JP2005241043A - Heat utilization system - Google Patents

Heat utilization system Download PDF

Info

Publication number
JP2005241043A
JP2005241043A JP2004047817A JP2004047817A JP2005241043A JP 2005241043 A JP2005241043 A JP 2005241043A JP 2004047817 A JP2004047817 A JP 2004047817A JP 2004047817 A JP2004047817 A JP 2004047817A JP 2005241043 A JP2005241043 A JP 2005241043A
Authority
JP
Japan
Prior art keywords
steam
heat
superheater
amount
path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004047817A
Other languages
Japanese (ja)
Inventor
Sukenori Hirai
祐則 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2004047817A priority Critical patent/JP2005241043A/en
Publication of JP2005241043A publication Critical patent/JP2005241043A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat utilization system capable of preventing burnout of a superheater, in regard to a heat utilization system capable of reducing economic burden to be required to manufacture and maintenance of the superheater. <P>SOLUTION: The heat utilization system is provided with a boiler 5 for generating steam by utilizing the heat of the predetermined heat source, the superheater 6 for generating superheated steam by superheating the steam, a steam turbine 14 for generating power with the superheated steam, a heat load utilizing the heat of the steam, a first steam route R1 for leading a part of the steam generated in the boiler 5 into the heat load without passing through the superheater 6, and a second steam route R2 for directly leading at least one of the residual steam generated by the boiler 5 into the steam turbine 14 through the superheater 6. This heat utilization system has a first adjusting means 25 for adjusting quantity of the steam in the first steam route R1 and a monitor means 28 for monitoring quantity of the steam in the second steam route R2, and the first adjusting means 25 is controlled so that the quantity of the steam in the second steam route R is the predetermined quantity or more. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、所定の熱源の熱を利用して蒸気を発生させるボイラと、蒸気を過熱して過熱蒸気を生成する過熱器と、過熱蒸気によって発電を行う蒸気タービンと、蒸気の熱を利用する熱負荷とを備える熱利用システムに関する。   The present invention uses a boiler that generates steam using heat of a predetermined heat source, a superheater that generates superheated steam by superheating the steam, a steam turbine that generates power using superheated steam, and the heat of the steam The present invention relates to a heat utilization system including a heat load.

従来、熱利用システムの一例としてゴミ焼却炉から発生する高温の排ガスの熱を利用するものが知られている。ゴミ焼却炉に付随した熱利用システムの場合、通常、排ガスの熱によってボイラから発生した蒸気は過熱器で過熱された後、一旦蒸気溜めに蓄積される。そして、蒸気溜めから過熱された蒸気の一部が、ゴミ焼却炉におけるゴミの燃焼に必要な空気を予熱するための燃焼空気予熱器、排ガスを再加熱するための排ガス再加熱器、焼却施設外の温室やハウス栽培等の熱利用施設に送られる。また、過熱された蒸気の残りは蒸気タービンに送られ、蒸気タービンに連結された発電機によって排ガスの持つ熱エネルギーの一部が電気エネルギーの形態で回収される。   2. Description of the Related Art Conventionally, as an example of a heat utilization system, one that utilizes the heat of high-temperature exhaust gas generated from a garbage incinerator is known. In the case of a heat utilization system associated with a garbage incinerator, normally, steam generated from a boiler by the heat of exhaust gas is superheated by a superheater and then temporarily accumulated in a steam reservoir. And, a part of the steam superheated from the steam reservoir is a combustion air preheater for preheating air necessary for combustion of garbage in the garbage incinerator, an exhaust gas reheater for reheating exhaust gas, and an outside of the incineration facility Sent to heat utilization facilities such as greenhouses and house cultivation. The remainder of the superheated steam is sent to a steam turbine, and a part of the thermal energy of the exhaust gas is recovered in the form of electric energy by a generator connected to the steam turbine.

一方、過熱器の熱エネルギー入力部を構成する伝熱部(通常は多数の細い管が集合形成された管群からなる)は、高温(600℃前後など)であるために酸化力も強く、また場合によっては腐食性のガスを含む排ガスに曝されるために、火SUS310J1等の特に耐熱温度の高い特殊なステンレス鋼やインコネルなどの高価な合金材料で構成する必要がある。このため、過熱器に求められる熱交換能力が高くなれば、その伝熱面の総面積を増大させる必要が生じる。その結果、製作に要するイニシャルコストや排ガスによって腐食した伝熱部を定期的に取り替えるためのランニングコストが高くなり、トータルでの経済的な負担が非常に増すため対策が望まれていた。   On the other hand, the heat transfer part (usually composed of a tube group in which a large number of thin pipes are gathered together) constituting the heat energy input part of the superheater is high in temperature (such as around 600 ° C.) and has strong oxidizing power. In some cases, since it is exposed to an exhaust gas containing a corrosive gas, it is necessary to configure it with an expensive alloy material such as special stainless steel or Inconel having a particularly high heat resistance temperature such as Fire SUS310J1. For this reason, if the heat exchange capability required for the superheater is increased, it is necessary to increase the total area of the heat transfer surface. As a result, the initial cost required for production and the running cost for periodically replacing the heat transfer section corroded by the exhaust gas are increased, and the total economic burden is greatly increased, so a countermeasure has been desired.

