JP2005241334A - Radiation detection instrument - Google Patents

Radiation detection instrument Download PDF

Info

Publication number
JP2005241334A
JP2005241334A JP2004049328A JP2004049328A JP2005241334A JP 2005241334 A JP2005241334 A JP 2005241334A JP 2004049328 A JP2004049328 A JP 2004049328A JP 2004049328 A JP2004049328 A JP 2004049328A JP 2005241334 A JP2005241334 A JP 2005241334A
Authority
JP
Japan
Prior art keywords
radiation
phototimer
detection apparatus
ray
radiation detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004049328A
Other languages
Japanese (ja)
Inventor
Toshinori Yoshimuta
利典 吉牟田
Shinya Hirasawa
伸也 平澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2004049328A priority Critical patent/JP2005241334A/en
Priority to US11/061,192 priority patent/US20050184244A1/en
Publication of JP2005241334A publication Critical patent/JP2005241334A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14658X-ray, gamma-ray or corpuscular radiation imagers
    • H01L27/14659Direct radiation imagers structures

Landscapes

  • Measurement Of Radiation (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Light Receiving Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a radiation detection instrument enabling to reduce noises. <P>SOLUTION: A shield plate 11 is formed by a conductive material having a low shield factor against radiation such as conductive carbons and alminum plates, and the shield plate 11 is placed between a phototimer 12 which measures radiation dose (in this case, X-ray) and a radiation sensitive semiconductor thick film 1 over the whole area of a X-ray detection effective area A. The shield plate 11 is grounded. Due to the configuration, radiation noises from the phototimer 12 is shielded by the shield plate 11 and dissipated to the ground. Therefore, radiation noises affecting to the radiation detection instrument caused by the phototimer 12 can be decreased. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、医療分野、工業分野、さらには原子力分野等に用いられる放射線検出装置に関する。   The present invention relates to a radiation detection apparatus used in the medical field, the industrial field, and the nuclear field.

X線検出装置を例に採って説明する。X線検出装置はX線感応型のX線変換層(半導体層)を備えており、X線の入射によりX線変換層は電荷情報に変換し、その変換された電荷情報を読み出すことでX線を検出する。このX線変換層のX線の入射側には、X線の線量を測定するフォトタイマ(放射線量測定手段)を配設しており、フォトタイマによる測定結果に応じて出力をそろえるようにX線の出力を調整したりすることに用いられている。また、図4に示すように、X線変換層101とフォトタイマ102との間には光などを遮蔽する遮蔽板(遮蔽手段)103を配設している(電圧印加電極などについては図示を省略)。遮蔽板によるX線の減衰を最小限に留めるように遮蔽板103はカーボンや樹脂などの遮蔽率の低い物質で形成されている。なお、フォトタイマをX線検出有効エリア(放射線検出有効面)以外の領域(例えば隅部)に配設したX線検出装置などもある(例えば、特許文献1参照)。
特開2002−90461号公報(第2−4頁、図1−3)
An X-ray detection apparatus will be described as an example. The X-ray detection apparatus includes an X-ray sensitive X-ray conversion layer (semiconductor layer). The X-ray conversion layer is converted into charge information by the incidence of X-rays, and the converted charge information is read out to read X Detect lines. A phototimer (radiation dose measuring means) for measuring the X-ray dose is disposed on the X-ray conversion side of the X-ray conversion layer. It is used to adjust the output of the line. As shown in FIG. 4, a shielding plate (shielding means) 103 that shields light and the like is disposed between the X-ray conversion layer 101 and the phototimer 102 (the voltage application electrode and the like are not shown). (Omitted). The shielding plate 103 is made of a material having a low shielding rate such as carbon or resin so as to minimize the attenuation of X-rays by the shielding plate. In addition, there is an X-ray detection apparatus in which a phototimer is disposed in an area (for example, a corner) other than the X-ray detection effective area (radiation detection effective surface) (see, for example, Patent Document 1).
JP 2002-90461 A (page 2-4, FIG. 1-3)

しかしながら、X線変換層によりX線から変換された電荷は非常に微小で、その電荷を増幅する必要がある。その際にはノイズまで増幅されるのでS/N(信号対ノイズ)比のよい画像を得るためには低ノイズ化が必要となる。一方、フォトタイマについては低ノイズ化の必要がなく、フォトタイマを駆動させる電源はノイズの多いものを用いるのが一般的で、小型化や低価格化のために一般的なスイッチング電源を使用する。   However, the charges converted from the X-rays by the X-ray conversion layer are very small, and it is necessary to amplify the charges. In that case, since noise is amplified, it is necessary to reduce the noise in order to obtain an image with a good S / N (signal to noise) ratio. On the other hand, there is no need to reduce noise in the phototimer, and it is common to use a noisy power supply to drive the phototimer, and a general switching power supply is used for miniaturization and cost reduction. .

