JP2005241622A - Electrochemical sensor and electric conductivity cell - Google Patents

Electrochemical sensor and electric conductivity cell Download PDF

Info

Publication number
JP2005241622A
JP2005241622A JP2004181874A JP2004181874A JP2005241622A JP 2005241622 A JP2005241622 A JP 2005241622A JP 2004181874 A JP2004181874 A JP 2004181874A JP 2004181874 A JP2004181874 A JP 2004181874A JP 2005241622 A JP2005241622 A JP 2005241622A
Authority
JP
Japan
Prior art keywords
current
platinum
platinum plating
electrode
predetermined period
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004181874A
Other languages
Japanese (ja)
Other versions
JP4549114B2 (en
Inventor
Hiroko Konno
裕子 金野
Naomi Narasaki
直美 楢崎
Taisuke Nakano
泰介 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DKK TOA Corp
Original Assignee
DKK TOA Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DKK TOA Corp filed Critical DKK TOA Corp
Priority to JP2004181874A priority Critical patent/JP4549114B2/en
Publication of JP2005241622A publication Critical patent/JP2005241622A/en
Application granted granted Critical
Publication of JP4549114B2 publication Critical patent/JP4549114B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrochemical sensor and an electric conductivity cell with physical strength, in which a plating applied to an electrode surface is hardly peeled. <P>SOLUTION: The electrochemical sensor 1A for measuring the current carried to an electrode 4 according to the reaction of a component of measuring object on the surface of the electrode 4 comprises a platinum plating layer P gray in color on the surface of the electrode 4. This invention is suitably applicable to a diaphragm type sensor such as a dissolved hydrogen sensor. The electric conductivity cell 1C comprises the platinum plating layer P gray in color on the surface of the electrode 4. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、従来白金黒電極を具備する、例えば、溶存水素センサなどの電気化学式センサ及び電気伝導率セルに関するものである。   The present invention relates to an electrochemical sensor and an electrical conductivity cell, such as a dissolved hydrogen sensor, which are conventionally provided with a platinum black electrode.

例えば、原子力発電プラントなどでは試料(被検液)中の溶存水素(還元体)の測定が重要であり、計器によるモニタリングが行われている。この溶存水素計のセンサとして、測定対象ガス透過性膜として水素透過性の隔膜を使用したポーラログラフ式のセンサ、即ち、隔膜型ポーラログラフ式センサが主に用いられている。   For example, in a nuclear power plant or the like, it is important to measure dissolved hydrogen (reduced substance) in a sample (test solution), and monitoring is performed by a meter. As a sensor of this dissolved hydrogen meter, a polarographic sensor using a hydrogen permeable diaphragm as a gas permeable membrane to be measured, that is, a diaphragm type polarographic sensor is mainly used.

上記溶存水素計のセンサとして用いられる隔膜型ポーラログラフ式センサ(以下「溶存水素センサ」という。)を例に、従来の隔膜型ポーラログラフ式センサについて説明すると、図1に示すように、溶存水素センサ1Aは、一般に、白金又は白金族触媒で形成される作用極4と、通常、銀(Ag)或いは銀−塩化銀(Ag/AgCl)で形成される対極5と、これらの電極に接触する電解液7と、水素を選択的に透過する隔膜3とを備えている(2極式)。又、更に参照極を備えたものもある(3極式)。   Taking a diaphragm type polarographic sensor (hereinafter referred to as “dissolved hydrogen sensor”) used as a sensor of the dissolved hydrogen meter as an example, a conventional diaphragm type polarographic sensor will be described. As shown in FIG. Is generally a working electrode 4 formed of platinum or a platinum group catalyst, a counter electrode 5 usually formed of silver (Ag) or silver-silver chloride (Ag / AgCl), and an electrolytic solution in contact with these electrodes 7 and a diaphragm 3 that selectively permeates hydrogen (bipolar type). In addition, there are also those equipped with a reference electrode (three-pole type).

例えば、図1を参照して2極式のものについて更に説明すれば、隔膜3を通過した水素が電解液7中に溶解して行き、作用極4上において酸化される。そして、電解液7を介して対極5との間で電気化学反応が起こり、そのときに作用極4と対極5との間に流れる電流が水素ガス濃度に比例することを利用して、電流値より水素ガス濃度を知ることができる。   For example, with reference to FIG. 1, the bipolar type will be further described. Hydrogen that has passed through the diaphragm 3 is dissolved in the electrolytic solution 7 and is oxidized on the working electrode 4. An electrochemical reaction takes place between the working electrode 4 and the counter electrode 5 through the electrolytic solution 7 and the current flowing between the working electrode 4 and the counter electrode 5 is proportional to the hydrogen gas concentration. The hydrogen gas concentration can be known more.

上述のように、溶存水素センサ1Aでは、作用極4での反応により作用極4と対極5との間に流れる電流量を測定するが、計測開始直後から徐々に感度が劣化するため、頻繁に感度校正をしなければならず、連続測定が困難であった。   As described above, the dissolved hydrogen sensor 1A measures the amount of current flowing between the working electrode 4 and the counter electrode 5 due to the reaction at the working electrode 4, but the sensitivity gradually deteriorates immediately after the start of measurement. Sensitivity calibration had to be performed and continuous measurement was difficult.

この問題を解決するために、作用極4の表面に白金黒メッキを行い(白金黒電極)、作用極4の表面活性を上げることにより感度を維持する方法がとられている。白金黒は、金属白金が非常に細かな海綿状(粉状)になったもので、これが付着した電極は、見掛けの表面積に比べて実表面積が著しく広く、且つ、顕微鏡的に凹凸が大きい。白金黒電極を備えた溶存水素センサ1Aでは、感度劣化した場合に隔膜を外し、作用極の表面に白金黒を再メッキすることで、感度を回復させることができる。   In order to solve this problem, a method of maintaining the sensitivity by performing platinum black plating on the surface of the working electrode 4 (platinum black electrode) and increasing the surface activity of the working electrode 4 is employed. Platinum black is a metallic spongy (powdered) metal platinum, and the electrode to which it is attached has a significantly larger actual surface area than the apparent surface area, and has a large microscopic unevenness. In the dissolved hydrogen sensor 1A provided with the platinum black electrode, the sensitivity can be recovered by removing the diaphragm when the sensitivity is deteriorated and replating the surface of the working electrode with platinum black.

しかしながら、上述のように、作用極4の表面に白金黒メッキを行い、作用極の表面活性を上げることにより、感度劣化を軽減することが可能であるが、通常の白金黒メッキは、粉状に付着(析出)した金属微粒子であり、脆弱で、作用極4の表面から取れ易い。特に、上記溶存水素センサ1Aのような隔膜型センサでは、隔膜3の交換などの作業時に白金黒メッキが取れ易く、非常に扱い難い性状である。そして、白金黒メッキが取れた場合には感度低下を起こしてしまう。又、上述のように白金黒メッキは非常に取れ易いため、物理的に汚れを除去することも不可能である。   However, as described above, it is possible to reduce the sensitivity deterioration by performing platinum black plating on the surface of the working electrode 4 to increase the surface activity of the working electrode. Metal particles adhering to (depositing on), fragile and easily removed from the surface of the working electrode 4. In particular, in a diaphragm type sensor such as the dissolved hydrogen sensor 1A, platinum black plating can be easily removed during work such as replacement of the diaphragm 3, which is very difficult to handle. And when platinum black plating is taken, a sensitivity fall will be caused. Further, as described above, platinum black plating is very easy to remove, so it is impossible to physically remove dirt.

ところで、特許文献1は、高濃度の水素を計測したり、連続的に計測を行う場合に、経時的に感度が低下したり、ドリフトしたりすることがないように、スパッタリングや真空蒸着などにより、白金触媒薄層を隔膜に形成し、反応部分を一体化させて安定な計測を行うことが開示されている。しかし、斯かる従来技術では、感度劣化した場合に容易に復帰 できない。又、触媒電極の回路を形成するために、極と集電体とを密着させているが、接触の状態を理想状態に維持しなければならず、構造的に複雑である。   By the way, in Patent Document 1, when high concentration hydrogen is measured or continuously measured, the sensitivity is not lowered or drifted over time by sputtering or vacuum deposition. In addition, it is disclosed that a platinum catalyst thin layer is formed on a diaphragm and the reaction parts are integrated to perform stable measurement. However, such prior art cannot be easily restored when sensitivity is deteriorated. Further, in order to form a catalyst electrode circuit, the electrode and the current collector are brought into close contact with each other. However, the contact state must be maintained in an ideal state, which is structurally complicated.

従って、極表面の活性を維持していると共に、表面に施したメッキが取れにくく、物理的強度を備えており、しかも、感度劣化した場合に容易に復帰させることができ、構造的にも簡単な電気化学式センサが求められている。   Therefore, while maintaining the activity of the extreme surface, it is difficult to remove the plating applied to the surface, it has physical strength, and can be easily restored when the sensitivity deteriorates, and it is also structurally simple There is a need for an electrochemical sensor.

