rotation direction) of the support portion 94. At this time, since the optical fiber is sandwiched and fixed in the first through hole 93a of the fiber fixing portion 93, the optical fiber itself does not rotate even with this rotation.

このように回転していくと光ファイバ1の先端が研磨面21によって研磨されていく。また光ファイバ1の先端部の円錐テーパ部22の角度θは、支持部94の空隙部95は楕円形状をしているため、固定部93に固定されている光ファイバ1のコア軸中心または外径中心軸3から支点92までの距離が一回転の間に周期的に変化し、光ファイバ先端の外周は均一に研磨面に接触せずに研磨角度と研磨量が楕円周期に対応した形状となる。その結果、研磨された光ファイバの先端部は図2に示すように先端部端面が楕円形状となる。   When rotating in this way, the tip of the optical fiber 1 is polished by the polishing surface 21. The angle θ of the conical taper portion 22 at the tip of the optical fiber 1 is such that the gap portion 95 of the support portion 94 has an elliptical shape, so that the core axis center of the optical fiber 1 fixed to the fixing portion 93 or the outside The distance from the diameter center axis 3 to the fulcrum 92 periodically changes during one rotation, and the outer periphery of the optical fiber tip does not uniformly contact the polishing surface, and the polishing angle and the polishing amount correspond to an elliptical cycle. Become. As a result, the end portion of the polished optical fiber has an elliptical end surface as shown in FIG.

固定冶具9に取りつけられた光ファイバ1は研磨加工中、常に支点92に接触し押さえつけられているため、支点92によって光ファイバ1に傷がつく可能性があるため、支持部94には面取り加工やR形状をつけて光ファイバに対し、できるだけエッジ立たないようにする事が好ましい。   Since the optical fiber 1 attached to the fixing jig 9 is always in contact with and pressed against the fulcrum 92 during the polishing process, the optical fiber 1 may be damaged by the fulcrum 92. Therefore, the support portion 94 is chamfered. It is preferable to provide an R shape so that the optical fiber is not edged as much as possible.

本発明の実施例を説明する。   Examples of the present invention will be described.

図3に示す加工装置を用いて光ファイバ1の先端部の楕円形状加工を行った。   Using the processing apparatus shown in FIG. 3, the elliptical processing of the tip portion of the optical fiber 1 was performed.

光ファイバ1は、外径125±1μm、被覆径250μmのシングルモードファイバを用いた。この時の光ファイバ1の長さは100cmとした。   The optical fiber 1 was a single mode fiber having an outer diameter of 125 ± 1 μm and a coating diameter of 250 μm. The length of the optical fiber 1 at this time was 100 cm.

固定冶具9は外径16mm、長さ70mmのステンレス製の円筒型ホルダを使用した。光ファイバ1の先端部分の被覆除去部を12mmになるようにあらかじめ被覆除去処理をした。   As the fixing jig 9, a stainless steel cylindrical holder having an outer diameter of 16 mm and a length of 70 mm was used. The coating removal treatment was performed in advance so that the coating removal portion at the tip of the optical fiber 1 was 12 mm.

固定冶具9の底面96から研磨板2の研磨面21までの距離は3mmとした。ホルダ指示部94の空隙部95の楕円形状は長軸8mm、短軸3mmの楕円形状とした。   The distance from the bottom surface 96 of the fixing jig 9 to the polishing surface 21 of the polishing plate 2 was 3 mm. The oval shape of the gap portion 95 of the holder instruction portion 94 is an oval shape having a major axis of 8 mm and a minor axis of 3 mm.