上記の課題に対しては、過熱された蒸気を必要とするのは蒸気タービンのみであるという観点から、蒸気タービンで使用する量の蒸気のみを過熱器に供給し、残りの蒸気は過熱器を介することなく燃焼空気予熱器等に送る熱利用システム(例えば、特許文献1参照)について検討されている。この熱利用システムによれば、過熱器に供給する蒸気の量が減少するため過熱器の熱交換能力を低く設定することができる。このため、過熱器の伝熱面の総面積を従来のものに比べて小さくできるので、過熱器の製作に要するイニシャルコスト及び、メンテナンス用のランニングコストを下げることができる。   To solve the above problems, only the steam turbine needs superheated steam, so only the amount of steam used in the steam turbine is supplied to the superheater, and the remaining steam is supplied to the superheater. The heat utilization system (for example, refer patent document 1) sent to a combustion air preheater etc. without going through is examined. According to this heat utilization system, since the amount of steam supplied to the superheater is reduced, the heat exchange capacity of the superheater can be set low. For this reason, since the total area of the heat transfer surface of the superheater can be reduced as compared with the conventional one, the initial cost required for manufacturing the superheater and the running cost for maintenance can be reduced.

特開2002−310401号公報(第2−4頁、第1図)JP 2002-310401 A (page 2-4, FIG. 1)

前記従来の熱利用システムでは、一般的にボイラから発生した蒸気はゴミ焼却炉の運転を維持するために優先的に燃焼空気予熱器等に送られ、残りの蒸気のみが過熱器を介して蒸気タービンへ送られる。このため、燃焼空気予熱器等に使用される蒸気量が多い場合や、ボイラから発生する蒸気量が少ない場合には、蒸気タービンへ送られる蒸気量は減少する。その結果、過熱器は、蒸気がほとんど送られていない状態で高温の排ガスに晒されることになるため焼損するという問題があった。したがって、前記従来の熱利用システムでは、過熱器の製作とメンテナンスとに要する経済的な負担の軽減を目的としているにも関わらず、結果として過熱器のメンテナンスのコストを増大させるものであった。   In the conventional heat utilization system, generally, steam generated from the boiler is preferentially sent to a combustion air preheater or the like in order to maintain the operation of the refuse incinerator, and only the remaining steam passes through the superheater. Sent to the turbine. For this reason, when the amount of steam used for the combustion air preheater or the like is large, or when the amount of steam generated from the boiler is small, the amount of steam sent to the steam turbine decreases. As a result, the superheater is exposed to high-temperature exhaust gas in a state where almost no steam is sent, and thus there is a problem of burning out. Therefore, although the conventional heat utilization system is intended to reduce the economic burden required for the production and maintenance of the superheater, as a result, the maintenance cost of the superheater is increased.

本発明は、上記課題に鑑みてなされたものであり、過熱器の製作とメンテナンスに要する経済的な負担を軽減できるという熱利用システムにおいて、過熱器の焼損を防止することができる熱利用システムを提供することを目的とするものである。   The present invention has been made in view of the above problems, and in the heat utilization system that can reduce the economic burden required for the manufacture and maintenance of the superheater, a heat utilization system that can prevent the superheater from burning out. It is intended to provide.

上記目的を達成するための本発明に係る熱利用システムの第1特徴構成は、所定の熱源の熱を利用して蒸気を発生させるボイラと、前記蒸気を過熱して過熱蒸気を生成する過熱器と、前記過熱蒸気によって発電を行う蒸気タービンと、前記蒸気の熱を利用する熱負荷と、前記ボイラで発生した前記蒸気の一部を前記過熱器を介することなく前記熱負荷に導入する第1蒸気経路と、前記ボイラで発生した前記蒸気の残りの少なくとも一部を前記過熱器を介して前記蒸気タービンに直接導入する第2蒸気経路とを備える熱利用システムであって、前記第1蒸気経路における蒸気量を調整する第1調整手段と、前記第2蒸気経路における蒸気量を監視する監視手段とを有し、前記第2蒸気経路における蒸気量が所定量以上となるように前記第1調整手段を制御する点にある。   In order to achieve the above object, a first characteristic configuration of a heat utilization system according to the present invention includes a boiler that generates steam by using heat of a predetermined heat source, and a superheater that superheats the steam to generate superheated steam. A steam turbine that generates electric power using the superheated steam, a heat load that uses the heat of the steam, and a first part that introduces a portion of the steam generated in the boiler into the heat load without passing through the superheater. A heat utilization system comprising: a steam path; and a second steam path for directly introducing at least a part of the remaining steam generated in the boiler into the steam turbine via the superheater, wherein the first steam path The first adjustment means for adjusting the amount of steam in the second steam passage and the monitoring means for monitoring the amount of steam in the second steam path, the first adjustment so that the steam amount in the second steam path is equal to or greater than a predetermined amount. There is a point to control the stage.

つまり、この構成によれば、熱負荷に送られる蒸気量を制御することにより第2蒸気経路における蒸気量、すなわち過熱器を通過する蒸気量を所定量以上確保することができる。このため過熱器の焼損を防止することができる。そして、過熱器の寿命が延びることにより、過熱器の製作に要するイニシャルコストだけでなく、メンテナンス用のランニングコストについても下げることが可能となる。   That is, according to this configuration, by controlling the amount of steam sent to the heat load, it is possible to secure a predetermined amount or more of the amount of steam in the second steam path, that is, the amount of steam passing through the superheater. For this reason, burning of the superheater can be prevented. By extending the life of the superheater, not only the initial cost required for manufacturing the superheater but also the running cost for maintenance can be reduced.

本発明に係る熱利用システムの第2特徴構成は、前記過熱蒸気を前記第2蒸気経路から分岐して前記熱負荷に導入する第3蒸気経路と、当該第3蒸気経路における蒸気量を調整する第2調整手段とを有し、前記熱負荷へ導入する前記蒸気と前記過熱蒸気との総量が所定量以上となるように前記第2調整手段を制御する点にある。   The second characteristic configuration of the heat utilization system according to the present invention is a third steam path for branching the superheated steam from the second steam path and introducing it into the heat load, and a steam amount in the third steam path is adjusted. And a second adjusting means for controlling the second adjusting means so that a total amount of the steam introduced into the heat load and the superheated steam is equal to or greater than a predetermined amount.