又、同様の問題は、従来、白金黒電極が用いられる電気伝導率測定用のセル(以下、「電気伝導率セル」若しくは単に「セル」という。)においても存在する。つまり、セルは用途に応じて様々な形状のものが実用化され、その極の材質としては、白金や、チタン、ステンレスなど、不活性な金属が用いられ、白金に白金黒メッキを使用したセルも使用されている。極表面に白金黒メッキを施したセルは、極の表面積が拡大するため、分極の影響に対し強く、広い濃度範囲の電気伝導率を測定することが可能であるが、通常、白金黒メッキは、上述のように、粉状に付着した金属微粒子であり、脆弱で取れ易く、非常に扱い難い性状である。又、上記同様、物理的に汚れを除去することも不可能である。そして、白金黒メッキが取れた時には、セル定数が変化してしまう。つまり、白金黒メッキが施されたセルは、長期間使用していくうちに白金黒の脱落により性能が徐々に変化してしまう欠点を持つ。   A similar problem also exists in an electric conductivity measurement cell (hereinafter, referred to as “electric conductivity cell” or simply “cell”) in which a platinum black electrode is conventionally used. In other words, cells with various shapes have been put into practical use according to the application, and as the material of the electrode, an inert metal such as platinum, titanium, stainless steel is used, and platinum black plating is used for platinum. Has also been used. A cell with platinum black plating on the surface of the electrode has a large surface area, so it is strong against the effects of polarization and can measure electrical conductivity in a wide concentration range. As mentioned above, it is a metal fine particle adhering in a powdery state, it is fragile, easy to remove, and very difficult to handle. Also, as above, it is impossible to physically remove the dirt. And when platinum black plating is taken, a cell constant will change. In other words, a cell to which platinum black plating has been applied has a drawback that the performance gradually changes due to the dropping of platinum black over a long period of use.

一方、表面が平滑な、メッキをしない白金や、チタン、ステンレスなどを極として用いたセルでは、分極しないように表面積を確保する必要があり、セル形状を大きくしなければならず、又、測定濃度範囲においても高電気伝導率を測定する場合には感度が低下し、白金黒メッキ付きのセルには性能面で劣る。4端子法は、汚れに強い特徴があるが、常に採用し得る方法ではない。つまり、4端子法は、構造、装置回路が複雑になり、セル形状も小型化が困難であるので、やはり高電気伝導率の測定においては感度が低下することがある。   On the other hand, in cells using platinum, titanium, stainless steel, etc., with a smooth surface and no plating, it is necessary to secure a surface area to prevent polarization, the cell shape must be increased, and measurement Even in the concentration range, when high electrical conductivity is measured, the sensitivity is lowered, and the cell with platinum black plating is inferior in performance. The four-terminal method is resistant to dirt, but is not always a method that can be adopted. In other words, the four-terminal method has a complicated structure and device circuit, and it is difficult to reduce the size of the cell shape. Therefore, sensitivity may be lowered in the measurement of high electrical conductivity.

従って、極表面に施したメッキが取れにくく、物理的強度を備え、しかも、直線性範囲(測定濃度範囲)が広く、セル定数の変化が軽減され、安定した測定が可能な電気伝導率セルが求められている。
特開平9−138215号公報
Therefore, it is difficult to remove the plating applied to the pole surface, it has physical strength, and it has a wide linearity range (measurement concentration range), a change in cell constant is reduced, and an electric conductivity cell capable of stable measurement. It has been demanded.
JP-A-9-138215

本発明の目的は、極表面に施したメッキが取れ難く、物理的強度を備えている電気化学式センサ及び電気伝導率セルを提供することである。   An object of the present invention is to provide an electrochemical sensor and an electrical conductivity cell that are difficult to remove the plating applied to the pole surface and have physical strength.

本発明の他の目的は、極表面の活性を維持していると共に、感度低下が抑制され、又、感度低下した場合に容易に復帰させることが可能な電気化学式センサを提供することである。   Another object of the present invention is to provide an electrochemical sensor that maintains the activity of the electrode surface, suppresses a decrease in sensitivity, and can be easily restored when the sensitivity decreases.

本発明の他の目的は、直線性範囲(測定濃度範囲)が広く、又、セル定数変化が軽減され、安定した測定が可能な電気伝導率セルを提供することがである。   Another object of the present invention is to provide an electrical conductivity cell that has a wide linearity range (measurement concentration range), reduces cell constant changes, and enables stable measurement.

上記目的は本発明に係る電気化学式センサにて達成される。要約すれば、本発明は、電極の表面での測定対象成分の反応に伴い前記電極に流れる電流を測定するための電気化学式センサにおいて、前記電極の表面に灰色を呈する白金メッキ層が設けられていることを特徴とする電気化学式センサである。   The above object is achieved by the electrochemical sensor according to the present invention. In summary, the present invention relates to an electrochemical sensor for measuring a current flowing through the electrode in response to a reaction of a component to be measured on the surface of the electrode, wherein a platinum plating layer exhibiting gray is provided on the surface of the electrode. An electrochemical sensor.

本発明の一実施態様によると、前記電気化学式センサは、センサ本体の一端に試料中の測定対象成分を透過させる隔膜によって外部と区画される室を備え、前記室の内部に作用極と対極とが配置され、前記作用極と対極とが前記室内に収容された電解液に接触した状態で、前記隔膜を透過した測定対象成分が前記作用極の表面で反応することにより前記作用極と対極との間に流れる電流を測定するための電気化学式センサであり、前記作用極の表面に前記灰色を呈する白金メッキ層が設けられている。一実施態様では、前記電気化学式センサは、ポーラログラフ式センサ又はガルバニ電池式センサである。又、一実施態様では、前記電気化学式センサは、溶存水素センサである。   According to an embodiment of the present invention, the electrochemical sensor includes a chamber that is partitioned from the outside by a diaphragm that allows the measurement target component in the sample to pass through at one end of the sensor body, and the working electrode and the counter electrode are provided inside the chamber. And the working electrode and the counter electrode are reacted with each other through the surface of the working electrode when the working electrode and the counter electrode are in contact with the electrolyte contained in the chamber. The platinum type plating layer which exhibits the said gray on the surface of the said working electrode is provided. In one embodiment, the electrochemical sensor is a polarographic sensor or a galvanic cell sensor. In one embodiment, the electrochemical sensor is a dissolved hydrogen sensor.

本発明の他の態様によると、試料に接触するように配置された電極間に電圧を印加することにより試料の電気伝導率を測定するための電気化学式センサにおいて、前記電極の表面に灰色を呈する白金メッキ層が設けられていることを特徴とする電気伝導率セルが提供される。   According to another aspect of the present invention, in an electrochemical sensor for measuring the electrical conductivity of a sample by applying a voltage between electrodes arranged to be in contact with the sample, the surface of the electrode exhibits a gray color. An electrical conductivity cell is provided that is provided with a platinum plating layer.

上記各本発明の一実施態様によると、前記白金メッキ層は、該白金メッキが成される方向の単位時間当たりの電流密度が0.05〜0.3mA/cm2・sの直流電流で白金メッキすることで設けられる。又、他の実施態様によると、前記白金メッキ層は、該白金メッキが成される方向の単位時間当たりの電流密度が0.05〜0.3mA/cm2・sの直流電流で白金メッキすると共に、その逆極性の直流電流を所定期間流すことで設けられる。一実施態様では、(a)白金メッキが成される順方向の電流を所定期間流した後、その逆極性の電流を所定期間流すか、(b)前記順方向の電流を所定期間流した後、前記逆極性の電流を所定期間流し、更に前記順方向の電流を所定期間流すか、(c)前記順方向の電流と前記逆極性の電流とを交互に、それぞれ所定期間複数回ずつ流す。又、上記各本発明の他の実施態様では、前記白金メッキ層は、該白金メッキが成される方向の単位時間当たりの電流密度が0.3〜6mA/cm2・sの交流電流で白金メッキすることで設け
られる。
According to one embodiment of each of the present invention, the platinum plating layer is white with a direct current having a current density of 0.05 to 0.3 mA / cm 2 · s per unit time in the direction in which the platinum plating is performed. It is provided by gold plating. According to another embodiment, the platinum plating layer is platinum-plated with a direct current having a current density per unit time of 0.05 to 0.3 mA / cm 2 · s in the direction in which the platinum plating is performed. At the same time, it is provided by flowing a direct current of the opposite polarity for a predetermined period. In one embodiment, (a) a forward current in which platinum plating is performed is applied for a predetermined period, and then a current having the opposite polarity is applied for a predetermined period, or (b) the forward current is supplied for a predetermined period. The reverse polarity current is allowed to flow for a predetermined period, and the forward current is allowed to flow for a predetermined period, or (c) the forward current and the reverse polarity current are alternately supplied a plurality of times for a predetermined period. In another embodiment of the present invention, the platinum plating layer is white with an alternating current having a current density of 0.3 to 6 mA / cm 2 · s per unit time in the direction in which the platinum plating is performed. It is provided by gold plating.

本発明によれば、電気化学式センサ又は電気伝導率セルは、極表面に施したメッキが取れ難く、物理的強度を備えている。そして、本発明によれば、電気化学式センサは、極表面の活性を維持していると共に、感度低下が抑制され、又、感度低下した場合に容易に復帰させることができる。又、本発明によれば、電気伝導率セルは、直線性範囲(測定濃度範囲)が広く、又、セル定数変化が軽減され、安定した測定が可能である。   According to the present invention, the electrochemical sensor or the electrical conductivity cell is difficult to be plated on the surface of the electrode and has physical strength. And according to this invention, while maintaining the activity of the pole surface, the electrochemical sensor can suppress a sensitivity fall, and can be easily returned when a sensitivity fall is carried out. Further, according to the present invention, the electric conductivity cell has a wide linearity range (measurement concentration range), and the cell constant change is reduced, so that stable measurement is possible.

以下、本発明に係る電気化学式センサを図面に則して更に詳しく説明する。   Hereinafter, the electrochemical sensor according to the present invention will be described in more detail with reference to the drawings.

実施例1
本発明による隔膜型センサは、図1を参照して先に説明した基本構成を有する隔膜型ポーラログラフ式センサである溶存水素センサに好適に適用し得る。
Example 1
The diaphragm type sensor according to the present invention can be suitably applied to a dissolved hydrogen sensor which is a diaphragm type polarographic sensor having the basic configuration described above with reference to FIG.

