JP2005241317A - Support mechanism for multichannel sensor which is robust against thermal external disturbance - Google Patents

Support mechanism for multichannel sensor which is robust against thermal external disturbance Download PDF

Info

Publication number
JP2005241317A
JP2005241317A JP2004048935A JP2004048935A JP2005241317A JP 2005241317 A JP2005241317 A JP 2005241317A JP 2004048935 A JP2004048935 A JP 2004048935A JP 2004048935 A JP2004048935 A JP 2004048935A JP 2005241317 A JP2005241317 A JP 2005241317A
Authority
JP
Japan
Prior art keywords
displacement
sensor
measurement
support
support mechanism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004048935A
Other languages
Japanese (ja)
Inventor
Makoto Abe
誠 安部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Original Assignee
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitutoyo Corp, Mitsutoyo Kiko Co Ltd filed Critical Mitutoyo Corp
Priority to JP2004048935A priority Critical patent/JP2005241317A/en
Publication of JP2005241317A publication Critical patent/JP2005241317A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a support mechanism for a displacement sensor such that uncertainty in the measurement result is minimized, when a measurement system in which the plurality displacement sensors having unknown temperature characteristics are combined is designed. <P>SOLUTION: The support position for the displacement sensor is defined so that a neutral surface of an object to be measured is at approximately the center of the measurement range of the plurality of displacement sensors. A jig for supporting the mutual position/posture of these displacement sensors employs a material and a structure such that the effect of the thermal displacement due to the effect of temperature variation can be managed or negligible, and supports it at the displacement sensor support position. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は被測定物の寸法などの位置計測に関し、特に変位などの複数の変位センサを用いて被測定物の表面形状などを測定する位置計測に関する。   The present invention relates to position measurement such as the dimension of an object to be measured, and more particularly to position measurement for measuring the surface shape of an object to be measured using a plurality of displacement sensors such as displacement.

従来、例えば複数の変位センサを用いてふたつの被測定面間の情報を求める測定に際しては、ひとつの変位情報を検出する複数の変位センサを用い、これらの変位センサの位置や姿勢を互いに拘束する冶具を用いて希望する機能や自由度をもつセンサシステムを構築する。
ところで、このような位置計測では、変位センサ自体の熱変動に対するふらつきと、冶具のふらつきの相互作用により、予期しない温度ドリフトなどの誤差要因が発生する問題がある。即ち、このような位置計測の場合、温度変動に対する挙動の制御された変位センサを入手することや温度変動の影響の少ない冶具の設計構造を採用することが必要である。
Conventionally, for example, when measuring information between two measurement surfaces using a plurality of displacement sensors, a plurality of displacement sensors that detect one piece of displacement information are used, and the positions and orientations of these displacement sensors are constrained to each other. Build a sensor system with the desired functions and degrees of freedom using jigs.
By the way, in such position measurement, there is a problem that an error factor such as an unexpected temperature drift occurs due to the interaction between the fluctuation of the displacement sensor itself with respect to the thermal fluctuation and the fluctuation of the jig. That is, in the case of such position measurement, it is necessary to obtain a displacement sensor whose behavior is controlled with respect to temperature fluctuations and to adopt a jig design structure that is less affected by temperature fluctuations.

現実には、温度変動に対する変位センサのふるまいはブラックボックス化されている場合が多く、この温度補償を事後に行う範囲は限られており、また、冶具については、線膨張係数が管理された材質での設計か、または熱伝導率の高い材質を選択するなどの対策が行われる。
しかしながら、変位センサの温度に対する振るまいが未知のままでは、仮に冶具の温度に対する振るまいを管理しても、測定系全体としては、温度変動に対しての期待できる性能をえることはできなかった。
特開2003−121131
In reality, the behavior of the displacement sensor with respect to temperature fluctuations is often black-boxed, and the range in which this temperature compensation is performed afterwards is limited. For jigs, materials whose linear expansion coefficient is controlled are used. Measures are taken such as designing with or selecting a material with high thermal conductivity.
However, if the behavior of the displacement sensor with respect to the temperature remains unknown, even if the behavior of the jig with respect to the temperature is managed, the measurement system as a whole could not obtain the expected performance against temperature fluctuations. .
JP2003-121131A