つまり、この構成によれば、蒸気を一旦蓄積する蒸気溜めや燃焼空気予熱器等の熱負荷へ所定量以上の蒸気を優先的に送ることができる。このため、過熱器を通過する所定量以上の蒸気を確保して焼損を防止しつつ、熱利用システムの運転を継続することができる。   That is, according to this configuration, a predetermined amount or more of steam can be preferentially sent to a heat load such as a steam reservoir or a combustion air preheater that temporarily accumulates steam. For this reason, the operation of the heat utilization system can be continued while securing a predetermined amount or more of steam passing through the superheater to prevent burning.

本発明に係る熱利用システムの第3特徴構成は、所定の熱源の熱を利用して蒸気を発生させるボイラと、当該ボイラで発生した前記蒸気を蓄積する蒸気溜めと、前記蒸気を過熱して過熱蒸気を生成する過熱器と、前記過熱蒸気によって発電を行う蒸気タービンと、前記蒸気の熱を利用する熱負荷と、前記蒸気溜めに蓄積した前記蒸気の一部を前記過熱器を介することなく前記熱負荷に導入する第1蒸気経路と、前記蒸気溜めに蓄積した前記蒸気の残りの少なくとも一部を前記過熱器を介して前記蒸気タービンに導入する第2蒸気経路と、前記第1蒸気経路における蒸気量を調整する調整手段と、前記第2蒸気経路における蒸気量を監視する監視手段とを有し、前記第2蒸気経路における蒸気量が所定量以上となるように前記調整手段を制御する点にある。   A third characteristic configuration of the heat utilization system according to the present invention includes a boiler that generates steam using heat of a predetermined heat source, a steam reservoir that accumulates the steam generated in the boiler, and superheats the steam. A superheater that generates superheated steam, a steam turbine that generates power using the superheated steam, a heat load that uses the heat of the steam, and a part of the steam that has accumulated in the steam reservoir without passing through the superheater A first steam path for introducing into the heat load; a second steam path for introducing at least a part of the remaining steam accumulated in the steam reservoir into the steam turbine via the superheater; and the first steam path. Adjusting means for adjusting the steam amount in the second steam path and monitoring means for monitoring the steam amount in the second steam path, and controlling the adjusting means so that the steam quantity in the second steam path is equal to or greater than a predetermined amount. There is a point.

つまり、この構成によれば、ボイラで発生した蒸気全てを一旦蓄積する蒸気溜め以外の熱負荷へ送られる蒸気量を制御することにより、過熱器を通過する蒸気量を所定量以上確保することができる。このため過熱器の焼損を防止することができる。さらに、常に所定量以上の蒸気を蒸気タービンに送ることができるため、連続的に発電することができる。   That is, according to this configuration, by controlling the amount of steam sent to a heat load other than the steam reservoir that temporarily accumulates all the steam generated in the boiler, it is possible to secure a predetermined amount or more of steam that passes through the superheater. it can. For this reason, burning of the superheater can be prevented. Furthermore, since a predetermined amount or more of steam can always be sent to the steam turbine, power can be generated continuously.

以下、本発明に係る熱利用システムの一実施形態としてゴミ焼却炉に適用した場合について、図面を参照して説明する。
本実施形態に係るゴミ焼却炉1は、図1に示すように被焼却物としてのゴミを投入するためのホッパー2と、投入されたゴミを、乾燥、燃焼、後燃焼の各工程を経て焼却する燃焼室3とを備えている。燃焼室3の上部からは、燃焼室3で発生する高温の排ガスを最終段の煙突11に向けて導く煙道4が延びている。煙道4から更に下流に排出された排ガスは、節炭器7を備えた下流側煙道4aを介して、集塵用のバグフィルタ8へ送られ、活性炭を利用した脱硝装置9及び排ガス再加熱装置10を経て煙突11から大気放出される。また、煙道4の上方には、煙道4を流れる排ガスの熱によって蒸気を生成する廃熱ボイラ5が配置されている。節炭器7は廃熱ボイラ5に供給する水の予熱を行うためのものであり、排ガス再加熱装置10は活性炭による排ガス中窒素分の吸着率を高めるために排ガスを再加熱するものである。
Hereinafter, the case where it applies to a refuse incinerator as one embodiment of the heat utilization system concerning the present invention is explained with reference to drawings.
As shown in FIG. 1, the refuse incinerator 1 according to the present embodiment is a hopper 2 for putting in garbage as an incineration object, and injecting the introduced garbage through respective steps of drying, combustion and post-combustion And a combustion chamber 3 that performs. A flue 4 that guides high-temperature exhaust gas generated in the combustion chamber 3 toward the chimney 11 at the final stage extends from the upper part of the combustion chamber 3. Exhaust gas discharged further downstream from the flue 4 is sent to a dust collecting bag filter 8 via a downstream side flue 4 a provided with a economizer 7, and a denitration device 9 using activated carbon and exhaust gas recirculation. The air is emitted from the chimney 11 through the heating device 10. A waste heat boiler 5 that generates steam by heat of exhaust gas flowing through the flue 4 is disposed above the flue 4. The economizer 7 is for preheating water supplied to the waste heat boiler 5, and the exhaust gas reheating device 10 is for reheating the exhaust gas in order to increase the adsorption rate of nitrogen in the exhaust gas by activated carbon. .