加工装置の光ファイバ回転板3の回転速度は回転数60rpmとした。研磨板2の上に貼り付けた研磨シートは、ダイヤ♯4000番フィルムを用い、研磨時間約120秒で作製した結果、光ファイバ端面の断面形状が長軸と短軸のアスペクト比2:1の楕円形状をした光ファイバ先端部の加工を実現する事が出来た。このようにして得られた楕円先端形状の光ファイバの先端部を加熱溶融して先端部に曲率を持たせた形状とした。先端の曲率半径は長軸方向が14ミクロン、短軸方向が6ミクロンであった。このようにして得られたウェッジファイバを発光波長980nmの光増幅用光半導体レーザに結合を実施したところ、70%の良好な結合効率が得られた。   The rotation speed of the optical fiber rotating plate 3 of the processing apparatus was set to 60 rpm. The polishing sheet pasted on the polishing plate 2 was prepared using a diamond # 4000 film with a polishing time of about 120 seconds. As a result, the cross-sectional shape of the end face of the optical fiber had an aspect ratio of 2: 1 between the major axis and the minor axis. The processing of the tip of the elliptical optical fiber could be realized. The tip portion of the optical fiber having an elliptical tip shape thus obtained was heated and melted to have a shape with a curvature at the tip portion. The curvature radius of the tip was 14 microns in the major axis direction and 6 microns in the minor axis direction. When the wedge fiber thus obtained was coupled to an optical semiconductor laser for light amplification having an emission wavelength of 980 nm, a good coupling efficiency of 70% was obtained.

本発明による加工装置に用いられるホルダの構造を示し、(a)はその側面図であり、(b)同図(a)の底面図であり、(c)は、光ファイバが研磨されている時の状態をしめす断面図である。The structure of the holder used for the processing apparatus by this invention is shown, (a) is the side view, (b) It is the bottom view of the figure (a), (c) is that the optical fiber is grind | polished It is sectional drawing which shows the state of time. (a)(b)は本発明による加工装置を用いて作成した光ファイバ先端部の形状を示す。(A) (b) shows the shape of the front-end | tip part of the optical fiber produced using the processing apparatus by this invention. 本発明による加工方法の原理を実施する加工装置にホルダが設置された状態を示す中央横断面図である。It is a center cross-sectional view which shows the state in which the holder was installed in the processing apparatus which implements the principle of the processing method by this invention. (a)、(b)は従来のウェッジファイバの先端加工方法を説明するための図である。(A), (b) is a figure for demonstrating the conventional tip processing method of a wedge fiber. 従来のウェッジファイバの形状を説明するための図であり、(a)は正面図、(b)はその側面図である。It is a figure for demonstrating the shape of the conventional wedge fiber, (a) is a front view, (b) is the side view. 従来のウェッジファイバの形状を説明するための図である。It is a figure for demonstrating the shape of the conventional wedge fiber. 従来のウェッジファイバの形状を説明するための図である。It is a figure for demonstrating the shape of the conventional wedge fiber.

符号の説明Explanation of symbols

1:光ファイバ
2:研磨板
21:研磨面
22:円錐テーパ部
3:中心軸
9:固定冶具
91:第1の貫通孔
92:第2の貫通孔
93:光ファイバ固定部
94:光ファイバ支持部
95:空隙部
96:底面
10、20、30:ウェッジファイバ
11:レンズ
11a:傾斜面
12:光ファイバ回転板
14:固定冶具挿入穴
16:回転板中心軸
17:駆動部
18:駆動伝達部
19:回転板押さえ部
20:回転板支持板
22:半円筒状曲面
32:平面部
98:固定用冶具
θ:角度
1: Optical fiber 2: Polishing plate 21: Polishing surface 22: Conical taper part 3: Center axis 9: Fixing jig 91: First through hole 92: Second through hole 93: Optical fiber fixing part 94: Optical fiber support Portion 95: Gap portion 96: Bottom surface 10, 20, 30: Wedge fiber 11: Lens 11a: Inclined surface 12: Optical fiber rotating plate 14: Fixing jig insertion hole 16: Rotating plate central axis 17: Drive unit 18: Drive transmission unit 19: Rotating plate holder 20: Rotating plate support plate 22: Semi-cylindrical curved surface 32: Plane portion 98: Fixing jig θ: Angle

Claims (1)