本発明の目的は、未知の温度特性を有する変位センサを複数個組み合わせた計測系を設計する場合において、計測結果の不確かさが最小となるような変位センサの支持機構を得るにある。
ここに、本明細書で言う「中立面」とは、計測対象面を理想化して1平面とみなす場合の仮想的な面を定義し、数学的には例えば最小2乗平面で定義される面を呼ぶことにする。
An object of the present invention is to obtain a displacement sensor support mechanism that minimizes the uncertainty of measurement results when designing a measurement system in which a plurality of displacement sensors having unknown temperature characteristics are combined.
Here, the “neutral plane” as used in this specification defines a virtual plane when the measurement target plane is idealized and regarded as one plane, and is mathematically defined by a least square plane, for example. I will call the face.

この目的を達成するため、本発明においては、計測対象の中立面が複数の変位センサの測定範囲の略中央となるように変位センサの支持位置を定め、これらの変位センサ相互の位置・姿勢を支持する冶具は、温度変動の影響による熱変位の影響を管理できるか、または無視できるような材質と構造を用い、前記変位センサ支持位置において支持を行うことを提案するものである。   In order to achieve this object, in the present invention, the support position of the displacement sensor is determined so that the neutral surface of the measurement object is approximately the center of the measurement range of the plurality of displacement sensors, and the position and orientation of these displacement sensors are mutually determined. It is proposed that the jig that supports can be supported at the displacement sensor support position by using a material and a structure that can manage or ignore the influence of thermal displacement due to the influence of temperature fluctuation.

本発明によれば、変位センサが未知の挙動を示す場合であっても、複数の変位センサを組み合わせた測定系全体の温度変動に対する挙動は、冶具自体の温度変動により決定されることになり、測定系全体の計測の不確かさを最小化することができる。
また、仮に変位センサの温度変動に対する挙動が既知であり、温度変動に対する何らかの補償などが可能な場合であっても、本発明のこの効果は損なわれるものではなく、計測の不確かさの低減に寄与できる。つまり、仮に変位センサの温度変動に対する精度補償が行われる場合であっても、ISOの不確かさ算定のガイドラインにしたがえば、補償の残渣に起因する計測の不確かさを参入する必要性から逃れることはできない。具体的には、計測の不確かさの算定においては、同じ装置、アルゴリズムなどが採用されるとき、精度補償すべき量が小さいほどに補償の残渣に起因する不確かさの寄与は小さくなり、結果として計測の不確かさは最小化される。言い換えると、本発明によれば、変位センサの温度特性が未知か既知かにかかわらず、その温度変動に対する中立位置において支持する機構を採用すると、測定系全体としての計測の不確かさは最小化され、冶具設計において温度変動の寄与が管理されて予測可能であるか、またはその寄与が材料力学的に最小化された機構を採用すれば、一層の計測の不確かさの低減が可能になる。
According to the present invention, even if the displacement sensor exhibits an unknown behavior, the behavior with respect to the temperature variation of the entire measurement system combining a plurality of displacement sensors is determined by the temperature variation of the jig itself, Measurement uncertainty of the entire measurement system can be minimized.
In addition, even if the behavior of the displacement sensor with respect to temperature fluctuation is known and any compensation for temperature fluctuation is possible, this effect of the present invention is not impaired and contributes to the reduction of measurement uncertainty. it can. In other words, even if accuracy compensation for temperature variation of the displacement sensor is performed, according to the guidelines for calculating the uncertainty of ISO, it is necessary to escape from the need to enter measurement uncertainty due to residual compensation. I can't. Specifically, in the calculation of measurement uncertainty, when the same equipment, algorithm, etc. are employed, the smaller the amount to be compensated for, the smaller the contribution of uncertainty due to compensation residue, resulting in Measurement uncertainty is minimized. In other words, according to the present invention, regardless of whether the temperature characteristics of the displacement sensor are unknown or known, if a mechanism that supports the neutral position with respect to the temperature fluctuation is employed, the measurement uncertainty of the entire measurement system is minimized. If a mechanism in which the contribution of temperature fluctuation is managed and predictable in the jig design or the contribution is minimized in terms of material mechanics, the measurement uncertainty can be further reduced.