前記廃熱ボイラ5から取出された蒸気の一部は、燃焼空気予熱器20、排ガス再加熱器10、或いは、焼却施設外の温室やハウス栽培等の熱利用施設に用いる蒸気として、過熱器6を経ることなく高圧蒸気溜め12まで、廃熱ボイラ5と高圧蒸気溜め12とを接続する第1蒸気経路R1を介して送られる。燃焼空気予熱器20に送られた蒸気の保有する熱の大半は、焼却炉1の燃焼室3に投入すべき一次燃焼空気の予熱に消費される。燃焼空気予熱器20で冷却・復水された水は脱気器18に導かれ、この脱気器18から節炭器7を経て廃熱ボイラ5に戻される。尚、高圧蒸気溜め12、燃焼空気予熱器20、排ガス再加熱器10、焼却施設外の温室やハウス栽培等の熱利用施設は「熱負荷」の一例である。   A part of the steam taken out from the waste heat boiler 5 is superheater 6 as steam used in the combustion air preheater 20, the exhaust gas reheater 10, or a heat utilization facility such as a greenhouse or house cultivation outside the incineration facility. Without passing through the first steam path R <b> 1 connecting the waste heat boiler 5 and the high pressure steam reservoir 12 to the high pressure steam reservoir 12. Most of the heat held by the steam sent to the combustion air preheater 20 is consumed for preheating the primary combustion air to be put into the combustion chamber 3 of the incinerator 1. The water cooled and condensed by the combustion air preheater 20 is guided to the deaerator 18, and returned from the deaerator 18 to the waste heat boiler 5 through the economizer 7. The high-pressure steam reservoir 12, the combustion air preheater 20, the exhaust gas reheater 10, and a heat utilization facility such as a greenhouse outside the incineration facility or house cultivation are examples of “heat load”.

高圧蒸気溜め12には減圧弁22を介して低圧蒸気溜め13が接続されている。低圧蒸気溜め13内に蓄積された蒸気の保有する熱は熱交換器19によって取出されて、例えば焼却施設外の温室やハウス栽培等の熱利用施設に送られて利用される。尚、低圧蒸気溜め13から送られた蒸気自身は熱交換器19にて復水化され、復水タンク16に戻される。低圧蒸気溜め13及び熱交換器19も「熱負荷」の一例である。   A low pressure steam reservoir 13 is connected to the high pressure steam reservoir 12 via a pressure reducing valve 22. The heat held by the steam accumulated in the low-pressure steam reservoir 13 is taken out by the heat exchanger 19 and sent to a heat utilization facility such as a greenhouse or house cultivation outside the incineration facility for use. The steam itself sent from the low-pressure steam reservoir 13 is condensed in the heat exchanger 19 and returned to the condensate tank 16. The low-pressure steam reservoir 13 and the heat exchanger 19 are also examples of “heat load”.

廃熱ボイラ5から取出された蒸気の残りは、廃熱ボイラ5と過熱器6とを接続する第2蒸気経路R2a(R2)を介して煙道4内の過熱器6に送られる。そして、過熱器6に送られた蒸気は、燃焼室3から流れてくる排ガスの熱によって過熱されて過熱蒸気となり、第2蒸気経路R2b(R2)を介して蒸気タービン14に送られる。過熱蒸気の有する熱エネルギーは蒸気タービン14に連結された発電機21によって電気エネルギーに変換される。また、蒸気タービン14から排出される膨張後の蒸気は復水器15によって復水され、大気開放型の復水タンク16に蓄積される。復水タンク16に貯留された水は返送流路に備えられたポンプ17を介して脱気器18に導かれる。尚、第2蒸気経路R2aと第2蒸気経路R2bとは、過熱器6を介して廃熱ボイラ5と蒸気タービン14とを接続する第2蒸気経路R2を構成するものである。また、過熱器6と蒸気タービン14とを接続する第2蒸気経路R2bには前記過熱蒸気を高圧蒸気溜め12に導入する第3蒸気経路R3が設けられている。   The remainder of the steam taken out from the waste heat boiler 5 is sent to the superheater 6 in the flue 4 via the second steam path R2a (R2) connecting the waste heat boiler 5 and the superheater 6. The steam sent to the superheater 6 is superheated by the heat of the exhaust gas flowing from the combustion chamber 3 to become superheated steam, and is sent to the steam turbine 14 via the second steam path R2b (R2). The thermal energy of the superheated steam is converted into electric energy by a generator 21 connected to the steam turbine 14. Further, the expanded steam discharged from the steam turbine 14 is condensed by the condenser 15 and accumulated in the open-type condensate tank 16. The water stored in the condensate tank 16 is guided to the deaerator 18 through a pump 17 provided in the return flow path. The second steam path R2a and the second steam path R2b constitute a second steam path R2 that connects the waste heat boiler 5 and the steam turbine 14 via the superheater 6. A second steam path R2b connecting the superheater 6 and the steam turbine 14 is provided with a third steam path R3 for introducing the superheated steam into the high-pressure steam reservoir 12.

第1蒸気経路R1には廃熱ボイラ5から熱負荷へ送られる蒸気量を調整する第1調整弁25が設けられており、第2蒸気経路R2には、第2調整弁26と蒸気量センサ28とが設けられている。第2調整弁26は過熱器6から蒸気タービン14に導入される過熱蒸気の蒸気圧を設定値以上に保つためのものであって、蒸気タービン14内の圧力バルブに置き換えることも可能である。蒸気量センサ28は第2蒸気経路R2を通過する蒸気量を監視するものである。蒸気量センサ28によって第2蒸気経路R2を通過する蒸気量が所定量未満であることを検知すると、本実施形態に係る熱利用システムは、第1調整弁25を調整することにより第1蒸気経路R1を通過する蒸気量を制御する。尚、蒸気量センサ28は図1においては第2蒸気経路R2bに設けられているが、過熱器6を流れる蒸気量を監視することができれば設置位置に限定はなく、任意の位置に設けることができる。   The first steam path R1 is provided with a first adjustment valve 25 for adjusting the amount of steam sent from the waste heat boiler 5 to the heat load, and the second steam path R2 includes a second adjustment valve 26 and a steam amount sensor. 28 are provided. The second regulating valve 26 is for keeping the steam pressure of the superheated steam introduced from the superheater 6 to the steam turbine 14 at a set value or higher, and can be replaced with a pressure valve in the steam turbine 14. The steam amount sensor 28 monitors the amount of steam passing through the second steam path R2. When the steam amount sensor 28 detects that the amount of steam passing through the second steam path R2 is less than a predetermined amount, the heat utilization system according to the present embodiment adjusts the first adjustment valve 25 to adjust the first steam path. The amount of steam passing through R1 is controlled. Although the steam amount sensor 28 is provided in the second steam path R2b in FIG. 1, the installation position is not limited as long as the amount of steam flowing through the superheater 6 can be monitored, and it may be provided at an arbitrary position. it can.