溶存水素センサ1Aは、中空円筒状のセンサ本体2と、その先端開口部に固定されたガス透過性隔膜3と、この隔膜3に近接してセンサ本体2の内部に配置された作用極4と、この作用極4を支持する支持管6の内方外周部に取り付けられた対極5とを備え、センサ本体2と支持管6との間には隔膜3によって外部と区画された室2aが形成され、この室2a内に電解液7が収容される。   The dissolved hydrogen sensor 1 </ b> A includes a hollow cylindrical sensor body 2, a gas permeable diaphragm 3 fixed to the opening at the tip thereof, and a working electrode 4 disposed in the sensor body 2 in the vicinity of the diaphragm 3. And a counter electrode 5 attached to the inner periphery of the support tube 6 that supports the working electrode 4. A chamber 2 a that is partitioned from the outside by the diaphragm 3 is formed between the sensor body 2 and the support tube 6. The electrolytic solution 7 is accommodated in the chamber 2a.

例えばガラスにて作製された支持管6は、センサ内部に同軸的に配設され、その先端に上記作用極4が取り付けられている。隔膜3と作用極4との間には厚さが一定の僅かな間隙が形成され、一定の厚さの電解液7の層(電解液層)を形成している。   For example, the support tube 6 made of glass is coaxially disposed inside the sensor, and the working electrode 4 is attached to the tip thereof. A slight gap having a constant thickness is formed between the diaphragm 3 and the working electrode 4 to form a layer (electrolytic solution layer) of the electrolytic solution 7 having a constant thickness.

本実施例では、作用極4は白金で形成され、その接液表面には、詳しくは後述する本発明に従う白金メッキ層Pが設けられる。対極5は銀−塩化銀(Ag/AgCl)で形成される。又、電解液7としては、0.1mol/L HCl+0.1mol/L KClを好適に用い得る。   In the present embodiment, the working electrode 4 is made of platinum, and a platinum plating layer P according to the present invention, which will be described in detail later, is provided on the liquid contact surface. The counter electrode 5 is formed of silver-silver chloride (Ag / AgCl). Moreover, as the electrolyte solution 7, 0.1 mol / L HCl + 0.1 mol / L KCl can be suitably used.

作用極4及び対極5にはそれぞれリード線4a及び5aが接続され、これらリード線4a、5aは支持管6内を通って外部に導出され、電圧印加手段(直流電源)8に接続されている。そして、この作用極4と対極5との間にリード線4a及び5aを介して電源8から所定の電解電圧を連続して印加し、電解電流の定常値を電流計9にて測定することによって試料溶液中の溶存ガス濃度を求めている。つまり、隔膜3を透過した測定対象ガス(ここでは、水素ガス)は、作用極4の面で反応し、そのとき作用極4に流れる溶存ガスの電解電流が電流計9で測定され、溶存水素センサ1Aで検出した溶存水素濃度を計測するように構成されている。計測結果は測定装置本体(図示せず)に設けた指示計に指示されるか、或いはプリントアウトされる。   Lead wires 4 a and 5 a are connected to the working electrode 4 and the counter electrode 5, respectively, and these lead wires 4 a and 5 a are led out through the support tube 6 and connected to a voltage applying means (DC power source) 8. . Then, a predetermined electrolytic voltage is continuously applied from the power source 8 between the working electrode 4 and the counter electrode 5 via the lead wires 4 a and 5 a, and the steady value of the electrolytic current is measured by the ammeter 9. The dissolved gas concentration in the sample solution is obtained. That is, the gas to be measured (here, hydrogen gas) that has permeated through the diaphragm 3 reacts on the surface of the working electrode 4, and the electrolytic current of the dissolved gas flowing through the working electrode 4 at that time is measured by the ammeter 9. The dissolved hydrogen concentration detected by the sensor 1A is measured. The measurement result is instructed by an indicator provided in the measuring apparatus main body (not shown) or printed out.

本発明者らは、前述の問題を解決するべく鋭意検討した結果、メッキ条件によって、作用極4に設ける白金メッキ層Pの触媒機能を維持しながら、白金メッキ層Pの状態を変えることが可能であることを見出した。   As a result of intensive studies to solve the above-mentioned problems, the present inventors can change the state of the platinum plating layer P while maintaining the catalytic function of the platinum plating layer P provided on the working electrode 4 depending on the plating conditions. I found out.

更に説明すると、図6は、本発明に従う白金メッキ層Pを作用極4に設けるメッキ装置の概略構成を示している。本発明に従う白金メッキ方法は、基本的には、従来の白金黒メッキ方法と同様であり、メッキ条件として電流の条件が異なる。即ち、メッキ操作において、先ず、メッキ容器(ビーカーなど)40内にメッキ液30を入れ、このメッキ液30に溶存水素センサ1Aの少なくとも作用極4の接液表面(カソード)を浸漬し、電流発生器10の負極をリード線4aを介して接続する。一方、メッキ液30に白金極20(アノード)を浸漬し、リード線21を介して電流発生器10の正極を接続する。そして、作用極4と白金極20との間に、詳しくは後述するようにして電流発生器10から電流を流すことによって、作用極4に白金を析出させる。   More specifically, FIG. 6 shows a schematic configuration of a plating apparatus for providing the working electrode 4 with the platinum plating layer P according to the present invention. The platinum plating method according to the present invention is basically the same as the conventional platinum black plating method, and the current conditions are different as plating conditions. That is, in the plating operation, first, the plating solution 30 is placed in a plating container (beaker or the like) 40, and the liquid contact surface (cathode) of at least the working electrode 4 of the dissolved hydrogen sensor 1A is immersed in the plating solution 30 to generate current. The negative electrode of the vessel 10 is connected via the lead wire 4a. On the other hand, the platinum electrode 20 (anode) is immersed in the plating solution 30, and the positive electrode of the current generator 10 is connected via the lead wire 21. Then, platinum is deposited on the working electrode 4 by flowing a current from the current generator 10 between the working electrode 4 and the platinum electrode 20 as described in detail later.

そして、図2に概念図を示すように、概して、メッキ操作における電流を、従来の白金黒メッキ方法よりも、小電流で、長時間流すようにすることにより、本発明に従う灰色を呈する白金メッキ層Pを作用極4上に設けることができることが分かった。斯かる白金メッキ層Pは、取れ難く、物理的強度も有しており、溶存水素センサ1Aの感度低下が抑制される。但し、図2の概念図に示すように、メッキする際の電流を、過度に小電流で、長時間とすると、白金メッキ層Pは白色を呈するようになり、触媒活性を維持し得なくなる。   Then, as shown in the conceptual diagram of FIG. 2, generally, the platinum plating exhibiting a gray color according to the present invention is performed by causing the current in the plating operation to flow for a long time with a smaller current than in the conventional platinum black plating method. It has been found that the layer P can be provided on the working electrode 4. Such a platinum plating layer P is difficult to remove and has physical strength, so that a decrease in sensitivity of the dissolved hydrogen sensor 1A is suppressed. However, as shown in the conceptual diagram of FIG. 2, when the current during plating is excessively small and long, the platinum plating layer P becomes white and cannot maintain the catalytic activity.

図3及び図4をも参照して更に説明すると、メッキ操作における電流の単位時間当たりの電流密度が小さくなるほど、析出した白金結晶の表面は、ざらざらした粗い針状の結晶から、金属粒子の結合した滑らかな状態へと変化する。   3 and FIG. 4, the surface of the deposited platinum crystal becomes more rough and rough as a result of the bonding of the metal particles as the current density per unit time of the current in the plating operation becomes smaller. Changes to a smooth state.

図3及び図4は、メッキ条件として電流条件を変化させた際の白金メッキ層Pの表面を走査型電子顕微鏡(SEM)で観察した結果を示す。即ち、従来の白金黒メッキは、図3(a)に示すように、略針状の細かく析出した白金結晶の塊(外径が約1〜3μm)を生成する。そして、単位時間当たりの電流密度を小さくなるに従って、図3(b)、図3(c)に示すように、より成長した大きな白金結晶の塊(概略略5〜15μm)が生成するようになる。更に単位時間当たりの電流密度を小さくすると、図4(a)に示すように、析出した白金結晶の塊はさらに成長した大きなものとなり(外径5〜20μm)、表面は滑らかな状態へと近づく。   3 and 4 show the results of observing the surface of the platinum plating layer P with a scanning electron microscope (SEM) when the current condition is changed as the plating condition. That is, as shown in FIG. 3A, the conventional platinum black plating generates a substantially acicular finely-plated platinum crystal lump (the outer diameter is about 1 to 3 μm). Then, as the current density per unit time decreases, a larger platinum crystal lump (generally about 5 to 15 μm) grows as shown in FIGS. 3B and 3C. . When the current density per unit time is further reduced, as shown in FIG. 4 (a), the deposited platinum crystal lump is further grown large (outer diameter 5 to 20 μm), and the surface approaches a smooth state. .

しかし、図4(b)及び図4(c)に示すように、更に単位時間当たりの電流密度を小さくすると、析出した白金結晶は、粒子状とはならず、より滑らかな略一様な状態となる。   However, as shown in FIGS. 4 (b) and 4 (c), when the current density per unit time is further reduced, the precipitated platinum crystals do not become particles and are in a smoother, substantially uniform state. It becomes.

このとき、作用極4の表面の白金メッキ層Pの外観は、図3(a)に示す状態では黒色を呈し、図3(b)、図3(c)、図4(a)に示す状態では灰色を呈し、図4(b)、図4(c)に示す状態では白色を呈する。   At this time, the appearance of the platinum plating layer P on the surface of the working electrode 4 is black in the state shown in FIG. 3A, and is in the state shown in FIGS. 3B, 3C, and 4A. Shows gray, and in the state shown in FIGS. 4B and 4C, white.