後述する本発明の好ましい実施例においては、
1) 互いの相対位置・姿勢の情報を得る複数の変位センサを用いて計測対象物の表面形状を測定する位置計測において、前記変位センサは前記表面形状で定まる中立面の位置にほぼ一致するような支持冶具の支持位置に支持される熱的外乱に強靭なマルチチャンネルセンサの支持機構、
2) 前記支持冶具は対象とする位置計測において無視しうる程度に小さい線熱膨張係数の材料で構成される熱的外乱に強靭なマルチチャンネルセンサの支持機構、
3) 前記支持冶具の線熱膨張係数が既知であり、前記変位センサとは別の温度センサの温度検出信号により熱膨張による補償が行われる熱的外乱に強靭なマルチチャンネルセンサの支持機構
4) 前記温度センサの検出信号と前記変位センサの検出信号とを用いて、回帰的に支持冶具の実効的な線膨張係数を推定し、位置計測結果を補償する熱的外乱に強靭なマルチチャンネルセンサの支持機構
が説明される。
In a preferred embodiment of the invention described below,
1) In position measurement that measures the surface shape of a measurement object using a plurality of displacement sensors that obtain information on the relative position and orientation of each other, the displacement sensor substantially matches the position of the neutral plane determined by the surface shape. Multi-channel sensor support mechanism that is tolerant to thermal disturbances supported at the support position of support jigs such as
2) The support jig is a multi-channel sensor support mechanism that is tough against thermal disturbance and is composed of a material with a coefficient of linear thermal expansion that is negligibly small in the target position measurement.
3) Multi-channel sensor support mechanism that is robust to thermal disturbances, in which the linear thermal expansion coefficient of the support jig is known, and compensation by thermal expansion is performed by a temperature detection signal of a temperature sensor different from the displacement sensor
4) Using the detection signal of the temperature sensor and the detection signal of the displacement sensor, the effective linear expansion coefficient of the support jig is estimated recursively, and the multi-channel is robust against thermal disturbance that compensates for the position measurement result. A sensor support mechanism is described.

図1は2個の接触式変位計を用いて略平行2平面間の間隙の測定を行う従来の測定系を示している。被測定面1,2の間に設置された接触式変位系3,4(変位センサ)を対向するように設置し、それぞれの測定子5,6が測定面に接触式変位計3,4の略中立位置で接触するように装置が設定される。変位センサである接触式変位計3,4を支持する支持冶具7は別途設計された走査機構(図示せず)に接続され、これにより検出位置を変化させて(図では上下方向に移動して)被測定面全体にわたる間隙に情報が得られる。一般的には変位センサの温度変動に対する振舞いはブラックボックスである場合が多く、仮にそれが事前に掌握できたとしても、図1の構成では、熱的外乱による計測の不確かさは最大の誤差要因となる。これに対して何らかの方法によって変位センサの温度補償を行ったとしても、補償すべき量自身が最大の不確かさ要因程度の大きさを有する場合には、その補償残渣に起因する不確かさを算入する必要があり、結果として測定系の計測の不確かさを悪化させていることは明らかである。   FIG. 1 shows a conventional measurement system for measuring a gap between two substantially parallel planes using two contact displacement meters. Contact type displacement systems 3 and 4 (displacement sensors) installed between the measured surfaces 1 and 2 are arranged so as to face each other, and the respective measuring elements 5 and 6 are arranged on the measurement surface of the contact type displacement meters 3 and 4. The device is set to contact at a substantially neutral position. The support jig 7 that supports the contact displacement gauges 3 and 4 that are displacement sensors is connected to a scanning mechanism (not shown) that is separately designed, thereby changing the detection position (moving up and down in the figure). ) Information is obtained in the gap across the entire surface to be measured. In general, the displacement sensor behaves in a black box in many cases, and even if it can be grasped in advance, the measurement uncertainty due to thermal disturbance is the largest error factor in the configuration of FIG. It becomes. On the other hand, even if the temperature compensation of the displacement sensor is performed by some method, if the amount to be compensated itself has the magnitude of the maximum uncertainty factor, the uncertainty due to the compensation residue is included. Obviously, this has worsened the measurement uncertainty of the measurement system.