第3蒸気経路R3には第2蒸気経路R2から高圧蒸気溜め12に導入される蒸気量を調整する第3調節弁27が設けられている。また、高圧蒸気溜め12には蒸気圧センサ29が設けられ、高圧蒸気溜め12の蒸気圧を監視している。そして、上記のように第1調整弁25を調整することで第1蒸気経路R1から蒸気溜め12に送られる蒸気量が減少し、蒸気圧が低下すると、これを検知し、第3調整弁27を制御して第3蒸気経路R3から送られる蒸気量を調整することにより蒸気圧を一定に保つようになっている。尚、第3蒸気経路R3及び第3調整弁27は必ずしも設ける必要はなく、設けなくても本発明の目的を達成することができるが、設けることにより過熱器の焼損を防止しつつも、常に熱負荷に所定量以上の蒸気を確保することが可能となり、本実施形態の熱利用システムを連続的に運転することができる。   The third steam path R3 is provided with a third control valve 27 that adjusts the amount of steam introduced from the second steam path R2 into the high-pressure steam reservoir 12. The high-pressure steam reservoir 12 is provided with a vapor pressure sensor 29 to monitor the vapor pressure of the high-pressure steam reservoir 12. Then, by adjusting the first adjustment valve 25 as described above, when the amount of steam sent from the first steam path R1 to the steam reservoir 12 decreases and the steam pressure decreases, this is detected, and the third adjustment valve 27 is detected. Is controlled to adjust the amount of steam sent from the third steam path R3 to keep the steam pressure constant. Note that the third steam path R3 and the third regulating valve 27 are not necessarily provided, and the object of the present invention can be achieved without providing them. However, the provision of the third steam path R3 and the third regulating valve 27 always prevents the superheater from burning out. It becomes possible to secure a predetermined amount or more of steam in the heat load, and the heat utilization system of this embodiment can be operated continuously.

本実施形態に係るゴミ焼却炉1は、以上のように構成されており、以下、その制御の一例について、図2及び図3を参照して説明する。本実施形態では、第1調整弁25の制御と第3調整弁27の制御とはそれぞれ独立して行われるものであり、図3では第1調整弁25の制御のフロー図について示した。尚、以下の説明は、廃熱ボイラ5から取出された蒸気が、熱負荷及び蒸気タービン14に導入される際の蒸気量の制御についての説明であり、その他の制御及び動作については、従来の装置と同様である。   The garbage incinerator 1 according to the present embodiment is configured as described above. Hereinafter, an example of the control will be described with reference to FIGS. 2 and 3. In the present embodiment, the control of the first adjustment valve 25 and the control of the third adjustment valve 27 are performed independently, and FIG. 3 shows the flow chart of the control of the first adjustment valve 25. In addition, the following description is description about control of the amount of steam when the steam taken out from the waste heat boiler 5 is introduced into the heat load and the steam turbine 14, and other controls and operations are the conventional ones. It is the same as the device.

ゴミ焼却炉1が稼働すると、排ガスの熱によって生成した蒸気が廃熱ボイラ5から取り出され、第1蒸気経路R1及び第2蒸気経路R2に導入される。通常時は、第1調整弁25は完全に開いた状態となっている。廃熱ボイラ5から取出された蒸気は、高圧蒸気溜め12が一定の蒸気圧を保つように優先的に第1蒸気経路R1に導入されて熱負荷に利用される。残りの蒸気は第2蒸気経路R2に導入され、過熱器6を介して蒸気タービン14に送られて発電に利用される。高圧蒸気溜め12の蒸気圧を一定に保つために第1蒸気経路R1からの蒸気量のみで足りている間は、第3調整弁27は完全に閉じた状態である。   When the waste incinerator 1 is operated, steam generated by the heat of the exhaust gas is taken out from the waste heat boiler 5 and introduced into the first steam path R1 and the second steam path R2. Normally, the first adjustment valve 25 is in a fully open state. The steam taken out from the waste heat boiler 5 is preferentially introduced into the first steam path R1 and used for heat load so that the high-pressure steam reservoir 12 maintains a constant steam pressure. The remaining steam is introduced into the second steam path R2, is sent to the steam turbine 14 via the superheater 6, and is used for power generation. While only the amount of steam from the first steam path R1 is sufficient to keep the steam pressure of the high-pressure steam reservoir 12 constant, the third regulating valve 27 is in a completely closed state.