光ファイバ狭持固定する第1の貫通孔と、上記第1の貫通孔よりも大きく、かつ、楕円形状に形成した一方の開口から光ファイバ先端部が突出してなる第2の貫通孔を有する固定治具と、光ファイバ先端部を研磨する研磨盤とを備え、上記光ファイバの先端部を上記研磨盤の表面に対して鋭角となるように撓ませた状態で上記研磨盤の表面を摺動回転させることを特徴とする光ファイバ先端部加工装置。 A fixing having a first through hole for holding and holding an optical fiber and a second through hole in which the tip of the optical fiber protrudes from one opening which is larger than the first through hole and has an elliptical shape. A jig and a polishing disc for polishing the tip of the optical fiber, and sliding the surface of the polishing disc in a state where the tip of the optical fiber is bent at an acute angle with respect to the surface of the polishing disc An optical fiber tip processing apparatus characterized by being rotated.
JP2004049565A 2004-02-25 2004-02-25 Tip section machining device of optical fiber Pending JP2005241809A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004049565A JP2005241809A (en) 2004-02-25 2004-02-25 Tip section machining device of optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004049565A JP2005241809A (en) 2004-02-25 2004-02-25 Tip section machining device of optical fiber

Publications (1)

Publication Number Publication Date
JP2005241809A true JP2005241809A (en) 2005-09-08

Family

ID=35023626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004049565A Pending JP2005241809A (en) 2004-02-25 2004-02-25 Tip section machining device of optical fiber

Country Status (1)

Country Link
JP (1) JP2005241809A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010243593A (en) * 2009-04-01 2010-10-28 Mitsubishi Cable Ind Ltd Method of facing end of optical fiber and fiber grinding tool
CN109031526A (en) * 2018-08-08 2018-12-18 杭州富通通信技术股份有限公司 A kind of processing method of prefabricated tail optical fiber

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010243593A (en) * 2009-04-01 2010-10-28 Mitsubishi Cable Ind Ltd Method of facing end of optical fiber and fiber grinding tool
CN109031526A (en) * 2018-08-08 2018-12-18 杭州富通通信技术股份有限公司 A kind of processing method of prefabricated tail optical fiber
CN109031526B (en) * 2018-08-08 2020-08-21 杭州富通通信技术股份有限公司 Processing method of prefabricated tail fiber

Similar Documents

Publication Publication Date Title
US4818263A (en) Method and apparatus for precisely positioning microlenses on optical fibers
US6415087B1 (en) Polished fused optical fiber endface
US8340485B2 (en) Laser-shaped optical fibers along with optical assemblies and methods therefor
TWI264579B (en) Method of severing an optical fiber using a laser beam
WO2011074051A1 (en) Lateral emission apparatus and manufacturing method thereof
JP2005241809A (en) Tip section machining device of optical fiber
JP2010142890A (en) Method of correcting outer circumferential shape of cutting member, dresser board, and cutting device
US20050069256A1 (en) Lensed optical fiber and method for making the same
JPH10123339A (en) Method for chamfering front end of optical fiber and its processing device
US20050049639A1 (en) Method for manufacturing a medical needle
US6722945B2 (en) Endface polishing method and endface polishing apparatus
JPH09178987A (en) Attaching method for semiconductor laser element and mounting board therefor
JP3486835B2 (en) Optical taper processing machine
JP2015077648A (en) Optical fiber end face grinder
JP2005165016A (en) Optical fiber module, optical device and manufacturing method of the above
JP2002139636A (en) Optical fiber with lens
JP2002243958A (en) Optical fiber with lens and its processing method
JP2005230986A (en) Lens centering/edging method and its machining device
JP2002196161A (en) Optical fiber with lens, method for machining the same, and method for assembling optical semiconductor device using the same
JPH04166804A (en) Optical fiber work method
JPH1031130A (en) Ferrule for diagonal pc and its polishing method
JP2002263997A (en) Bonded plate of optical material
JPS62133406A (en) Fixing method for optical fiber assembly
JP2005134553A (en) Method and device for machining tip of optical fiber
JP3786896B2 (en) Wedge optical fiber processing equipment