この発明は、このような事情に鑑みてなされたものであって、ノイズを低減させることができる放射線検出装置を提供することを目的とする。   This invention is made | formed in view of such a situation, Comprising: It aims at providing the radiation detection apparatus which can reduce noise.

この発明者らは、上記の問題を解決するために鋭意研究した結果、次のような知見を得た。   As a result of intensive studies to solve the above problems, the inventors have obtained the following knowledge.

すなわち、フォトタイマによるノイズがX線検出装置に影響を及ぼしていると着想してみた。そこで、上述した特許文献1のようにフォトタイマをX線検出有効エリア以外の領域に配設することも考えられるが、実際には低ノイズ化に至らない。また、フォトタイマが配設されている領域のみにわたって、X線変換層とフォトタイマとの間に遮蔽板を配設することでノイズを遮蔽することも考えられるが、実際には低ノイズ化に至らない。そこで、フォトタイマを駆動させるスイッチング電源や駆動回路や、それらとフォトタイマとを接続する配線からもノイズが発生し、それらのノイズが輻射されて輻射ノイズとしてX線検出装置に影響を及ぼしていると考えてみた。   That is, the inventors have conceived that noise caused by a phototimer has an influence on the X-ray detection apparatus. Therefore, it is conceivable to arrange the phototimer in an area other than the X-ray detection effective area as in Patent Document 1 described above, but in actuality, the noise is not reduced. In addition, it may be possible to shield noise by providing a shielding plate between the X-ray conversion layer and the phototimer only in the region where the phototimer is provided. It does n’t come. Therefore, noise is also generated from the switching power supply and driving circuit for driving the phototimer and the wiring connecting the phototimer to the phototimer, and the noise is radiated to affect the X-ray detection apparatus as radiation noise. I thought.

放射線検出装置は、上述したX線変換層などに代表される放射線感応型半導体層を備え、その放射線感応型半導体層によって放射線を直接的に変換する直接変換型と、放射線を光に変換するシンチレータや光感応型半導体層を備えて、放射線を光に変換して電荷情報に変換する間接変換型とがある。特に、放射線検出装置が直接変換型の場合には、その半導体層がアモルファスセレン(a−Se)で形成されている。アモルファスセレンはその膜厚が、間接変換型の放射線検出装置の光感応型半導体層と比較して厚く、高電圧(例えば数100V〜数10kV程度)のバイアス電圧を印加しなければならない。かかる直接変換型の放射線検出装置の場合には、高電圧のバイアス電圧を印加する関係で輻射ノイズからの影響を特に受けやすい。そこで、遮蔽板などに代表される遮蔽手段を接地された導電性物質で構成して輻射ノイズをも遮蔽するようにして、その遮蔽手段を放射線検出有効面の全面にわたって配設するという知見を得た。   A radiation detection apparatus includes a radiation-sensitive semiconductor layer typified by the above-described X-ray conversion layer and the like, a direct conversion type that directly converts radiation by the radiation-sensitive semiconductor layer, and a scintillator that converts radiation to light. And an indirect conversion type that includes a light-sensitive semiconductor layer and converts radiation into light and converts it into charge information. In particular, when the radiation detection apparatus is a direct conversion type, the semiconductor layer is formed of amorphous selenium (a-Se). The film thickness of amorphous selenium is thicker than that of the photosensitive semiconductor layer of the indirect conversion type radiation detection apparatus, and a high voltage (for example, about several hundred volts to several tens kV) must be applied with a bias voltage. In the case of such a direct conversion type radiation detection apparatus, it is particularly susceptible to radiation noise due to the application of a high bias voltage. Therefore, the knowledge that the shielding means represented by a shielding plate and the like is made of a grounded conductive material so as to shield radiation noise and the shielding means is disposed over the entire radiation detection effective surface is obtained. It was.

このような知見に基づくこの発明は、次のような構成をとる。   The present invention based on such knowledge has the following configuration.

すなわち、請求項1に記載の発明は、放射線の入射により前記放射線の情報を電荷情報に変換する半導体層を備え、変換された電荷情報を読み出すことで放射線を検出する放射線検出装置であって、放射線の線量を測定する放射線量測定手段と、光を遮蔽する遮蔽手段とを備え、前記放射線量測定手段を放射線の入射側に配設するとともに、前記遮蔽手段を放射線量測定手段と半導体層との間に放射線検出有効面の全面にわたって配設し、接地された導電性物質で遮蔽手段を構成することを特徴とするものである。   That is, the invention according to claim 1, comprising a semiconductor layer that converts the information of the radiation into charge information by the incidence of radiation, is a radiation detection device that detects radiation by reading the converted charge information, A radiation dose measuring means for measuring a dose of radiation; and a shielding means for shielding light, wherein the radiation dose measuring means is disposed on a radiation incident side, and the shielding means is a radiation dose measuring means and a semiconductor layer. The shielding means is formed of a conductive material which is disposed over the entire surface of the radiation detection effective surface and is grounded.