蒸気量センサ28は、第2蒸気経路R2bの蒸気量、すなわち過熱器6を通過する蒸気量を監視しており、所定値以上(♯1:Yes)を保っている間は、そのままの状態を維持する。そして、蒸気量センサ28が、過熱器を通過した第2蒸気経路R2bの蒸気量が所定値より低くなった(♯1:No)ことを検知すると、第1調整弁25を一段階閉じる(♯2)ことにより、第1蒸気経路R1に導入されている蒸気量を減らして第2蒸気経路R2へ導入する蒸気量を増やす。蒸気量センサ28は、再び蒸気量をチェックして所定値に達していない場合(♯3:No)には、さらに第1調整弁25を閉じて(♯2)、第2蒸気経路R2における蒸気量が所定値に達するまで第1調整弁25を調整する(♯2〜♯3)。   The steam amount sensor 28 monitors the amount of steam in the second steam path R2b, that is, the amount of steam passing through the superheater 6, and remains as it is while maintaining a predetermined value or more (# 1: Yes). maintain. When the steam amount sensor 28 detects that the steam amount in the second steam path R2b that has passed through the superheater has become lower than a predetermined value (# 1: No), the first regulating valve 25 is closed by one step (# 2) Thus, the amount of steam introduced into the first steam path R1 is reduced and the amount of steam introduced into the second steam path R2 is increased. When the steam amount sensor 28 checks the steam amount again and does not reach the predetermined value (# 3: No), it further closes the first regulating valve 25 (# 2), and the steam in the second steam path R2 The first adjustment valve 25 is adjusted until the amount reaches a predetermined value (# 2 to # 3).

第2蒸気経路R2bにおける蒸気量が所定値を保っている間(♯4:所定値)は監視を続け、廃熱ボイラ5から取り出される蒸気量が変化する等して、第2蒸気経路R2における蒸気量が所定値未満になった(♯4:所定値未満)場合には、♯2に戻って第1調整弁25の調整を繰り返す(♯2〜♯3)。また、蒸気量が所定値より大きくなった(♯4:所定値より大)場合には、第1調整弁25を一段階開く(♯5)。これにより、蒸気量が所定値に達すると(♯6:Yes)、再び♯4に戻り、蒸気量センサ28によって蒸気量を監視しつつ、同様の制御を繰り返す。蒸気量が所定値にならない場合(♯6:No)には、第1調整弁25が完全に開いているか否かを調べ(♯7)、全開していない場合(♯7:No)には、♯5に戻って第1調整弁25をさらに開き、同様の調整を繰り返す(♯5〜♯7)。そして、第1調整弁25が全開である場合(♯7:Yes)には通常の状態(♯1)に戻って蒸気量を監視する。   While the amount of steam in the second steam path R2b is maintained at a predetermined value (# 4: predetermined value), monitoring is continued, and the amount of steam taken out from the waste heat boiler 5 is changed. When the steam amount is less than the predetermined value (# 4: less than the predetermined value), the process returns to # 2, and the adjustment of the first adjustment valve 25 is repeated (# 2 to # 3). If the steam amount is larger than the predetermined value (# 4: larger than the predetermined value), the first adjustment valve 25 is opened one step (# 5). Thus, when the steam amount reaches a predetermined value (# 6: Yes), the process returns to # 4 again, and the same control is repeated while monitoring the steam amount by the steam amount sensor 28. When the steam amount does not reach the predetermined value (# 6: No), it is checked whether or not the first adjustment valve 25 is fully opened (# 7). When the steam amount is not fully opened (# 7: No). Returning to # 5, the first adjustment valve 25 is further opened, and the same adjustment is repeated (# 5 to # 7). When the first regulating valve 25 is fully open (# 7: Yes), the flow returns to the normal state (# 1) and the steam amount is monitored.

第3蒸気経路R3における第3調整弁27は通常時には閉止しているが、この間、第1調整弁25の作動状況により高圧蒸気溜め12の蒸気圧が設定値より低くなった場合には、第3調整弁を開いて蒸気を第3蒸気経路R3から高圧蒸気溜め12へ導入し、蒸気圧が設定値に達するまで第3調整弁27を調整する。そして、高圧蒸気溜め12の蒸気圧が設定値に達した場合には、熱負荷に使用する蒸気が足りているとしてその状態を維持する。また、蒸気圧が設定値より高くなった場合には第3調整弁27を閉じて蒸気圧を調整する。   The third regulating valve 27 in the third steam path R3 is normally closed, but during this time, when the vapor pressure of the high pressure steam reservoir 12 becomes lower than the set value due to the operating condition of the first regulating valve 25, The third regulating valve is opened to introduce steam into the high-pressure steam reservoir 12 from the third steam path R3, and the third regulating valve 27 is adjusted until the vapor pressure reaches a set value. And when the vapor pressure of the high-pressure steam reservoir 12 reaches a set value, it is assumed that the steam used for the heat load is sufficient, and that state is maintained. When the vapor pressure becomes higher than the set value, the third adjustment valve 27 is closed to adjust the vapor pressure.

尚、本実施形態の熱利用システムでは、熱負荷へ導入される蒸気量の監視を高圧溜め12における蒸気圧センサ29にて行っている構成としたが、特に限定されるものではなく、例えば、第3蒸気経路R3の蒸気量や熱負荷の一つである燃焼空気予熱器20に導入される蒸気量を監視して制御することもできる。さらには、熱負荷へ導入される蒸気量を監視することなく、第1調整弁を閉じた場合に熱負荷へ導入される蒸気量が減少したことを感知して、第3調整弁27を開閉する構成とすることも可能である。この際、第2蒸気経路R2から第3蒸気経路R3への分岐点において、蒸気が蒸気タービン14よりも蒸気溜め12へ優先的に導入される構成にしておけば、第3調整弁27は厳密な制御をすることなく、単なる開閉のみ制御を行うことも可能である。   In the heat utilization system of the present embodiment, the amount of steam introduced into the heat load is monitored by the vapor pressure sensor 29 in the high pressure reservoir 12, but is not particularly limited. It is also possible to monitor and control the amount of steam in the third steam path R3 and the amount of steam introduced into the combustion air preheater 20, which is one of the heat loads. Furthermore, without monitoring the amount of steam introduced into the heat load, when the first adjustment valve is closed, it is detected that the amount of steam introduced into the heat load has decreased, and the third adjustment valve 27 is opened and closed. It is also possible to adopt a configuration. At this time, if the steam is preferentially introduced into the steam reservoir 12 rather than the steam turbine 14 at the branch point from the second steam path R2 to the third steam path R3, the third regulating valve 27 is strictly It is also possible to perform only simple opening / closing control without performing any control.