図2は本発明によるマルチチャンネルセンサの支持機構であり、この実施例においても、図1の場合と同様に、略平行2平面間の間隙の測定を行う。即ち、非接触式変位計3,4(変位センサ)が背合わせの状態で被測定面1,2の間に設置され、これらの測定面が対応する各被測定面に対向状態におかれる。
また、非接触式変位計3,4の測定範囲の略中央付近が各被測定面の中立面と一致するように、支持冶具7に固定された支持ブロック5,6に固定される。
FIG. 2 shows a multi-channel sensor support mechanism according to the present invention. In this embodiment as well, the gap between two substantially parallel planes is measured as in the case of FIG. That is, the non-contact type displacement gauges 3 and 4 (displacement sensors) are installed between the measurement surfaces 1 and 2 in a back-to-back state, and these measurement surfaces are placed in opposition to the corresponding measurement surfaces.
Further, the non-contact displacement meters 3 and 4 are fixed to the support blocks 5 and 6 fixed to the support jig 7 so that the vicinity of the approximate center of the measurement range coincides with the neutral surface of each surface to be measured.

支持ブロック5,6の熱的振舞いは、間隙の計測値に直交する走査方向の不確かさに主に寄与する要因であるから、熱的な変位については、管理しても、しなくとも測定系の不確かさに大きな寄与は与えない。支持冶具7は別途設計された走査機構(図示せず)に接続され、これにより検出位置を変化させて被測定面全体にわたる間隙の情報を得ることは図1の場合と同様である。
この支持冶具7は線膨張係数が充分に小さいか、あるいは線膨張係数が既知かつ熱伝導率の良好な部材で設計することができる。つまり、線膨張係数の小さな材料は温度変動に起因する熱変位そのものを最小化する方策であり、線膨張係数が既知でかつ熱伝導率の良好な部材によると、熱変位は発生するけれども、その量を精密に予測して補償することができる。
The thermal behavior of the support blocks 5 and 6 is a factor that mainly contributes to the uncertainties in the scanning direction orthogonal to the measurement value of the gap. Therefore, the thermal displacement is controlled or not measured. Does not make a significant contribution to the uncertainty. The support jig 7 is connected to a separately designed scanning mechanism (not shown), thereby changing the detection position to obtain information on the gap over the entire surface to be measured, as in FIG.
The support jig 7 can be designed with a member having a sufficiently low linear expansion coefficient or a member having a known linear expansion coefficient and good thermal conductivity. In other words, a material with a small coefficient of linear expansion is a measure to minimize the thermal displacement itself caused by temperature fluctuations. A member with a known coefficient of linear expansion and good thermal conductivity generates thermal displacement, The quantity can be accurately predicted and compensated.

線膨張係数が既知でかつ熱伝導率の良好な支持冶具7の場合、補償の残渣による不確かさの寄与の問題については、内部に複数の部材や複雑な機構を有する変位センサのそれと比較して、格段に小さくすることが可能である。具体的にいえば、支持冶具7自体を略ブロック状に設計できるから、したがって均一で単一な材質、単純で2次元的な断面形状を採用できることを意味するから、このような断面形状の略ブロック状部材では、比較的高精度に熱変位を予測できることは、幾何計測の標準器として長い間に広く用いられているブロックゲージの計測で周知のところである。   In the case of the support jig 7 having a known linear expansion coefficient and good thermal conductivity, the problem of the contribution of uncertainty due to the residue of compensation is compared with that of a displacement sensor having a plurality of members and complicated mechanisms inside. It can be made much smaller. Specifically, since the support jig 7 itself can be designed in a substantially block shape, it means that a uniform and single material and a simple and two-dimensional cross-sectional shape can be adopted. It is well known in the block gauge measurement widely used for a long time as a standard for geometric measurement that the block-shaped member can predict the thermal displacement with relatively high accuracy.