本発明者らは、白金メッキ電極の表面が灰色(グレー)を呈している範囲において、堅牢で、且つ、感度低下し難い理想的な電極となることを見出した。白金メッキ電極の表面が黒色であるもの、即ち、白金黒電極は、その脆弱さゆえに前述のような問題がある。一方、白金メッキ電極が白色となると、平滑な白金と同等となり、触媒活性が得られないため、感度が低下する。ここで、白金メッキ層Pの外観に関し灰色とは、一般の色概念において灰色とされるものは含まれる。より詳細には、本発明者の検討によれば、マンセル表色系でN(無彩色)2.0〜N8.0で表される色を呈する白金メッキ層Pが好適であり、より好ましくはN3.0〜N5.0、更に好ましくはN3.0で表される色を呈する白金メッキ層Pである。   The inventors of the present invention have found that the surface of the platinum-plated electrode is an ideal electrode that is robust and is less susceptible to a decrease in sensitivity within a range in which the surface is gray. A platinum-plated electrode having a black surface, that is, a platinum black electrode has the above-described problems because of its weakness. On the other hand, when the platinum-plated electrode is white, it becomes equivalent to smooth platinum and the catalytic activity cannot be obtained, so the sensitivity is lowered. Here, with respect to the appearance of the platinum plating layer P, the term “gray” includes those that are gray in a general color concept. More specifically, according to the study of the present inventor, a platinum plating layer P exhibiting a color represented by N (achromatic color) 2.0 to N8.0 in the Munsell color system is suitable, more preferably A platinum plating layer P exhibiting a color represented by N3.0 to N5.0, more preferably N3.0.

上述のように、本発明に従う白金メッキ方法は、下記の電流条件を除けば従来の白金黒メッキ方法と同様である。   As described above, the platinum plating method according to the present invention is the same as the conventional platinum black plating method except for the following current conditions.

メッキ液としては、従来の白金黒メッキと同じ、ヘキサクロロ白金(IV)酸(H2[PtCl6])の水溶液(通常、3gを100mlの水に溶かしたもの。)に酢酸鉛(通常、0.02〜0.03g。)を加えたの溶液を用いることができる。 As a plating solution, lead acetate (usually 0) is used in an aqueous solution of hexachloroplatinic (IV) acid (H 2 [PtCl 6 ]), which is the same as conventional platinum black plating (usually 3 g dissolved in 100 ml of water). 0.02 to 0.03 g.) Can be used.

電流条件としては、直流電流を用いる場合、極に白金メッキが成される方向の電流(以下「順方向電流」という。)の単位時間当たりの電流密度が0.3mA/cm2・s以下となる直流電流を用いることが好ましい。一方、順方向電流の単位時間当たりの電流密度は、0.05mA/cm2・s以上とするのが好ましい。従って、メッキ電流として直流を用いる場合には、順方向電流の単位時間当たりの電流密度は、0.05〜0.3mA/cm2・sとすることが好ましい。 As a current condition, when a direct current is used, a current density per unit time of a current in a direction in which platinum plating is performed on a pole (hereinafter referred to as “forward current”) is 0.3 mA / cm 2 · s or less. It is preferable to use a direct current. On the other hand, the current density per unit time of the forward current is preferably 0.05 mA / cm 2 · s or more. Therefore, when DC is used as the plating current, the current density per unit time of the forward current is preferably 0.05 to 0.3 mA / cm 2 · s.

又、上述のような単位時間当たりの電流密度の順方向電流を流すと共に、所定期間、順方向電流とは逆極性の電流(以下「逆電流」という。)を流すことができる。斯かる逆電流は、順方向電流を所定期間流した後に所定期間流してもよいし、順方向電流と交互にそれぞれ所定期間、複数回ずつ流してもよい。   In addition, a forward current having a current density per unit time as described above can flow, and a current having a polarity opposite to the forward current (hereinafter referred to as “reverse current”) can flow for a predetermined period. Such a reverse current may flow for a predetermined period after flowing the forward current for a predetermined period, or may flow for a predetermined period alternately for a predetermined period, alternately with the forward current.

尚、上述のように逆電流を流す時の電流値は、順方向電流の値の約10倍程度としてもよく、斯かる電流によって白金メッキ層Pが剥離することはない。逆電流を流すことにより、極に付着、吸蔵したヘキサクロロ白金(IV)酸及び塩素を除くことができ(電解洗浄)、効率的にメッキを行うことができる。   Note that the current value when the reverse current is passed as described above may be about 10 times the value of the forward current, and the platinum plating layer P is not peeled off by such a current. By flowing a reverse current, hexachloroplatinic (IV) acid and chlorine adhering to and occluding from the pole can be removed (electrolytic cleaning), and plating can be performed efficiently.

更に、交流電流をも用いてもよい。交流を用いる場合、順方向電流の単位時間当たりの電流密度は6mA/cm2・s以下とすることができる。一方、順方向電流の単位時間当たりの電流密度は、0.3mA/cm2・s以上とすることが好ましい。従って、メッキ電流として交流を用いる場合には、順方向電流の単位時間当たりの電流密度は、0.3〜6mA/cm2・sとすることが好ましい。 Further, an alternating current may be used. When alternating current is used, the current density per unit time of the forward current can be 6 mA / cm 2 · s or less. On the other hand, the current density per unit time of the forward current is preferably 0.3 mA / cm 2 · s or more. Therefore, when alternating current is used as the plating current, the current density per unit time of the forward current is preferably 0.3 to 6 mA / cm 2 · s.

交流波形は特に限定されず、正弦波、矩形波などを適宜用いることができる。又、交流周波数も適宜選定することができるが、典型的には、直流から商用周波数(50/60Hz)までを好適に用いることができる。   The AC waveform is not particularly limited, and a sine wave, a rectangular wave, or the like can be used as appropriate. Moreover, although an alternating frequency can also be selected suitably, typically, DC to a commercial frequency (50/60 Hz) can be used conveniently.

本発明の効果を確認するために、溶存水素センサを下記のように作製し、白金メッキ層Pの取れ易さ、機械的強度、感度安定性について評価した。結果を表1に示す。   In order to confirm the effect of the present invention, a dissolved hydrogen sensor was prepared as follows, and the ease of removing the platinum plating layer P, the mechanical strength, and the sensitivity stability were evaluated. The results are shown in Table 1.

作用極の表面のメッキ条件(或いはメッキの有無)を除いては、作用極及び対極の面積、材質など、溶存水素センサの他の全ての構成は同じものであった。又、メッキ液(ヘキサクロロ白金(IV)酸3gを100mlの水に溶かし、酢酸鉛を0.03g加えたもの)も同じものを用いた。   Except for the plating conditions (or the presence or absence of plating) on the surface of the working electrode, all other configurations of the dissolved hydrogen sensor, such as the area and material of the working electrode and the counter electrode, were the same. The same plating solution (3 g of hexachloroplatinic (IV) acid dissolved in 100 ml of water and 0.03 g of lead acetate) was also used.

(測定条件)
・作用極:Pt
・対極:Ag/AgCl
・測定時印加電圧:500mV(作用極−対極間)
・電解液:0.1mol/L HCl、0.1mol/L KCl
(Measurement condition)
・ Working electrode: Pt
・ Counter electrode: Ag / AgCl
-Applied voltage during measurement: 500 mV (between working electrode and counter electrode)
Electrolyte: 0.1 mol / L HCl, 0.1 mol / L KCl

表1中、具体例例1〜3は、本発明に従う溶存水素センサである。具体例1では、電流として直流を流し、メッキ中に電流の極性を反転し、電解洗浄を行った。具体例2では、電流として交流を流した。又、具体例3では、電流として直流を流したが、メッキ中に電流の極性は反転しなかった。   In Table 1, specific examples 1 to 3 are dissolved hydrogen sensors according to the present invention. In Example 1, direct current was passed as the current, the polarity of the current was reversed during plating, and electrolytic cleaning was performed. In the specific example 2, alternating current was passed as the current. In Example 3, direct current was passed as the current, but the polarity of the current was not reversed during plating.

一方、比較例1〜4は、本発明に従わない溶存水素センサであり、特に、比較例1及び2は、従来の白金黒メッキ方法による白金黒電極を備える溶存水素センサである。又、比較例3は、具体例1〜3と比べて単位時間当たりの電流密度を更に小さくした例であり、比較例4は、白金メッキを施さなかった例である。   On the other hand, Comparative Examples 1 to 4 are dissolved hydrogen sensors not according to the present invention, and in particular, Comparative Examples 1 and 2 are dissolved hydrogen sensors provided with platinum black electrodes by a conventional platinum black plating method. Comparative Example 3 is an example in which the current density per unit time is further reduced as compared with Specific Examples 1 to 3, and Comparative Example 4 is an example in which platinum plating is not performed.

尚、具体例1では、順方向電流を流した後、逆電流を流し、再度、順方向電流を流した(即ち、順方向電流を(1)、逆電流を(2)として、(1)+(2)+(1))。しかし、直流電流を用いて順方向電流と逆電流とを流す場合、上記具体例1の態様に限定されず、例えば、順方向電流を(1)、逆電流を(2)として、(1)+(2)、(1)+(2)+(1)+(2)、或いは(1)+(2)の繰り返しなどとしてもよい。   In the specific example 1, the forward current is passed, the reverse current is passed, and the forward current is passed again (that is, the forward current is (1) and the reverse current is (2) (1) + (2) + (1)). However, when a forward current and a reverse current are caused to flow using a direct current, the present invention is not limited to the aspect of the first specific example. For example, assuming that the forward current is (1) and the reverse current is (2), (1) + (2), (1) + (2) + (1) + (2), or (1) + (2) may be repeated.