[作用・効果]請求項1に記載の発明によれば、接地された導電性物質で遮蔽手段を構成し、かつ遮蔽手段を放射線量測定手段と半導体層との間に放射線検出有効面の全面にわたって配設することで、放射線線量手段からの輻射ノイズを遮蔽手段が遮蔽して、接地により輻射ノイズを逃がすことができる。その結果、放射線検出装置に及ぼす放射線量測定手段からの輻射ノイズを低減させることができる。   [Operation / Effect] According to the invention described in claim 1, the shielding means is constituted by a grounded conductive substance, and the shielding means is disposed on the entire radiation detection effective surface between the radiation dose measuring means and the semiconductor layer. By disposing over, radiation noise from the radiation dose means can be shielded by the shielding means, and radiation noise can be released by grounding. As a result, it is possible to reduce the radiation noise from the radiation dose measuring means exerted on the radiation detection apparatus.

上述した発明は、放射線の情報を光に変換した蛍光体(シンチレータ)と、放射線の情報を電荷情報に間接的に変換する、すなわち変換された光を電荷情報に変換する光感応型半導体層を備えた間接変換型の放射線検出装置にも、放射線の情報を電荷情報に直接的に変換する放射線感応型半導体層を備えた直接変換型の放射線検出装置にも適用することができる(請求項2に記載の発明)。特に、直接変換型の場合には、従来では放射線量測定手段からの輻射ノイズが顕著であったので、その輻射ノイズを低減させるのに特に有用である。   The invention described above includes a phosphor (scintillator) that converts radiation information into light, and a light-sensitive semiconductor layer that converts radiation information into charge information indirectly, that is, converts the converted light into charge information. The present invention can also be applied to an indirect conversion type radiation detection apparatus provided and a direct conversion type radiation detection apparatus including a radiation sensitive semiconductor layer that directly converts radiation information into charge information. Invention described in 1.). In particular, in the case of the direct conversion type, conventionally, radiation noise from the radiation dose measuring means has been remarkable, which is particularly useful for reducing the radiation noise.

この発明に係る放射線検出装置によれば、接地された導電性物質で遮蔽手段を構成し、かつ遮蔽手段を放射線量測定手段と半導体層との間に放射線検出有効面の全面にわたって配設することで、放射線線量手段からの輻射ノイズを遮蔽手段が遮蔽して、接地により輻射ノイズを逃がすことができるので、放射線検出装置に及ぼす放射線量測定手段からの輻射ノイズを低減させることができる。   According to the radiation detection apparatus of the present invention, the shielding means is constituted by the grounded conductive substance, and the shielding means is disposed over the entire radiation detection effective surface between the radiation dose measurement means and the semiconductor layer. Thus, since the shielding means shields the radiation noise from the radiation dose means and the radiation noise can be released by grounding, the radiation noise from the radiation dose measuring means exerted on the radiation detection apparatus can be reduced.

以下、図面を参照してこの発明の実施例を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は、実施例に係る放射線検出装置の概略断面図であり、図2は、放射線検出装置の構成を示す平面図である。本実施例では直接変換型の放射線検出装置を例に採って説明する。   FIG. 1 is a schematic cross-sectional view of a radiation detection apparatus according to an embodiment, and FIG. 2 is a plan view showing the configuration of the radiation detection apparatus. In this embodiment, a direct conversion type radiation detection apparatus will be described as an example.

本実施例の放射線検出装置は、図1に示すように、例えばX線などの放射線が入射することによりキャリアが生成される放射線感応型の半導体厚膜1と、半導体厚膜1の表面に設けられた電圧印加電極2と、半導体厚膜1の放射線入射側とは反対側にある裏面に設けられたキャリア収集電極3と、キャリア収集電極3への収集キャリアを溜める電荷蓄積用のコンデンサCaと、コンデンサCaに蓄積された電荷を取り出すための通常時OFF(遮断)の電荷取り出し用のスイッチ素子である薄膜トランジスタ(TFT)Trとを備えている。半導体厚膜1は、この発明における半導体層に相当する。   As shown in FIG. 1, the radiation detection apparatus according to the present embodiment is provided on a surface of the semiconductor thick film 1 and a radiation sensitive semiconductor thick film 1 in which carriers are generated when radiation such as X-rays enters. The applied voltage application electrode 2, the carrier collection electrode 3 provided on the back side opposite to the radiation incident side of the semiconductor thick film 1, and the charge storage capacitor Ca for collecting collected carriers to the carrier collection electrode 3. , And a thin film transistor (TFT) Tr that is a switching element for taking off charges that are normally OFF (blocked) for taking out the charges accumulated in the capacitor Ca. The semiconductor thick film 1 corresponds to the semiconductor layer in this invention.