熱変位の補償は、予め求めた支持冶具7の線膨張係数と、予め支持冶具7に取付けた温度センサにより行うことができ、またその情報を用いた精度補償のプロセスはISOのガイドラインにしたがった不確かさ算定に耐えうるものでもある。
線膨張係数が無視し得る材質を採用して支持冶具を構成した場合、熱変位の補償を行う必要のないことは勿論である。
Compensation for thermal displacement can be performed using the linear expansion coefficient of the support jig 7 obtained in advance and a temperature sensor attached to the support jig 7 in advance, and the accuracy compensation process using the information follows ISO guidelines. It can also withstand uncertainty calculations.
Of course, when the support jig is formed by using a material whose linear expansion coefficient can be ignored, it is not necessary to compensate for thermal displacement.

また、図2に示す本発明の実施例においては、測定しようとする対象によって定義される中立位置に略相当する位置において変位センサを支持することになるので、変位センサ自身の温度変動による誤差要因についても最小化されている。   Further, in the embodiment of the present invention shown in FIG. 2, since the displacement sensor is supported at a position substantially corresponding to the neutral position defined by the object to be measured, an error factor due to temperature variation of the displacement sensor itself. Is also minimized.

支持冶具7の線膨張係数が未知の場合、一般的には支持冶具7の線膨張による誤差の補償を行うことはできないとされてきたが、別に取付けた温度センサの信号と、図2に示す複数の変位センサの信号とを用い、回帰的に支持冶具の実効的な線膨張係数を推定し、補償する方法を採用してもよい。   When the linear expansion coefficient of the support jig 7 is unknown, it has been said that the error due to the linear expansion of the support jig 7 cannot be compensated for in general. A method of regressively estimating and compensating for the effective linear expansion coefficient of the support jig using a plurality of displacement sensor signals may be employed.

2つの接触式変位計を用いて略平行2平面間の間隙測定を行う場合の従来の測定系のモデルである。This is a model of a conventional measurement system when a gap between two substantially parallel planes is measured using two contact displacement meters. 本発明によるふたつの非接触式変位センサを用いた測定系のモデルである。3 is a model of a measurement system using two non-contact displacement sensors according to the present invention.

符号の説明Explanation of symbols

1,2 被測定面
3,4 非接触式変位計(変位センサ)
5,6 支持ブロック
7 支持冶具
1, 2 Surface to be measured 3, 4 Non-contact displacement meter (displacement sensor)
5,6 Support block 7 Support jig

Claims (4)

互いの相対位置・姿勢の情報を得る複数の変位センサを用いて計測対象物の表面形状を測定する位置計測において、前記変位センサは前記表面形状で定まる中立面の位置にほぼ一致するような支持冶具の支持位置に支持されることを特徴とする熱的外乱に強靭なマルチチャンネルセンサの支持機構。   In the position measurement in which the surface shape of the measurement object is measured using a plurality of displacement sensors that obtain information on the relative positions and orientations of each other, the displacement sensor substantially matches the position of the neutral plane determined by the surface shape. A multi-channel sensor support mechanism that is tough against thermal disturbances, and is supported at a support position of a support jig. 前記支持冶具は対象とする位置計測において無視しうる程度に小さい線熱膨張係数の材料で構成されることを特徴とする請求項1記載の熱的外乱に強靭なマルチチャンネルセンサの支持機構。   2. The support mechanism for a multi-channel sensor tough against thermal disturbance according to claim 1, wherein the support jig is made of a material having a linear thermal expansion coefficient that is negligibly small in a target position measurement. 前記支持冶具の線熱膨張係数が既知であり、前記変位センサとは別の温度センサの温度検出信号により熱膨張による補償が行われることを特徴とする請求項1記載の熱的外乱に強靭なマルチチャンネルセンサの支持機構。   2. The thermal disturbance according to claim 1, wherein a linear thermal expansion coefficient of the support jig is known, and compensation by thermal expansion is performed by a temperature detection signal of a temperature sensor different from the displacement sensor. Multi-channel sensor support mechanism. 前記温度センサの検出信号と前記変位センサの検出信号とを用いて、回帰的に支持冶具の実効的な線膨張係数を推定し、位置計測結果を補償することを特徴とする請求項3記載の熱的外乱に強靭なマルチチャンネルセンサの支持機構。
4. The position measurement result is compensated by regressively estimating an effective linear expansion coefficient of the support jig using the detection signal of the temperature sensor and the detection signal of the displacement sensor. Multi-channel sensor support mechanism that is tough against thermal disturbances.
JP2004048935A 2004-02-25 2004-02-25 Support mechanism for multichannel sensor which is robust against thermal external disturbance Pending JP2005241317A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004048935A JP2005241317A (en) 2004-02-25 2004-02-25 Support mechanism for multichannel sensor which is robust against thermal external disturbance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004048935A JP2005241317A (en) 2004-02-25 2004-02-25 Support mechanism for multichannel sensor which is robust against thermal external disturbance

Publications (1)

Publication Number Publication Date
JP2005241317A true JP2005241317A (en) 2005-09-08

Family

ID=35023212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004048935A Pending JP2005241317A (en) 2004-02-25 2004-02-25 Support mechanism for multichannel sensor which is robust against thermal external disturbance

Country Status (1)

Country Link
JP (1) JP2005241317A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008003498A (en) * 2006-06-26 2008-01-10 Canon Inc Image forming apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008003498A (en) * 2006-06-26 2008-01-10 Canon Inc Image forming apparatus

Similar Documents

Publication Publication Date Title
US9234736B2 (en) Sensor assembly for determining a spatial position of a first part relative to a second part
EP1929247B1 (en) Thermal coefficients of nudge compensation and tare compensation for linear and rotary mr array position transducers
US9612136B1 (en) Absolute position encoder including a redundant spatial phase signal
JP2006133230A (en) Inclination sensor and utilization method therefor
US9395386B2 (en) Electronic tilt compensation for diaphragm based pressure sensors
CA2899850A1 (en) Enhanced differential thermal mass flow meter assembly and methods for measuring a mass flow using said mass flow meter assembly
US20190170566A1 (en) Load cell having compensation of temperature differences
US11644297B2 (en) Three-dimensional position sensor systems and methods
Alejandre et al. Thermal non-linear behaviour in optical linear encoders
US7446883B2 (en) Method and apparatus for tilt corrected lateral shear in a lateral shear plus rotational shear absolute flat test
KR20210011503A (en) Methods, devices and systems for conductive film layer thickness measurements
CN113710997B (en) Magnetic sensing system, detection device and magnetic interference biasing method
JP4931867B2 (en) Variable terminal
JP2005241317A (en) Support mechanism for multichannel sensor which is robust against thermal external disturbance
JP2007033127A (en) Load detection device
JP5292864B2 (en) Displacement measuring device for dam body
US11067642B2 (en) Device for generating a magnetic field of calibration and built-in self-calibration magnetic sensor and calibration method using the same
KR101178039B1 (en) Calibration sensor target for capacitive displacement sensor
KR20180001617A (en) Displacement and inclination data fusion method for estimating structural deformation
JP6128639B2 (en) Measuring method
JP2004108959A (en) Shape measuring apparatus
Acko Calibration of electronic levels using a special sine bar
Chu et al. Error-separation method for the calibration of magnetic compass
CN109738784B (en) Temperature curve acquisition method of circuit
JP2005195367A (en) Linear scale