具体例1〜3の白金メッキ層Pの外観は灰色を呈しており、顕微鏡的に図3(c)に示す表面を有していることが分かった。更なる検討により、他例において、外観が灰色を呈する、顕微鏡的に図3(b)、図4(a)の表面を有する白金メッキが作用極4に施された溶存水素センサも上記具体例1〜3と同様の特性を示すことが確認された。   It was found that the appearance of the platinum plating layers P of Specific Examples 1 to 3 was gray and had the surface shown in FIG. 3 (c) microscopically. As a result of further study, in another example, the dissolved hydrogen sensor in which the outer appearance is gray and the platinum plating having the surface of FIG. 3B and FIG. It was confirmed that the same characteristics as 1 to 3 were exhibited.

比較例1及び2の白金メッキ層Pの外観は黒色を呈しており、顕微鏡的に図3(a)に示す表面を有していることが分かった。又、比較例3の白金メッキ層Pの外観は白色を呈しており、顕微鏡的に図4(c)に示す表面を有していることが分かった。尚、比較例4の白金メッキ層Pの外観は、銀色(金属色)を呈している。   It was found that the appearance of the platinum plating layer P of Comparative Examples 1 and 2 was black and had the surface shown in FIG. 3A microscopically. Moreover, the external appearance of the platinum plating layer P of the comparative example 3 was white, and it turned out that it has the surface shown in FIG.4 (c) microscopically. In addition, the external appearance of the platinum plating layer P of the comparative example 4 is exhibiting silver (metal color).

又、白金メッキ層Pの取れ易さ、物理的強度を、ティッシュペーパーで拭き取ることで確認した。その結果、具体例1〜3では白金メッキ層Pは取れず、比較例1、2ではティッシュペーパー上に黒い結晶が取れた。即ち、具体例1〜3の白金メッキ層Pは、比較例1及び2の従来の白金黒メッキ層Pよりも取れ難く、又物理的強度も大きいことが分かった。このように、本発明に従う白金メッキ層P(具体例1〜3)では、例えば、表面をティッシュペーパーなどで拭き取ることにより、物理的に汚れを除去することも可能であることが分かった。   Moreover, the ease of removing the platinum plating layer P and the physical strength were confirmed by wiping with a tissue paper. As a result, in Examples 1 to 3, the platinum plating layer P was not removed, and in Comparative Examples 1 and 2, black crystals were removed on the tissue paper. That is, it was found that the platinum plating layers P of Specific Examples 1 to 3 were more difficult to remove than the conventional platinum black plating layers P of Comparative Examples 1 and 2 and had a higher physical strength. Thus, it was found that in the platinum plating layer P (specific examples 1 to 3) according to the present invention, it is possible to physically remove dirt by wiping the surface with a tissue paper or the like.

図5に、具体例1〜3、比較例1〜4について、感度安定性を調べた結果を示す。図5中横軸は、経過日数を示し、縦軸は、試験開始時(経過日数0日)の出力に対する経過日数毎の出力相対値(%)を示す。   In FIG. 5, the result of having investigated sensitivity stability about the specific examples 1-3 and the comparative examples 1-4 is shown. In FIG. 5, the horizontal axis indicates the number of elapsed days, and the vertical axis indicates the output relative value (%) for each elapsed day with respect to the output at the start of the test (the number of elapsed days is 0).

表1及び図5から、本発明に従う具体例1〜3では、比較例1〜4に比べて感度低下が少ないことが分かる。又、メッキ中に逆電流(交流を用いる場合も含む。)を流した具体 例1及び2では、これを流さなかった具体例3に比べて、更に出力低下が軽減した。具体例1及び2は、略同一の感度安定性を示した。   From Table 1 and FIG. 5, it can be seen that the specific examples 1 to 3 according to the present invention have less sensitivity reduction than the comparative examples 1 to 4. Further, in Examples 1 and 2 in which a reverse current (including the case of using an alternating current) was passed during plating, the output reduction was further reduced compared to Example 3 in which this was not applied. Specific examples 1 and 2 showed almost the same sensitivity stability.

比較例3の結果から分かるように、メッキする際の単位時間当たりの電流密度を小さくし過ぎると、表面が平滑になり過ぎて、白金メッキを施す効果はなく、白金メッキを施さない場合とほぼ同程度に感度低下を生じた。   As can be seen from the results of Comparative Example 3, if the current density per unit time during plating is too small, the surface becomes too smooth, and there is no effect of applying platinum plating, almost the same as when not applying platinum plating. A similar decrease in sensitivity occurred.

本発明に従う白金メッキ層Pを備える溶存水素センサ1Aは、感度が低下した際に、白金メッキ層Pを再メッキすることにより設けることで、感度を復帰させることができる。白金メッキ層Pを再生させる際には、従来、白金黒メッキを再生する場合に行っていたのと同様、作用極4から一度白金メッキ層Pを研磨などにより除去し、洗浄した後、白金メッキを行うのが好ましい。再メッキする際のメッキ条件は、上述と同様である。   The dissolved hydrogen sensor 1A including the platinum plating layer P according to the present invention can restore the sensitivity by re-plating the platinum plating layer P when the sensitivity is lowered. When the platinum plating layer P is regenerated, the platinum plating layer P is once removed from the working electrode 4 by polishing or the like, and then the platinum plating is performed as in the case of regenerating platinum black plating. Is preferably performed. The plating conditions for re-plating are the same as described above.

従来、白金黒電極を備えた隔膜型センサでは、隔膜の交換時及び/又は電解液交換時には、白金黒メッキが取れ易いため、その都度白金黒メッキの再生を行うことが通常であった。これに対し、本発明に従う白金メッキ層Pは、従来の白金黒メッキと比べて堅牢であるため、必ずしも隔膜の交換時及び/又は電解液の交換時にその都度白金メッキ層Pの再生を行う必要はなく、感度低下が顕著となった時点で行えばよい。   Conventionally, in a diaphragm type sensor equipped with a platinum black electrode, platinum black plating is usually taken out when the diaphragm is replaced and / or when the electrolyte is replaced. On the other hand, since the platinum plating layer P according to the present invention is more robust than the conventional platinum black plating, it is necessary to regenerate the platinum plating layer P each time the diaphragm is replaced and / or the electrolyte is replaced. No, it may be performed at the time when the decrease in sensitivity becomes significant.

以上説明したように、本実施例によれば、溶存水素センサの作用極に灰色を呈する白金メッキ層Pを設けることによって、該白金メッキ層Pを、取れ難く、物理的強度をも備えたものとし得る。又、極表面の活性を維持すると共に、感度低下を抑制することができる。又、本発明によれば、白金メッキ層Pを備える極は、感度が低下した場合に容易に再生が可能である。   As described above, according to the present embodiment, the platinum plating layer P that is gray is provided on the working electrode of the dissolved hydrogen sensor, so that the platinum plating layer P is difficult to remove and has physical strength. It can be. In addition, it is possible to maintain the activity of the extreme surface and suppress a decrease in sensitivity. Further, according to the present invention, the pole provided with the platinum plating layer P can be easily reproduced when the sensitivity is lowered.

尚、上記実施例では、本発明に従う白金メッキ層Pを備えた隔膜型ポーラログラフ式センサは、溶存水素センサであるとして説明したが、本発明はこれに限定されるものではない。又、本発明は隔膜型のセンサに限定されるものではなく、白金メッキ層Pが設けられる極が試料に露出したものであってもよい。   In the above embodiment, the diaphragm type polarographic sensor provided with the platinum plating layer P according to the present invention has been described as a dissolved hydrogen sensor, but the present invention is not limited to this. Further, the present invention is not limited to the diaphragm type sensor, and the electrode provided with the platinum plating layer P may be exposed to the sample.

又、上記実施例では、電気化学式センサは、隔膜型ポーラログラフ式センサであるとして説明したが、本発明はこれに限定されるものではない。一例を挙げれば、図7に示すような隔膜型ガルバニ電池式センサ1Bなどのガルバニ電池式センサが備える白金電極4の表面に、本発明に従う白金メッキ層Pを設けることができる。   In the above embodiment, the electrochemical sensor is described as a diaphragm type polarographic sensor, but the present invention is not limited to this. If an example is given, the platinum plating layer P according to this invention can be provided in the surface of the platinum electrode 4 with which a galvanic cell type sensor such as the diaphragm type galvanic cell type sensor 1B as shown in FIG. 7 is provided.

図7に示す隔膜型ガルバニ電池式センサ1Bは、電源を有さず、使用時に外部から電圧を印加しないことが図1に示すポーラログラフ式センサ1Aとは異なり、作用極4と対極5とを電解液7中にそれぞれ浸漬して回路を構成することにより、電極間に流れる電流を測定する。このガルバニ電池式センサの極に本発明に従う白金メッキ層Pを設ける方法は、上記隔膜型ポーラログラフ式センサの極に対して適用したものと実質的に同じであり、本発明に従う白金メッキ層Pを設けることで、上記隔膜型ポーラログラフ式センサの場合と同様の作用効果を奏し得る。   Unlike the polarographic sensor 1A shown in FIG. 1, the diaphragm type galvanic cell type sensor 1B shown in FIG. 7 does not have a power source and does not apply a voltage from the outside during use, and the working electrode 4 and the counter electrode 5 are electrolyzed. The current flowing between the electrodes is measured by immersing each in the liquid 7 to form a circuit. The method of providing the platinum plating layer P according to the present invention on the electrode of the galvanic cell type sensor is substantially the same as that applied to the electrode of the diaphragm type polarographic sensor, and the platinum plating layer P according to the present invention is applied. By providing, the same operation effect as the case of the above-mentioned diaphragm type polarographic sensor can be produced.