さらに本実施形態の熱利用システムでは過熱器6に導入される蒸気量が所定値を維持するように制御したが、上記制御に限らず、蒸気量が所定値以上になればその状態を維持し、所定値未満にならないようにのみ監視する簡易な制御とすることもできる。尚、本実施形態において制御する所定値及び設定値は、ゴミ焼却炉1や過熱器6の種類等によって変わるものであり、適用する熱利用システムによって任意に決めることができるものである。   Furthermore, in the heat utilization system of the present embodiment, the amount of steam introduced into the superheater 6 is controlled to maintain a predetermined value. However, the present invention is not limited to the above control, and the state is maintained when the amount of steam exceeds a predetermined value. Simple control for monitoring only so as not to become less than a predetermined value can also be adopted. Note that the predetermined value and set value to be controlled in the present embodiment vary depending on the type of the refuse incinerator 1 and the superheater 6 and can be arbitrarily determined depending on the heat utilization system to be applied.

(別実施形態)
尚、上記の実施形態では、ゴミ焼却炉1を稼働し続けるために、蒸気の「熱負荷」への使用、特に燃焼空気予熱器20への供給を維持する構成としたが、本発明の熱利用システムは、図4に示すように発電を主目的とした設備に対しても適用できる。すなわち、この実施形態では、廃熱ボイラ5から取出された全ての蒸気を一旦、蓄積する高圧蒸気溜め12を有し、高圧蒸気溜め12から過熱器6を介することなく熱負荷に導入する第1蒸気経路R1と、高圧蒸気溜め12から過熱器を介して蒸気タービン14に導入する第2蒸気経路R2とが設けられている。
(Another embodiment)
In the above embodiment, in order to keep the refuse incinerator 1 in operation, the steam is used for “heat load”, particularly the supply to the combustion air preheater 20 is maintained. The utilization system can also be applied to facilities whose main purpose is power generation as shown in FIG. That is, in this embodiment, the first high-pressure steam reservoir 12 that temporarily accumulates all the steam taken out from the waste heat boiler 5 is introduced into the heat load from the high-pressure steam reservoir 12 without passing through the superheater 6. A steam path R1 and a second steam path R2 introduced from the high-pressure steam reservoir 12 to the steam turbine 14 via a superheater are provided.

そして、第1蒸気経路R1には、第1蒸気経路の蒸気量を調整して第2蒸気経路の蒸気量を制御する調整弁30が設けられており、第2蒸気経路R2には蒸気センサ31が設けられている。蒸気センサ31は、蒸気量センサ28は第2蒸気経路R2を通過する蒸気量が所定値以上となるように調整弁30を調整する。この構成により、廃熱ボイラ5から取出される蒸気量が変動したとしても、蒸気タービン14へは所定量の蒸気が確保できるため、連続して発電することが可能となる。尚、その他の構成、制御等は上記実施形態と同様である。   The first steam path R1 is provided with an adjusting valve 30 that controls the steam quantity of the second steam path by adjusting the steam quantity of the first steam path, and the steam sensor 31 is provided in the second steam path R2. Is provided. The steam sensor 31 adjusts the regulating valve 30 so that the steam amount sensor 28 has a steam amount passing through the second steam path R2 equal to or greater than a predetermined value. With this configuration, even if the amount of steam taken out from the waste heat boiler 5 fluctuates, a predetermined amount of steam can be secured in the steam turbine 14, so that it is possible to continuously generate power. Other configurations, control, and the like are the same as those in the above embodiment.

本発明の熱利用システムはゴミ等の焼却炉等に適用することができるだけでなく、様々な熱源を利用した熱利用システムに適用することができる。   The heat utilization system of the present invention can be applied not only to an incinerator for garbage etc., but also to a heat utilization system using various heat sources.

本発明の熱利用システムを備えた焼却施設の略図Schematic of an incineration facility equipped with the heat utilization system of the present invention 本実施形態の熱利用システムの略図Schematic diagram of heat utilization system of this embodiment 本実施形態の制御のフロー図Control flow diagram of this embodiment 別実施形態の熱利用システムの略図Schematic of heat utilization system of another embodiment

符号の説明Explanation of symbols

1 ゴミ焼却炉
3 燃焼室
4 煙道
5 廃熱ボイラ
6 過熱器
10 排ガス再加熱器(熱負荷)
12 高圧蒸気溜め(熱負荷)
13 低圧蒸気溜め(熱負荷)
14 蒸気タービン
20 燃焼空気予熱器(熱負荷)
25 第1調整弁
26 第2調整弁
27 第3調整弁
28 蒸気量センサ
29 蒸気圧センサ
R1 第1蒸気経路
R2(R2a,R2b) 第2蒸気経路
R3 第3蒸気経路
1 Waste incinerator 3 Combustion chamber 4 Flue 5 Waste heat boiler 6 Superheater 10 Exhaust gas reheater (heat load)
12 High pressure steam reservoir (heat load)
13 Low pressure steam reservoir (heat load)
14 Steam turbine 20 Combustion air preheater (heat load)
25 1st adjustment valve 26 2nd adjustment valve 27 3rd adjustment valve 28 Steam quantity sensor 29 Steam pressure sensor R1 1st steam path R2 (R2a, R2b) 2nd steam path R3 3rd steam path

Claims (3)

所定の熱源の熱を利用して蒸気を発生させるボイラと、前記蒸気を過熱して過熱蒸気を生成する過熱器と、前記過熱蒸気によって発電を行う蒸気タービンと、前記蒸気の熱を利用する熱負荷と、前記ボイラで発生した前記蒸気の一部を前記過熱器を介することなく前記熱負荷に導入する第1蒸気経路と、前記ボイラで発生した前記蒸気の残りの少なくとも一部を前記過熱器を介して前記蒸気タービンに直接導入する第2蒸気経路とを備える熱利用システムであって、
前記第1蒸気経路における蒸気量を調整する第1調整手段と、前記第2蒸気経路における蒸気量を監視する監視手段とを有し、前記第2蒸気経路における蒸気量が所定量以上となるように前記第1調整手段を制御する熱利用システム。
A boiler that generates steam by using heat of a predetermined heat source, a superheater that generates superheated steam by superheating the steam, a steam turbine that generates power using the superheated steam, and heat that uses heat of the steam A load, a first steam path for introducing a part of the steam generated in the boiler into the heat load without passing through the superheater, and at least a part of the remaining steam generated in the boiler in the superheater. A heat utilization system comprising a second steam path directly introduced into the steam turbine via
A first adjusting unit that adjusts the amount of steam in the first steam path; and a monitoring unit that monitors the amount of steam in the second steam path; A heat utilization system for controlling the first adjusting means.
前記過熱蒸気を前記第2蒸気経路から分岐して前記熱負荷に導入する第3蒸気経路と、当該第3蒸気経路における蒸気量を調整する第2調整手段とを有し、前記熱負荷へ導入する前記蒸気と前記過熱蒸気との総量が所定量以上となるように前記第2調整手段を制御する請求項1に記載の熱利用システム。   A third steam path for branching the superheated steam from the second steam path and introducing it into the thermal load; and a second adjusting means for adjusting the amount of steam in the third steam path; 2. The heat utilization system according to claim 1, wherein the second adjustment unit is controlled so that a total amount of the steam and the superheated steam is equal to or greater than a predetermined amount. 所定の熱源の熱を利用して蒸気を発生させるボイラと、当該ボイラで発生した前記蒸気を蓄積する蒸気溜めと、前記蒸気を過熱して過熱蒸気を生成する過熱器と、前記過熱蒸気によって発電を行う蒸気タービンと、前記蒸気の熱を利用する熱負荷と、前記蒸気溜めに蓄積した前記蒸気の一部を前記過熱器を介することなく前記熱負荷に導入する第1蒸気経路と、前記蒸気溜めに蓄積した前記蒸気の残りの少なくとも一部を前記過熱器を介して前記蒸気タービンに導入する第2蒸気経路と、前記第1蒸気経路における蒸気量を調整する調整手段と、前記第2蒸気経路における蒸気量を監視する監視手段とを有し、前記第2蒸気経路における蒸気量が所定量以上となるように前記調整手段を制御する熱利用システム。   A boiler that generates steam using the heat of a predetermined heat source, a steam reservoir that accumulates the steam generated in the boiler, a superheater that generates superheated steam by overheating the steam, and power generation using the superheated steam A steam turbine that performs heat, a heat load that uses the heat of the steam, a first steam path that introduces a portion of the steam accumulated in the steam reservoir into the heat load without passing through the superheater, and the steam A second steam path for introducing at least a part of the remaining steam accumulated in the reservoir into the steam turbine via the superheater; an adjusting means for adjusting the amount of steam in the first steam path; and the second steam A heat utilization system that controls the adjustment unit so that the amount of steam in the second steam path is equal to or greater than a predetermined amount.
JP2004047817A 2004-02-24 2004-02-24 Heat utilization system Withdrawn JP2005241043A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004047817A JP2005241043A (en) 2004-02-24 2004-02-24 Heat utilization system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004047817A JP2005241043A (en) 2004-02-24 2004-02-24 Heat utilization system

Publications (1)

Publication Number Publication Date
JP2005241043A true JP2005241043A (en) 2005-09-08

Family

ID=35022962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004047817A Withdrawn JP2005241043A (en) 2004-02-24 2004-02-24 Heat utilization system

Country Status (1)

Country Link
JP (1) JP2005241043A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102997734A (en) * 2012-11-23 2013-03-27 杭州芯卡物联技术有限公司 Complete waste heat recovery device for setting machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102997734A (en) * 2012-11-23 2013-03-27 杭州芯卡物联技术有限公司 Complete waste heat recovery device for setting machine

Similar Documents

Publication Publication Date Title
JP5774381B2 (en) Waste heat recovery boiler and power plant
JP6224858B1 (en) Power plant and operation method thereof
JP2003214182A (en) Gas turbine combined plant and its operating method
JP2008032367A (en) Control method for once-through waste heat recovery boiler
JPH08246814A (en) Combined cycle generation plant using refuse incinerator
JP4117517B2 (en) Coal gasification combined power plant and its operation control device.
JP2018189276A (en) Power generation plant and method for operating the same
JP4186181B2 (en) Cogeneration method and cogeneration system
JP2006266085A (en) Regenerative cycle type gas turbine power generation system
JP2005241043A (en) Heat utilization system
JP2006266086A (en) Regenerative cycle type gas turbine power generation system
JP6891090B2 (en) Power plant and its operation method
JP2922711B2 (en) Urban waste incineration equipment
JP2740095B2 (en) Garbage incineration equipment
JP2695368B2 (en) Garbage incineration equipment
JP2815296B2 (en) Operating method of waste heat utilization combined plant of refuse incinerator
JPH0783005A (en) Compound refuse power generation plant
WO1999015765A1 (en) Cooling steam control method for combined cycle power generation plants
JP2001108202A (en) Waste heat recovery boiler
JP2740096B2 (en) Garbage incineration equipment
JPH07243305A (en) Waste heat recovery combined plant for garbage burning incinerator
JP2769271B2 (en) Garbage incineration equipment
JP2007285220A (en) Combined cycle power generation facility
JP2769270B2 (en) Garbage incineration equipment
JP2005146940A (en) Method for operating cogeneration system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060927

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20080208