この他に、放射線検出装置は、薄膜トランジスタTrのソースに接続されているデータ線4と、薄膜トランジスタTrのゲートに接続されているゲート線5とを備えており、電圧印加電極2,半導体厚膜1,キャリア収集電極3,コンデンサCa,薄膜トランジスタTr,データ線4,およびゲート線5が絶縁基板6の上に積層されて構成されている。   In addition, the radiation detection apparatus includes a data line 4 connected to the source of the thin film transistor Tr and a gate line 5 connected to the gate of the thin film transistor Tr. , Carrier collection electrode 3, capacitor Ca, thin film transistor Tr, data line 4, and gate line 5 are laminated on insulating substrate 6.

図1,図2に示すように、縦・横式2次元マトリックス状配列で多数個(例えば、1024個×1024個)形成されたキャリア収集電極3ごとに、上述した各々のコンデンサCaおよび薄膜トランジスタTrがそれぞれ接続されており、それらキャリア収集電極3,コンデンサCa,および薄膜トランジスタTrが各検出素子DUとしてそれぞれ分離形成されている。また、電圧印加電極2は、全検出素子DUの共通電極として全面にわたって形成されている。また、上述したデータ線4は、図2に示すように、横(X)方向に複数本に並列されているとともに、上述したゲート線5は、図2に示すように、縦(Y)方向に複数本に並列されており、各々のデータ線4およびゲート線5は各検出素子DUに接続されている。また、データ線4は電荷−電圧変換群7を介してマルチプレクサ8に接続されており、ゲート線5はゲートドライバ9に接続されている。なお、検出素子DUの配列個数は上述の1024個×1024個だけでなく、実施形態に応じて配列個数を変更して使用することができる。したがって、検出素子DUが1個のみの形態であってもよい。なお、電荷−電圧変換群7には増幅器(図示省略)を備えている。   As shown in FIGS. 1 and 2, for each of the carrier collection electrodes 3 formed in a large number (for example, 1024 × 1024) in a vertical / horizontal two-dimensional matrix arrangement, each capacitor Ca and thin film transistor Tr described above is provided. Are connected to each other, and the carrier collecting electrode 3, capacitor Ca, and thin film transistor Tr are separately formed as each detecting element DU. The voltage application electrode 2 is formed over the entire surface as a common electrode of all the detection elements DU. Further, as shown in FIG. 2, the data lines 4 described above are arranged in parallel in the horizontal (X) direction, and the gate lines 5 described above are arranged in the vertical (Y) direction as shown in FIG. The data lines 4 and the gate lines 5 are connected to the detection elements DU. The data line 4 is connected to the multiplexer 8 via the charge-voltage conversion group 7, and the gate line 5 is connected to the gate driver 9. Note that the number of detection elements DU arranged is not limited to the above-mentioned 1024 × 1024, but can be used by changing the number of arrangement according to the embodiment. Therefore, the form with only one detection element DU may be sufficient. The charge-voltage conversion group 7 includes an amplifier (not shown).

これら半導体厚膜1や絶縁基板6などで形成された放射線検出器を作成する場合には絶縁基板6の表面に、各種真空蒸着法による薄膜形成技術やフォトリソグラフィ法によるパターン技術を利用して、データ線4およびゲート線5を配線し、薄膜トランジスタTr,コンデンサCa,キャリア収集電極3,半導体厚膜1,電圧印加電極2などを順に積層形成する。なお、半導体厚膜1を形成する半導体については、アモルファス型の半導体や多結晶型の半導体などに例示されるように、用途や耐電圧などに応じて適宜選択することができる。また、半導体厚膜1を形成する物質についても、セレン(Se)などに例示されるように、特に限定されない。本実施例の場合には直接変換型の放射線検出器であるのでアモルファスセレンで半導体厚膜1を形成する。   When creating a radiation detector formed of the semiconductor thick film 1 or the insulating substrate 6, the surface of the insulating substrate 6 is used by using a thin film forming technique by various vacuum deposition methods or a pattern technique by a photolithography method, The data line 4 and the gate line 5 are wired, and the thin film transistor Tr, the capacitor Ca, the carrier collection electrode 3, the semiconductor thick film 1, the voltage application electrode 2, and the like are sequentially stacked. The semiconductor for forming the semiconductor thick film 1 can be appropriately selected according to the application, withstand voltage, etc., as exemplified by amorphous semiconductors and polycrystalline semiconductors. Further, the substance forming the semiconductor thick film 1 is not particularly limited as exemplified by selenium (Se). In the present embodiment, since it is a direct conversion type radiation detector, the semiconductor thick film 1 is formed of amorphous selenium.