実施例2
次に、本発明の他の実施例について説明する。本実施例では、本発明に従う白金メッキ層を、電気伝導率セルに適用する場合について説明する。
Example 2
Next, another embodiment of the present invention will be described. In this embodiment, a case where the platinum plating layer according to the present invention is applied to an electric conductivity cell will be described.

図8は、セル1Cの要部概略断面を示す。図8に示すセル1Cは、略円柱形状であり、支持管6の先端に、一端部が開放した略円筒状の空間(試料導入部)6aの内壁から露出するように白金電極4を複数、本実施例では、2つ有する。極は更に多くてもよい。そして、白金電極4、4の間に交流電流を流して、両極間の空間に導入された試料のインピーダンスを計測することで、試料の電気伝導率を計測する。   FIG. 8 shows a schematic cross section of the main part of the cell 1C. The cell 1C shown in FIG. 8 has a substantially columnar shape, and a plurality of platinum electrodes 4 are exposed at the tip of the support tube 6 so as to be exposed from the inner wall of a substantially cylindrical space (sample introduction part) 6a with one end open. In this embodiment, there are two. There may be more poles. And the electrical conductivity of a sample is measured by flowing an alternating current between platinum electrodes 4 and 4 and measuring the impedance of the sample introduced into the space between both electrodes.

このセル11の極に本発明に従う白金メッキ層Pを設ける方法は、上記実施例1にて説明した隔膜型ポーラログラフ式センサの極に対して適用したものと実質的に同一である。   The method of providing the platinum plating layer P according to the present invention on the electrode of the cell 11 is substantially the same as that applied to the electrode of the diaphragm type polarographic sensor described in the first embodiment.

本発明に従うことにより、従来の白金黒と同じ若しくはより広い直線性範囲(測定濃度範囲)を維持しながら、白金メッキ層Pの状態を変えて、物理的強度を改善することができる。つまり、本発明に従うことにより、取れ難く、測定濃度の広い極を形成することが可能である。   By following the present invention, the physical strength can be improved by changing the state of the platinum plating layer P while maintaining the same or wider linearity range (measurement concentration range) as that of conventional platinum black. That is, according to the present invention, it is difficult to remove and it is possible to form a pole having a wide measurement concentration.

ここで、上記同様、メッキ操作における電流の単位時間当たりの電流密度が小さくなるほど、析出した白金結晶の表面は、ざらざらした粗い針状の結晶から、滑らかな金属粒子の結合した状態へと変化する。このとき、表面の色は黒から、グレー、白へと変化することは上述と同様である。そして、本発明者らは、白金メッキ電極の表面が灰色(グレー)を呈している範囲において、堅牢で、且つ、測定濃度範囲の広い、理想的なセル11となることを見出した。白金メッキ電極の表面が黒色であるもの、即ち、白金黒電極は、その脆弱さゆえに前述のような問題がある。一方、白金メッキ電極の表面が白色となると、平滑な白金と同等となり、表面積拡大効果が得られないため、測定濃度範囲は狭くなる。   Here, as described above, as the current density per unit time of the current in the plating operation decreases, the surface of the deposited platinum crystal changes from a rough, coarse needle-like crystal to a state in which smooth metal particles are bonded. . At this time, the surface color changes from black to gray and white, as described above. Then, the present inventors have found that the cell 11 is an ideal cell 11 that is robust and has a wide measurement concentration range in the range where the surface of the platinum plating electrode is gray. A platinum-plated electrode having a black surface, that is, a platinum black electrode has the above-described problems because of its weakness. On the other hand, when the surface of the platinum-plated electrode is white, it becomes equivalent to smooth platinum, and the surface area expansion effect cannot be obtained, so the measurement concentration range becomes narrow.

本実施例においても、白金メッキ層Pを極に設けるためのメッキ条件は、上記実施例1にて説明したものと同様とすることができる。   Also in this embodiment, the plating conditions for providing the platinum plating layer P on the pole can be the same as those described in the first embodiment.

本発明の効果を確認するために、セル1Cを下記のように作製し、白金メッキ層Pの取れ易さ、機械的強度、測定濃度範囲について評価した。結果を表2に示す。   In order to confirm the effect of the present invention, the cell 1C was produced as follows, and the ease of removing the platinum plating layer P, the mechanical strength, and the measured concentration range were evaluated. The results are shown in Table 2.

極の表面のメッキ条件(或いはメッキの有無)を除いては、極面積、ボディ材質、測定周波数などは同一とした。又、メッキ液(ヘキサクロロ白金(IV)酸3gを100mlの水に溶かし、酢酸鉛を0.03g加えたもの)も同じものを用いた。   Except for the plating conditions (or presence / absence of plating) of the electrode surface, the electrode area, body material, measurement frequency, etc. were the same. The same plating solution (3 g of hexachloroplatinic (IV) acid dissolved in 100 ml of water and 0.03 g of lead acetate) was also used.

Pt電極に下記表のように白金メッキ層Pを設け、25℃の条件下で塩化カリウム標準液の電気伝導率を測定した。   A platinum plating layer P was provided on the Pt electrode as shown in the table below, and the electrical conductivity of the potassium chloride standard solution was measured under the condition of 25 ° C.

表2中、具体例4〜6は、本発明に従うセルである。これらの具体例では、メッキ電流として直流を用いた。   In Table 2, specific examples 4 to 6 are cells according to the present invention. In these specific examples, direct current was used as the plating current.

一方、比較例5〜7は、本発明に従わないセルである。特に、比較例5は、従来の白金黒メッキ方法による白金黒電極を備えるセルである。又、比較例6は、具体例4〜6と比べて単位時間当たりの電流密度を更に小さくした例であり、比較例7は、白金メッキを施さなかった例である。   On the other hand, Comparative Examples 5 to 7 are cells not according to the present invention. In particular, Comparative Example 5 is a cell including a platinum black electrode by a conventional platinum black plating method. Comparative Example 6 is an example in which the current density per unit time is further reduced as compared with Specific Examples 4 to 6, and Comparative Example 7 is an example in which platinum plating is not performed.

具体例4〜6の白金メッキ層Pの外観は灰色を呈しており、顕微鏡的に図3(c)に示す表面を有していることが分かった。一方、比較例5の白金メッキ層Pの外観は黒色を呈しており、顕微鏡的に図3(a)に示す表面を有していることが分かった。又、比較例6の白金メッキ層Pの外観は白色を呈しており、顕微鏡的に図4(c)に示す表面を有していることが分かった。尚、比較例4の白金メッキ層Pの外観は、銀色(金属色)を呈している。   The external appearance of the platinum plating layers P of Specific Examples 4 to 6 was gray, and it was found that the surface shown in FIG. On the other hand, it was found that the appearance of the platinum plating layer P of Comparative Example 5 was black and had the surface shown in FIG. 3A microscopically. In addition, it was found that the appearance of the platinum plating layer P of Comparative Example 6 was white and had the surface shown in FIG. 4 (c) microscopically. In addition, the external appearance of the platinum plating layer P of the comparative example 4 is exhibiting silver (metal color).

又、白金メッキ層Pの取れ易さ、物理的強度を、ティッシュペーパーで拭き取ることで確認した。その結果、具体例4〜6では白金メッキ層Pは取れず、比較例5ではティッシュペーパー上に黒い結晶が取れた。   Moreover, the ease of removing the platinum plating layer P and the physical strength were confirmed by wiping with a tissue paper. As a result, in Examples 4 to 6, the platinum plating layer P was not removed, and in Comparative Example 5, black crystals were removed on the tissue paper.

図9に、JIS K 0101による塩化カリウム標準液A(11134mS/m、25℃)、B(1286mS/m、25℃)、C(140.9mS/m、25℃)、D(14.7mS/m、25℃)を用いて、それぞれの標準液の実際の濃度(電気伝導率)と、被検セル(具体例4〜6、比較例5、6、7)による測定値とから誤差(%)を算出した結果を示す。図9(a)、(b)、(c)は、それぞれ測定周波数を3000Hz、900Hz、60Hzとして得た結果である。尚、具体例4〜6については、ほぼ同様の結果が得られた。又、比較例6と比較例7とでは、ほぼ同様の結果が得られた。   FIG. 9 shows potassium chloride standard solution A (11134 mS / m, 25 ° C.), B (1286 mS / m, 25 ° C.), C (140.9 mS / m, 25 ° C.), D (14.7 mS / M) according to JIS K 0101. m, 25 ° C.), the error (%) from the actual concentration (electrical conductivity) of each standard solution and the measured values of the test cells (specific examples 4 to 6, comparative examples 5, 6, and 7). ) Is calculated. FIGS. 9A, 9B, and 9C show the results obtained when the measurement frequencies are 3000 Hz, 900 Hz, and 60 Hz, respectively. In addition, about the specific examples 4-6, the substantially same result was obtained. In Comparative Example 6 and Comparative Example 7, almost the same results were obtained.

図9(a)〜(b)より、いずれの測定周波数においても、灰色を呈する白金メッキ層Pが施された具体例4〜6のセルが、低濃度(低電気伝導率)から高濃度(高電気伝導率)まで誤差(%)が最も少ないことが分かる。又、図9(a)〜(c)より、測定周波数を減少させていった場合においても、灰色を呈する白金メッキ層Pが施された具体例4〜6のセルでは、低濃度から高濃度まで誤差(%)の増大は比較的少ない。   9 (a) to 9 (b), at any measurement frequency, the cells of specific examples 4 to 6 on which the platinum plating layer P exhibiting gray was applied had a low concentration (low electrical conductivity) to a high concentration ( It can be seen that the error (%) is the smallest (high electrical conductivity). 9A to 9C, even in the case where the measurement frequency is decreased, the cells of specific examples 4 to 6 to which the gray platinum plating layer P is applied have a low concentration to a high concentration. The increase in error (%) is relatively small.

このように、本発明に従う白金メッキ層Pを設けることによって、従来に比べて、標準液の実際の濃度(電気伝導率)に対して誤差(%)が少なく、測定濃度範囲が広いことが確認された。本発明に従う白金メッキ層Pが、取れ難く、物理的強度が増大されただけではなく、従来の白金黒メッキと比較して、更に測定濃度範囲が広くなったことは驚くべきことである。これは、本発明に従う白金メッキ層Pの表面状態により、従来の白金黒と比較して、より分極の影響を受け難くなったためと考えられる。   As described above, by providing the platinum plating layer P according to the present invention, it is confirmed that there is less error (%) with respect to the actual concentration (electric conductivity) of the standard solution and the measurement concentration range is wider than before. It was done. It is surprising that the platinum plating layer P according to the present invention is not only difficult to remove and has increased physical strength, but also has a wider measurement concentration range than conventional platinum black plating. This is thought to be because the surface state of the platinum plating layer P according to the present invention is less affected by polarization than conventional platinum black.

又、セルを用いる場合、低濃度の試料を測定する際には、測定周波数を高くすることが行われるが、本発明に従う白金メッキ層Pを設けることによって、同一濃度の試料に対して、測定周波数をより低くし得る。これはセルに対する回路の構成の簡易化などの点で極めて有利である。   In addition, when using a cell, when measuring a low concentration sample, the measurement frequency is increased. However, by providing a platinum plating layer P according to the present invention, measurement is performed on a sample having the same concentration. The frequency can be lower. This is extremely advantageous in terms of simplification of the circuit configuration for the cell.

一方、図9(a)〜(c)より、白色を呈する白金メッキ層Pが施された比較例6のセルでは、メッキを施さない白金電極を備える比較例7のセルと同様、測定濃度範囲が狭いことが分かる。これは、白金の結晶が密となっているために、表面積拡大効果が得られないためであると考えられる。   On the other hand, as shown in FIGS. 9A to 9C, in the cell of Comparative Example 6 in which the platinum plating layer P exhibiting white is applied, the measured concentration range is the same as the cell of Comparative Example 7 having a platinum electrode that is not plated. It can be seen that is narrow. This is considered to be because the surface area expansion effect cannot be obtained because the platinum crystals are dense.

尚、上記表2中に、測定濃度範囲の評価結果として、誤差(%)が5%以内のものを測定可能であるものとして示す。   In Table 2, the evaluation result of the measured concentration range is shown as being measurable when the error (%) is within 5%.

尚、メッキ中に電流の極性を反転させたもの、及びメッキ電流として交流を用いたものについても検討したが、いずれも白金メッキ層Pの取れ易さ、機械的強度、測定濃度範囲は、メッキ電流の極性を反転させないものと同程度か若しくはより改善された。   In addition, although the thing which reversed the polarity of the electric current during plating and the thing which used alternating current as a plating current were examined, all are easy to take platinum plating layer P, mechanical strength, and the measurement concentration range are plating. Same or better than not reversing current polarity.

以上説明したように、本実施例によれば、実施例1と同様に、セルの白金電極4に灰色を呈する白金メッキ層Pを設けることによって、白金メッキ層Pを、取れ難く、物理的強度を備えるものとすることができる。又、セルの直線性範囲(測定濃度範囲)を広くし、又、セル定数の変化を軽減して、安定した測定が可能となる。   As described above, according to the present embodiment, like the first embodiment, by providing the platinum plating layer P exhibiting gray on the platinum electrode 4 of the cell, it is difficult to remove the platinum plating layer P, and the physical strength is increased. Can be provided. Further, the linearity range (measurement concentration range) of the cell is widened, and the change of the cell constant is reduced, thereby enabling stable measurement.

本発明を適用し得る隔膜型ポーラログラフ式センサ(溶存水素センサ)の要部概略構成図である。It is a principal part schematic block diagram of the diaphragm type polarographic sensor (dissolved hydrogen sensor) which can apply this invention. 本発明の原理を説明するための概念図である。It is a conceptual diagram for demonstrating the principle of this invention. メッキ条件により変化する白金メッキ層表面の走査型電子顕微鏡(SEM)画像を示す説明図である。It is explanatory drawing which shows the scanning electron microscope (SEM) image of the platinum plating layer surface which changes with plating conditions. メッキ条件により変化する白金メッキ層表面の走査型電子顕微鏡(SEM)画像を示す説明図である。It is explanatory drawing which shows the scanning electron microscope (SEM) image of the platinum plating layer surface which changes with plating conditions. 本発明に従う溶存水素センサの感度安定性を示すグラフ図である。It is a graph which shows the sensitivity stability of the dissolved hydrogen sensor according to this invention. 白金メッキ方法を説明するための模式図である。It is a schematic diagram for demonstrating the platinum plating method. 本発明を適用し得る隔膜型ガルバニ電池式センサの要部概略構成図である。It is a principal part schematic block diagram of the diaphragm type | mold galvanic-cell-type sensor which can apply this invention. 本発明を適用し得る電気伝導率セルの要部概略構成図である。It is a principal part schematic block diagram of the electrical conductivity cell which can apply this invention. 本発明に従う電気伝導率セルの測定濃度範囲を説明するためのグラフ図である。It is a graph for demonstrating the measurement concentration range of the electrical conductivity cell according to this invention.

符号の説明Explanation of symbols

1A 溶存水素センサ(隔膜型ポーラログラフ式センサ)
1B 隔膜型ガルバニ電池式センサ
1C 電気伝導率セル
2 センサ本体
3 隔膜
4 作用極
5 対極
6 支持管
7 電解液
10 電流発生器
P 白金メッキ層

1A Dissolved hydrogen sensor (diaphragm type polarographic sensor)
1B Diaphragm type galvanic cell type sensor 1C Conductivity cell 2 Sensor body 3 Diaphragm 4 Working electrode 5 Counter electrode 6 Support tube 7 Electrolytic solution 10 Current generator P Platinum plating layer

Claims (13)