これら半導体厚膜1や絶縁基板6などで形成された放射線検出器を、図示を省略する筐体内に収納しており、筐体上に遮蔽板11を配設している。遮蔽板11の放射線の入射側には放射線の線量を測定するフォトタイマ12を配設しており、遮蔽板11を、図1、図2に示すX線検出有効エリアAの全面にわたって配設している。X線検出有効エリアAの大きさは、電圧印加電極2の大きさにほぼ一致する。なお、遮蔽板11とフォトタイマ12とが導通しないように、遮蔽板11とフォトタイマ12とを離間させ、遮蔽板11とフォトタイマ12とが物理的に接触する場合には、例えば絶縁物などを介在させる。なお、遮蔽板11とフォトタイマ12とが離間しすぎると、フォトタイマ12からの測定結果が正しく反映されないので、遮蔽板11とフォトタイマ12とを近接して配設するのが好ましい。遮蔽板11は、この発明における遮蔽手段に相当し、フォトタイマ12は、この発明における放射線量測定手段に相当する。また、X線検出有効エリアAは、この発明における放射線検出有効面に相当する。   The radiation detectors formed of the semiconductor thick film 1 and the insulating substrate 6 are accommodated in a housing (not shown), and a shielding plate 11 is disposed on the housing. A phototimer 12 for measuring the radiation dose is disposed on the radiation incident side of the shielding plate 11, and the shielding plate 11 is disposed over the entire X-ray detection effective area A shown in FIGS. ing. The size of the X-ray detection effective area A substantially matches the size of the voltage application electrode 2. When the shielding plate 11 and the phototimer 12 are separated from each other so that the shielding plate 11 and the phototimer 12 do not conduct, and the shielding plate 11 and the phototimer 12 are in physical contact, for example, an insulator or the like Intervene. Note that, if the shielding plate 11 and the phototimer 12 are too far apart, the measurement result from the phototimer 12 is not correctly reflected. Therefore, it is preferable to dispose the shielding plate 11 and the phototimer 12 close to each other. The shielding plate 11 corresponds to the shielding means in the present invention, and the phototimer 12 corresponds to the radiation dose measuring means in the present invention. The X-ray detection effective area A corresponds to the radiation detection effective surface in the present invention.

遮蔽板11については、導電性カーボンや薄いアルミニウム(Al)板などのように放射線の遮蔽率が低い物質で形成する。なお、ニッケル(Ni)や銅(Cu)は放射線の遮蔽率が高く、ノイズのみか入射される放射線まで遮蔽する恐れがあるので、上述した導電性カーボンやアルミニウム板で形成する方がより好ましい。導電性カーボンは、通常のカーボンよりも導電性が高く、導電性フィラー(添加剤)を添加したカーボンである。また、その他、0.3μmや数100μm程度のアルミニウム板やアルミニウムテープなどを使用してもよい。   The shielding plate 11 is formed of a material having a low radiation shielding rate such as conductive carbon or a thin aluminum (Al) plate. Since nickel (Ni) and copper (Cu) have a high radiation shielding rate and may shield only noise or even incident radiation, it is more preferable to form the conductive carbon or aluminum plate. Conductive carbon is carbon that has higher conductivity than normal carbon and that has a conductive filler (additive) added thereto. In addition, an aluminum plate or aluminum tape having a thickness of about 0.3 μm or several 100 μm may be used.

遮蔽板11は、図1に示すように接地されている。接地する方法として、例えば導電性の筐体に接続する。接地により後述する輻射ノイズを逃すことを鑑みれば、導電率が高い物質で遮蔽板11を形成するのがより好ましく、通常のカーボンよりも導電性カーボンやアルミニウム板で遮蔽板11を形成する方がより好ましい。   The shielding plate 11 is grounded as shown in FIG. As a method of grounding, for example, it is connected to a conductive casing. In view of radiating radiation noise, which will be described later, due to grounding, it is more preferable to form the shielding plate 11 with a material having high conductivity, and it is better to form the shielding plate 11 with conductive carbon or aluminum plate than with normal carbon. More preferred.

続いて、本実施例装置の作用について説明する。電圧印加電極2に高電圧(例えば数100V〜数10kV程度)のバイアス電圧VAを印加した状態で、検出対象である放射線を入射させる。 Then, the effect | action of a present Example apparatus is demonstrated. In a state where a high voltage (for example, about several hundred V to several tens of kV) bias voltage V A is applied to the voltage application electrode 2, radiation to be detected is incident.

放射線の入射の際には、フォトタイマ12,遮蔽板11を透過する。フォトタイマ12は入射された放射線の線量を測定して、その測定結果を、図示を省略するX線発生システムに送る。遮蔽板11が遮蔽率の低い物質で形成されていることから、遮蔽板11を透過した放射線は、ほとんど減衰せずに透過し、光や検出すべき放射線以外の放射線のみが遮蔽板11によって遮蔽される。また、フォトタイマ12を駆動させるスイッチング電源や駆動回路や、それらとフォトタイマとを接続する配線からもノイズが発生し、それらのノイズが輻射されて輻射ノイズとして遮蔽板11や筐体内に収納された放射線検出器に伝播しようとするが、遮蔽板11が接地されていることから、輻射ノイズは遮蔽板11を介して接地側に逃げる。   When radiation is incident, it passes through the phototimer 12 and the shielding plate 11. The phototimer 12 measures the dose of the incident radiation and sends the measurement result to an X-ray generation system (not shown). Since the shielding plate 11 is formed of a material having a low shielding rate, the radiation transmitted through the shielding plate 11 is transmitted without being attenuated, and only the radiation other than the light and the radiation to be detected is shielded by the shielding plate 11. Is done. Further, noise is also generated from the switching power supply and driving circuit for driving the phototimer 12 and the wiring connecting the phototimer to the phototimer 12, and the noise is radiated and stored in the shielding plate 11 or the casing as radiation noise. However, since the shielding plate 11 is grounded, radiation noise escapes to the ground side through the shielding plate 11.

放射線の入射によってキャリアが生成されて、そのキャリアが電荷情報として電荷蓄積用のコンデンサCaに蓄積される。ゲートドライバ9の信号取り出し用の走査信号によって、ゲート線5が選択されて、さらに選択されたゲート線5に接続されている検出素子DUが選択指定される。その指定された検出素子DUのコンデンサCaに蓄積された電荷が、選択されたゲート線5の信号によってON状態に移行した薄膜トランジスタTrを経由して、データ線4に読み出される。   Carriers are generated by the incidence of radiation, and the carriers are stored in the charge storage capacitor Ca as charge information. The gate line 5 is selected by the scanning signal for signal extraction of the gate driver 9, and the detection element DU connected to the selected gate line 5 is selected and designated. The electric charge accumulated in the capacitor Ca of the designated detection element DU is read out to the data line 4 via the thin film transistor Tr that has been turned on by the signal of the selected gate line 5.

また、各検出素子DUのアドレス(番地)指定は、データ線4およびゲート線5の信号取り出し用の走査信号に基づいて行われる。マルチプレクサ8およびゲートドライバ9に信号取り出し用の走査信号が送り込まれると、ゲートドライバ9から縦(Y)方向の走査信号に従って各検出素子DUが選択される。そして、横(X)方向の走査信号に従ってマルチプレクサ8が切り換えられることによって、選択された検出素子DUのコンデンサCaに蓄積された電荷が、データ線4を介して、電圧−電圧変換群7およびマルチプレクサ8を順に経て外部に送り出される。   Also, the address (address) designation of each detection element DU is performed based on the scanning signal for signal extraction of the data line 4 and the gate line 5. When a scanning signal for signal extraction is sent to the multiplexer 8 and the gate driver 9, each detection element DU is selected according to the scanning signal in the longitudinal (Y) direction from the gate driver 9. Then, when the multiplexer 8 is switched in accordance with the scanning signal in the horizontal (X) direction, the charge accumulated in the capacitor Ca of the selected detection element DU is transferred via the data line 4 to the voltage-voltage conversion group 7 and the multiplexer. 8 is sequentially sent to the outside.

上述の動作によって、例えばX線透視撮影装置の透視X線像の検出に本実施例装置を用いた場合、データ線4を介して外部に読み出された電荷情報が画像情報に変換されて、X線透視画像として出力される。   With the above-described operation, for example, when this embodiment apparatus is used for detection of a fluoroscopic X-ray image of an X-ray fluoroscopic imaging apparatus, charge information read to the outside through the data line 4 is converted into image information, Output as a fluoroscopic image.

上述した本実施例装置によれば、接地された導電性物質(例えば導電性カーボンやアルミニウム板)で遮蔽板11を構成し、かつ遮蔽板11をフォトタイマ12と半導体厚膜1との間にX線検出有効エリアAの全面にわたって配設することで、フォトタイマ12からの輻射ノイズを遮蔽板11が遮蔽して、接地により輻射ノイズを逃がすことができる。その結果、放射線検出装置に及ぼすフォトタイマ12からの輻射ノイズを低減させることができる。   According to the above-described apparatus of the present embodiment, the shielding plate 11 is formed of a grounded conductive material (for example, conductive carbon or aluminum plate), and the shielding plate 11 is interposed between the phototimer 12 and the semiconductor thick film 1. By disposing the X-ray detection effective area A over the entire surface, the shielding plate 11 shields the radiation noise from the phototimer 12, and the radiation noise can be released by grounding. As a result, the radiation noise from the phototimer 12 exerted on the radiation detection apparatus can be reduced.

また、本実施例のように、直接変換型の放射線検出装置の場合には半導体厚膜が間接変換型の放射線検出装置と比較して厚く、高電圧のバイアス電圧を印加する関係から、従来ではフォトタイマ12からの輻射ノイズが顕著であったので、その輻射ノイズを低減させるのに特に有用である。   Further, as in this embodiment, in the case of a direct conversion type radiation detection apparatus, the semiconductor thick film is thicker than an indirect conversion type radiation detection apparatus, and since a high voltage bias voltage is applied in the related art, Since the radiation noise from the phototimer 12 is remarkable, it is particularly useful for reducing the radiation noise.

この発明は、上記実施形態に限られることはなく、下記のように変形実施することができる。   The present invention is not limited to the above-described embodiment, and can be modified as follows.

(1)上述した実施例では、入射した放射線を半導体厚膜1(半導体層)によって電荷情報に直接的に変換した直接変換型の放射線検出装置をこの発明は適用したが、入射した放射線をシンチレータによって光に変換し、光感応型の物質で形成された半導体層によってその光を電荷情報に変換する間接変換型の放射線検出器をこの発明は適用してもよい。   (1) In the above-described embodiment, the present invention is applied to the direct conversion type radiation detection apparatus in which incident radiation is directly converted into charge information by the semiconductor thick film 1 (semiconductor layer). The present invention may be applied to an indirect conversion type radiation detector that converts light into charge information by means of a semiconductor layer formed of a light sensitive substance.

(2)上述した実施例では、X線を検出する場合を例に採って説明したが、核医学装置などに用いられるγ線を検出する検出装置をこの発明が適用することもできる。   (2) In the above-described embodiments, the case of detecting X-rays has been described as an example. However, the present invention can also be applied to a detection device that detects γ-rays used in a nuclear medicine apparatus or the like.

(3)上述した実施例では、フォトタイマ12(放射線量測定手段)はX線検出有効エリアA(放射線検出有効面)の全面にわたって遮蔽板11とともに配設されていたが、図3に示すように、フォトタイマ12をエリアA外の例えば隅部に配設してもよい。この場合でも、フォトタイマ12からの輻射ノイズが例えば電圧印加電極2を介して検出装置に及ぼすので、フォトタイマ12の配設箇所やフォトタイマ12の大きさに関わらず、X線検出有効エリアAの全面にわたって遮蔽板11を配設する。   (3) In the above-described embodiment, the phototimer 12 (radiation dose measuring means) is disposed along with the shielding plate 11 over the entire X-ray detection effective area A (radiation detection effective surface), but as shown in FIG. In addition, the phototimer 12 may be disposed outside the area A, for example, at a corner. Even in this case, since the radiation noise from the phototimer 12 affects the detection device, for example, via the voltage application electrode 2, the X-ray detection effective area A regardless of the location of the phototimer 12 and the size of the phototimer 12. A shielding plate 11 is disposed over the entire surface.

実施例に係る放射線検出装置の概略断面図である。It is a schematic sectional drawing of the radiation detection apparatus which concerns on an Example. 実施例に係る放射線検出装置の構成を示す平面図である。It is a top view which shows the structure of the radiation detection apparatus which concerns on an Example. 変形例に係る放射線検出装置の概略断面図である。It is a schematic sectional drawing of the radiation detection apparatus which concerns on a modification. 従来の放射線検出装置の概略断面図である。It is a schematic sectional drawing of the conventional radiation detection apparatus.

符号の説明Explanation of symbols

1 … 半導体厚膜
11 … 遮蔽板
12 … フォトタイマ
A … X線検出有効エリア
DESCRIPTION OF SYMBOLS 1 ... Semiconductor thick film 11 ... Shielding plate 12 ... Phototimer A ... X-ray detection effective area

Claims (2)

放射線の入射により前記放射線の情報を電荷情報に変換する半導体層を備え、変換された電荷情報を読み出すことで放射線を検出する放射線検出装置であって、放射線の線量を測定する放射線量測定手段と、光を遮蔽する遮蔽手段とを備え、前記放射線量測定手段を放射線の入射側に配設するとともに、前記遮蔽手段を放射線量測定手段と半導体層との間に放射線検出有効面の全面にわたって配設し、接地された導電性物質で遮蔽手段を構成することを特徴とする放射線検出装置。   A radiation detection apparatus comprising a semiconductor layer for converting radiation information into charge information upon incidence of radiation, and detecting radiation by reading the converted charge information, and a radiation dose measuring means for measuring radiation dose; A shielding means for shielding light, the radiation dose measuring means is disposed on the radiation incident side, and the shielding means is disposed over the entire radiation detection effective surface between the radiation dose measuring means and the semiconductor layer. A radiation detection apparatus comprising: a shielding means comprising a grounded conductive material. 請求項1に記載の放射線検出装置において、前記半導体層は、前記放射線の情報を電荷情報に直接的に変換する放射線感応型であって、前記検出装置は、その放射線感応型半導体層を備えた直接変換型であることを特徴とする放射線検出装置。
2. The radiation detection apparatus according to claim 1, wherein the semiconductor layer is a radiation sensitive type that directly converts information of the radiation into charge information, and the detection apparatus includes the radiation sensitive semiconductor layer. A radiation detection apparatus characterized by being a direct conversion type.
JP2004049328A 2004-02-25 2004-02-25 Radiation detection instrument Withdrawn JP2005241334A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004049328A JP2005241334A (en) 2004-02-25 2004-02-25 Radiation detection instrument
US11/061,192 US20050184244A1 (en) 2004-02-25 2005-02-18 Radiation detector and light or radiation detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004049328A JP2005241334A (en) 2004-02-25 2004-02-25 Radiation detection instrument

Publications (1)

Publication Number Publication Date
JP2005241334A true JP2005241334A (en) 2005-09-08

Family

ID=35023228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004049328A Withdrawn JP2005241334A (en) 2004-02-25 2004-02-25 Radiation detection instrument

Country Status (1)

Country Link
JP (1) JP2005241334A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009054042A1 (en) 2007-10-23 2009-04-30 Shimadzu Corporation Light or radiation detector, and method for manufacturing the same
JP2011058999A (en) * 2009-09-11 2011-03-24 Fujifilm Corp Radiation image photographing device
JP2011149910A (en) * 2010-01-25 2011-08-04 Fujifilm Corp Radiation detector
JP2012103268A (en) * 2012-01-30 2012-05-31 Fujifilm Corp Radiation image photographing apparatus
JP2013224949A (en) * 2013-06-07 2013-10-31 Fujifilm Corp Electronic cassette
JP2016118527A (en) * 2014-12-22 2016-06-30 キヤノン株式会社 Radiation detection device and radiographic imaging system
WO2019116010A1 (en) * 2017-12-15 2019-06-20 Lightpoint Medical, Ltd Direct detection and imaging of charged particles from a radiopharmaceutical
CN111657989A (en) * 2020-07-09 2020-09-15 汕头市超声仪器研究所有限公司 Method for reducing radiation of X-ray detection environment from receiving end

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009054042A1 (en) 2007-10-23 2009-04-30 Shimadzu Corporation Light or radiation detector, and method for manufacturing the same
US8357909B2 (en) 2007-10-23 2013-01-22 Shimadzu Corporation Light or radiation detector and method of manufacturing the same
JP2011058999A (en) * 2009-09-11 2011-03-24 Fujifilm Corp Radiation image photographing device
JP2011149910A (en) * 2010-01-25 2011-08-04 Fujifilm Corp Radiation detector
JP2012103268A (en) * 2012-01-30 2012-05-31 Fujifilm Corp Radiation image photographing apparatus
JP2013224949A (en) * 2013-06-07 2013-10-31 Fujifilm Corp Electronic cassette
JP2016118527A (en) * 2014-12-22 2016-06-30 キヤノン株式会社 Radiation detection device and radiographic imaging system
WO2019116010A1 (en) * 2017-12-15 2019-06-20 Lightpoint Medical, Ltd Direct detection and imaging of charged particles from a radiopharmaceutical
CN111657989A (en) * 2020-07-09 2020-09-15 汕头市超声仪器研究所有限公司 Method for reducing radiation of X-ray detection environment from receiving end

Similar Documents

Publication Publication Date Title
RU2427972C1 (en) Radiation detection apparatus and imaging system using radiation
US7429737B2 (en) Retrofit digital mammography detector
JP3840050B2 (en) Electromagnetic wave converter
KR100691463B1 (en) Radiological image pickup apparatus
US20100051820A1 (en) X-ray detecting element
JP2010080636A (en) Radiation detecting element
US7576327B2 (en) Radiation image detector and driving method for the same
JP2001099942A (en) X-ray plane detector
JP2009087960A (en) Sensor panel and image detector
JP2007170908A (en) Radiation detector and imaging device using the same
JP2009044587A (en) Radiographic image detector
US20050184244A1 (en) Radiation detector and light or radiation detector
JP2005241334A (en) Radiation detection instrument
TW200413744A (en) Active-matrix substrate and electromagnetic wave detector
JP2005124869A (en) Mammography apparatus and detector unit
US7254214B2 (en) X-ray imaging device
JP3131108U (en) Light or radiation detector
US6501089B1 (en) Image detector, fabrication method thereof, image recording method, image recorder, image reading method, and image reader
JP2009033701A (en) Image detection apparatus and method of driving image detector
JP4388899B2 (en) X-ray inspection equipment
Rowlands et al. Direct-conversion flat-panel x-ray imaging: reduction of noise by presampling filtration
WO2004105449A1 (en) Multi energy x-ray imager
JP7441033B2 (en) Radiation imaging devices and radiation imaging systems
JP2005268271A (en) Two-dimensional detector for light or radiation
JP2004221207A (en) Active-matrix substrate and electromagnetic-wave detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060515

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070411