電極の表面での測定対象成分の反応に伴い前記電極に流れる電流を測定するための電気化学式センサにおいて、
前記電極の表面に灰色を呈する白金メッキ層が設けられていることを特徴とする電気化学式センサ。
In an electrochemical sensor for measuring a current flowing through the electrode in response to a reaction of a component to be measured on the surface of the electrode,
An electrochemical sensor characterized in that a gray platinum plating layer is provided on the surface of the electrode.
センサ本体の一端に試料中の測定対象成分を透過させる隔膜によって外部と区画される室を備え、前記室の内部に作用極と対極とが配置され、前記作用極と対極とが前記室内に収容された電解液に接触した状態で、前記隔膜を透過した測定対象成分が前記作用極の表面で反応することにより前記作用極と対極との間に流れる電流を測定するための電気化学式センサであり、前記作用極の表面に前記灰色を呈する白金メッキ層が設けられていることを特徴とする請求項1の電気化学式センサ。   One end of the sensor body is provided with a chamber that is partitioned from the outside by a diaphragm that allows the measurement target component in the sample to pass through. A working electrode and a counter electrode are disposed inside the chamber, and the working electrode and the counter electrode are accommodated in the chamber. An electrochemical sensor for measuring a current flowing between the working electrode and the counter electrode when a component to be measured that has passed through the diaphragm reacts on the surface of the working electrode while being in contact with the applied electrolyte. The electrochemical sensor according to claim 1, wherein a platinum plating layer exhibiting the gray color is provided on a surface of the working electrode. ポーラログラフ式センサ又はガルバニ電池式センサであることを特徴とする請求項1又は2の電気化学式センサ。   The electrochemical sensor according to claim 1 or 2, which is a polarographic sensor or a galvanic cell sensor. 前記電気化学式センサは、溶存水素センサであることを特徴とする請求項1、2又は3の電気化学式センサ。   The electrochemical sensor according to claim 1, 2 or 3, wherein the electrochemical sensor is a dissolved hydrogen sensor. 前記白金メッキ層は、該白金メッキが成される方向の単位時間当たりの電流密度が0.05〜0.3mA/cm2・sの直流電流で白金メッキすることで設けられることを特徴とする請求項1〜4のいずれかの項に記載の電気化学式センサ。 The platinum plating layer is provided by platinum plating with a direct current having a current density per unit time in a direction in which the platinum plating is performed of 0.05 to 0.3 mA / cm 2 · s. The electrochemical sensor according to any one of claims 1 to 4. 前記白金メッキ層は、該白金メッキが成される方向の単位時間当たりの電流密度が0.05〜0.3mA/cm2・sの直流電流で白金メッキすると共に、その逆極性の直流電流を所定期間流すことで設けられることを特徴とする請求項1〜4のいずれかの項に記載の電気化学式センサ。 The platinum plating layer is platinum-plated with a direct current having a current density of 0.05 to 0.3 mA / cm 2 · s per unit time in the direction in which the platinum plating is performed, and a direct current of the opposite polarity is applied. The electrochemical sensor according to claim 1, wherein the electrochemical sensor is provided by flowing for a predetermined period. (a)白金メッキが成される順方向の電流を所定期間流した後、その逆極性の電流を所定期間流すか、(b)前記順方向の電流を所定期間流した後、前記逆極性の電流を所定期間流し、更に前記順方向の電流を所定期間流すか、(c)前記順方向の電流と前記逆極性の電流とを交互に、それぞれ所定期間複数回ずつ流すことを特徴とする請求項6の電気化学式センサ。   (A) After flowing a forward current in which platinum plating is performed for a predetermined period, flow a reverse polarity current for a predetermined period, or (b) after flowing the forward current for a predetermined period, A current is allowed to flow for a predetermined period, and further, the forward current is allowed to flow for a predetermined period, or (c) the forward current and the reverse polarity current are alternately supplied multiple times for a predetermined period. Item 6. The electrochemical sensor according to Item 6. 前記白金メッキ層は、該白金メッキが成される方向の単位時間当たりの電流密度が0.3〜6mA/cm2・sの交流電流で白金メッキすることで設けられることを特徴とする請求項1〜4のいずれかの項に記載の電気化学センサ。 The platinum plating layer is provided by performing platinum plating with an alternating current having a current density per unit time of 0.3 to 6 mA / cm 2 · s in a direction in which the platinum plating is performed. The electrochemical sensor according to any one of items 1 to 4. 試料に接触するように配置された電極間に電圧を印加することにより試料の電気伝導率を測定するための電気伝導率セルにおいて、
前記電極の表面に灰色を呈する白金メッキ層が設けられていることを特徴とする電気伝導率セル。
In an electrical conductivity cell for measuring the electrical conductivity of a sample by applying a voltage between electrodes arranged to contact the sample,
An electric conductivity cell, wherein a surface of the electrode is provided with a gray platinum plating layer.
前記白金メッキ層は、該白金メッキが成される方向の単位時間当たりの電流密度が0.05〜0.3mA/cm2・sの直流電流で白金メッキすることで設けられることを特徴とする請求項9の電気伝導率セル。 The platinum plating layer is provided by platinum plating with a direct current having a current density per unit time in a direction in which the platinum plating is performed of 0.05 to 0.3 mA / cm 2 · s. The electrical conductivity cell of claim 9. 前記白金メッキ層は、該白金メッキが成される方向の単位時間当たりの電流密度が0.05〜0.3mA/cm2・sの直流電流で白金メッキすると共に、その逆極性の直流電流を所定期間流すことで設けられることを特徴とする請求項9の電気伝導率セル。 The platinum plating layer is platinum-plated with a direct current having a current density of 0.05 to 0.3 mA / cm 2 · s per unit time in the direction in which the platinum plating is performed, and a direct current of the opposite polarity is applied. The electric conductivity cell according to claim 9, which is provided by flowing for a predetermined period. (a)白金メッキが成される順方向の電流を所定期間流した後、その逆極性の電流を所定期間流すか、(b)前記順方向の電流を所定期間流した後、前記逆極性の電流を所定期間流し、更に前記順方向の電流を所定期間流すか、(c)前記順方向の電流と前記逆極性の電流とを交互に、それぞれ所定期間複数回ずつ流すことを特徴とする請求項11の電気伝導率セル。   (A) After flowing a forward current in which platinum plating is performed for a predetermined period, flow a reverse polarity current for a predetermined period, or (b) after flowing the forward current for a predetermined period, A current is allowed to flow for a predetermined period, and further, the forward current is allowed to flow for a predetermined period, or (c) the forward current and the reverse polarity current are alternately supplied multiple times for a predetermined period. Item 11. The electric conductivity cell according to Item 11. 前記白金メッキ層は、該白金メッキが成される方向の単位時間当たりの電流密度が0.3〜6mA/cm2・sの交流電流で白金メッキすることで設けられることを特徴とする請求項9の電気伝導率セル。
The platinum plating layer is provided by performing platinum plating with an alternating current having a current density per unit time of 0.3 to 6 mA / cm 2 · s in a direction in which the platinum plating is performed. 9 electrical conductivity cells.
JP2004181874A 2004-01-28 2004-06-18 Electrochemical sensor and conductivity cell Expired - Fee Related JP4549114B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004181874A JP4549114B2 (en) 2004-01-28 2004-06-18 Electrochemical sensor and conductivity cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004020594 2004-01-28
JP2004181874A JP4549114B2 (en) 2004-01-28 2004-06-18 Electrochemical sensor and conductivity cell

Publications (2)

Publication Number Publication Date
JP2005241622A true JP2005241622A (en) 2005-09-08
JP4549114B2 JP4549114B2 (en) 2010-09-22

Family

ID=35023477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004181874A Expired - Fee Related JP4549114B2 (en) 2004-01-28 2004-06-18 Electrochemical sensor and conductivity cell

Country Status (1)

Country Link
JP (1) JP4549114B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013253962A (en) * 2012-02-10 2013-12-19 Micro Blood Science Co Ltd Method and device for detecting food bacteria using electric impedance
US10378119B2 (en) * 2005-10-26 2019-08-13 Second Sight Medical Products, Inc. Platinum electrode surface coating and method for manufacturing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59211853A (en) * 1983-05-10 1984-11-30 ハリ−・ダドリイ・ライト Electroanalytic method for measuring hydrogen and sensor
JPH0469564A (en) * 1990-07-10 1992-03-04 Omron Corp Enzyme electrode and production thereof
JPH09127039A (en) * 1995-11-06 1997-05-16 Nippon Telegr & Teleph Corp <Ntt> Electrochemical detector and its manufacture
JP2000277131A (en) * 1999-03-24 2000-10-06 Nissan Motor Co Ltd Ion exchange membrane and its manufacture
JP2001281201A (en) * 2000-03-29 2001-10-10 Matsushita Electric Ind Co Ltd Electrode for extracellular recording
WO2003087433A1 (en) * 2002-04-11 2003-10-23 Second Sight, Llc Platinum electrode and method for manufacturing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59211853A (en) * 1983-05-10 1984-11-30 ハリ−・ダドリイ・ライト Electroanalytic method for measuring hydrogen and sensor
JPH0469564A (en) * 1990-07-10 1992-03-04 Omron Corp Enzyme electrode and production thereof
JPH09127039A (en) * 1995-11-06 1997-05-16 Nippon Telegr & Teleph Corp <Ntt> Electrochemical detector and its manufacture
JP2000277131A (en) * 1999-03-24 2000-10-06 Nissan Motor Co Ltd Ion exchange membrane and its manufacture
JP2001281201A (en) * 2000-03-29 2001-10-10 Matsushita Electric Ind Co Ltd Electrode for extracellular recording
WO2003087433A1 (en) * 2002-04-11 2003-10-23 Second Sight, Llc Platinum electrode and method for manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10378119B2 (en) * 2005-10-26 2019-08-13 Second Sight Medical Products, Inc. Platinum electrode surface coating and method for manufacturing the same
JP2013253962A (en) * 2012-02-10 2013-12-19 Micro Blood Science Co Ltd Method and device for detecting food bacteria using electric impedance

Also Published As

Publication number Publication date
JP4549114B2 (en) 2010-09-22

Similar Documents

Publication Publication Date Title
Shu et al. Direct electrodeposition of gold nanostructures onto glassy carbon electrodes for non-enzymatic detection of glucose
AU720289B2 (en) Electrode for the electrochemical detection of nitric oxide
Isse et al. Silver nanoparticles deposited on glassy carbon. Electrocatalytic activity for reduction of benzyl chloride
Bonfil et al. Determination of sub-μg l− 1 concentrations of copper by anodic stripping voltammetry at the gold electrode
Keeley et al. DMF-exfoliated graphene for electrochemical NADH detection
Park et al. Structural and electrochemical features of 3D nanoporous platinum electrodes
Chen et al. Influence of a nanoscale gold thin layer on Ti/SnO2-Sb2O5 electrodes
US4830713A (en) Regeneration method and device
Tsai et al. Ionic liquid assisted synthesis of nano Pd–Au particles and application for the detection of epinephrine, dopamine and uric acid
Comisso et al. Electrochemical behaviour of porous PbO2 layers prepared by oxygen bubble templated anodic deposition
CN103149267B (en) Electrochemical biosensor for detecting dopamine and its preparation method
Hrapovic et al. Morphology, chemical composition, and electrochemical characteristics of colored titanium passive layers
Ivanovskaya et al. Electrochemical roughening of thin-film platinum for neural probe arrays and biosensing applications
Dutta et al. Enabling long term monitoring of dopamine using dimensionally stable ultrananocrystalline diamond microelectrodes
Hsiao et al. Urchin‐like Ag Nanowires as Non‐enzymatic Hydrogen Peroxide Sensor
Kreta et al. Time‐resolved in situ electrochemical atomic force microscopy imaging of the corrosion dynamics of AA2024‐T3 using a new design of cell
JP4549114B2 (en) Electrochemical sensor and conductivity cell
JP2006030027A (en) Sensitivity restoring method of diaphragm type sensor, measuring instrument and electrode regeneration device
JP6036154B2 (en) Insoluble electrode material and insoluble electrode
Zhang et al. Non-enzymatic electrochemical glucose sensor based on Ti–Cu–O nanotubes prepared from TiCu amorphous alloy
Sliozberg et al. CoFe–OH Double Hydroxide Films Electrodeposited on Ni-Foam as Electrocatalyst for the Oxygen Evolution Reaction
JP2008281356A (en) Ozone concentration measuring device and ozone concentration measuring method
Gielen et al. Comparison of electrode impedances of Pt, PtIr (10% Ir) and Ir-AIROF electrodes used in electrophysiological experiments
JP2008256604A (en) Device for measuring dissolved ozone concentration, and method therefor
JP5750801B2 (en) Electrode manufacturing method, electrode manufacturing apparatus and electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100629

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100706

R150 Certificate of patent or registration of utility model

Ref document number: 4549114

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees