JP2005240303A - Structural frame - Google Patents

Structural frame Download PDF

Info

Publication number
JP2005240303A
JP2005240303A JP2004047976A JP2004047976A JP2005240303A JP 2005240303 A JP2005240303 A JP 2005240303A JP 2004047976 A JP2004047976 A JP 2004047976A JP 2004047976 A JP2004047976 A JP 2004047976A JP 2005240303 A JP2005240303 A JP 2005240303A
Authority
JP
Japan
Prior art keywords
wall
earthquake
structural frame
boundary
external force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004047976A
Other languages
Japanese (ja)
Other versions
JP4222224B2 (en
Inventor
Naomiki Niwa
直幹 丹羽
Kazunari Makibe
一成 牧部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2004047976A priority Critical patent/JP4222224B2/en
Publication of JP2005240303A publication Critical patent/JP2005240303A/en
Application granted granted Critical
Publication of JP4222224B2 publication Critical patent/JP4222224B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a structural frame of excellent earthquake resistance sufficiently ensuring the flexural rigidity of earthquake resistant walls and a bend return effect by boundary beams to remarkably enhance the flexural rigidity of the whole frame without impairing the degree of freedom in architectural design. <P>SOLUTION: The earthquake resistant walls 5a, 5b, 5c in a strong axis direction to external force P<SB>1</SB>are arranged parallel with the acting direction of the external force P<SB>1</SB>. The earthquake resistant walls 6a, 6b in a weak axis direction to the external force P<SB>1</SB>are arranged on both sides of the earthquake resistant walls 5a, 5b, 5c in an orthogonal direction to the acting direction of the external force P<SB>1</SB>. The boundary beams 7 are respectively arranged between the earthquake resistant walls 5a, 5b, 5c in the strong axis direction and the earthquake resistant walls 6a, 6b in the weak axis direction. The boundary beams 8 are respectively arranged between the earthquake resistant walls 6a, 6b. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本願発明は耐震壁と境界梁とからなる構造架構に関し、建築構造物の耐震性能を著しく向上させることができるものである。   The present invention relates to a structural frame composed of a seismic wall and a boundary beam, and can significantly improve the seismic performance of a building structure.

壁と梁を組み合わせた構造架構として、建物の中央部にコア壁として耐震壁を向かい合わせに配置し、その間に境界梁を架け渡した構造架構が知られている。例えば、図7(a)に図示するような建物の中央部にエレベーター20、エレベーターホール21、さらに廊下22などの共用施設が集中的に配置された事務所ビルの場合、これら共用施設の周囲と中にそれぞれ配置されたL字型またはT字型の壁が互いに向かい合う耐震壁23となり、この耐震壁23と23との間に架け渡された梁が境界梁24になっている。   As a structural frame combining walls and beams, a structural frame is known in which earthquake-resistant walls are placed facing each other as a core wall in the center of the building, and a boundary beam is bridged between them. For example, in the case of an office building in which shared facilities such as an elevator 20, an elevator hall 21, and a corridor 22 are intensively arranged in the center of the building as shown in FIG. The L-shaped or T-shaped walls respectively disposed therein become the earthquake-resistant walls 23 facing each other, and the beam bridged between the earthquake-resistant walls 23 and 23 is the boundary beam 24.

境界梁24には特に、耐震壁23の曲げ変形や回転変位を減少させる抵抗力があり、耐震壁23の剛性を高め、かつ耐震壁23の曲げや回転の耐力を高める働きを有するため、耐震壁23の曲げ剛性と境界梁24による曲げ戻し効果を確保して建物全体の曲げ剛性を高めることができる。
特開2002−357009 特開2001−336300 特開2001−173129
In particular, the boundary beam 24 has a resistance to reduce bending deformation and rotational displacement of the seismic wall 23, and has a function of increasing the rigidity of the seismic wall 23 and increasing the bending and rotation strength of the seismic wall 23. The bending rigidity of the wall 23 and the bending return effect by the boundary beam 24 can be ensured to increase the bending rigidity of the entire building.
JP2002-35709A JP 2001-336300 A JP 2001-173129 A

しかし、上記した構造架構では、耐震壁23と境界梁24とからなるコア壁の幅が小さい場合、耐震壁23の断面二次モーメントを十分に確保できず、また境界梁24の曲げ戻し効果も各耐震壁23に対してその片側に配置された境界梁24が対応するのみで、しかも耐震壁23の転倒スパン(重心間距離)も十分に確保できないため、特に高層建物の場合は架構全体の曲げ剛性の確保が非常に困難になる等の課題があった。   However, in the above-described structural frame, when the width of the core wall composed of the seismic wall 23 and the boundary beam 24 is small, the secondary moment of the cross section of the seismic wall 23 cannot be sufficiently secured, and the boundary beam 24 is also bent back. Only the boundary beam 24 arranged on one side corresponds to each seismic wall 23 and the fall span (distance between the centers of gravity) of the seismic wall 23 cannot be secured sufficiently. There were problems such as making it difficult to ensure bending rigidity.

本願発明は以上の課題を解決するためになされたもので、コア部の建築設計上の自由度を損なうことなく、耐震壁の曲げ剛性と境界梁による曲げ戻し効果を十分に確保し、架構全体の曲げ剛性を著しく高め、耐震性に非常に優れた構造架構を提供することを目的とする。   The present invention was made in order to solve the above-mentioned problems, and sufficiently secures the bending rigidity of the earthquake-resistant wall and the bending back effect by the boundary beams without impairing the degree of freedom in the architectural design of the core part. The purpose of this study is to provide a structural frame with extremely high flexural rigidity and excellent earthquake resistance.

請求項1に係る発明は、外力の作用方向と平行に配置された、前記外力に対して強軸の耐震壁と、当該耐震壁の両側に前記外力の作用方向と直交する方向にそれぞれ配置された、前記外力に対して弱軸の耐震壁と、前記強軸の耐震壁と前記弱軸の耐震壁との間にそれぞれ配置された境界梁とからなることを特徴とするものである。   The invention according to claim 1 is arranged in parallel to the action direction of the external force and is arranged in a direction that is orthogonal to the action direction of the external force on both sides of the earthquake-resistant wall and a strong axis against the external force. Further, the present invention is characterized by comprising a seismic wall having a weak axis against the external force, and boundary beams disposed between the seismic wall having the strong axis and the seismic wall having the weak axis.

本願発明は、特に強軸の耐震壁の両側に境界梁が配置されていることで、強軸の耐震壁の片側にのみ境界梁が配置された従来の構造架構に比べて梁の曲げ戻し効果を倍確保することができ、さらに境界梁の先端に配置された弱軸の耐震壁が境界梁の鉛直変形を拘束する働きを有することにより境界梁の曲げ戻し効果を付加することができるため、架構全体の曲げ剛性を著しく高めることができる。また、そのために境界梁の先端側に耐震壁などによる構面を新たに設けなくてもよい。   The invention of the present application is particularly advantageous in that the boundary beams are arranged on both sides of the strong shaft seismic wall, so that the beam can be bent back compared to the conventional structural frame in which the boundary beam is arranged only on one side of the strong shaft seismic wall. Since the weak-axle earthquake resistant wall placed at the tip of the boundary beam has the function of constraining the vertical deformation of the boundary beam, the boundary beam bending back effect can be added. The bending rigidity of the entire frame can be significantly increased. For this purpose, it is not necessary to newly provide a construction surface such as a seismic wall on the tip side of the boundary beam.

また、境界梁の先端に配置された弱軸の耐震壁が境界梁先端の鉛直変形を拘束する軸材としての働きを有するため、限られた構面の長さ内で強軸の耐震壁を可能な限り長く配置することにより大きな断面二次モーメントを持った耐震壁とすることができる。なお、強軸の耐震壁の長さを十分に確保することは、境界梁をダンパーとして利用する場合、梁の曲げ降伏後の架構の剛性低下を低く抑えることができる。   In addition, since the weak-axis seismic wall placed at the tip of the boundary beam acts as a shaft member that restrains the vertical deformation of the boundary beam tip, the strong-axis seismic wall is limited within the length of the limited construction surface. By arranging it as long as possible, it is possible to make a seismic wall with a large second moment of section. It should be noted that securing a sufficient length of the strong shaft earthquake-resistant wall can suppress a decrease in the rigidity of the frame after bending yielding of the beam when the boundary beam is used as a damper.

図1,2に図示した本願発明に係る構造架構と図7に図示した従来の構造架構との具体的性能を表.1で表した具体的数値で比較すると、耐震壁の外寸法Lとして9.7mを想定し、また耐震壁の壁厚tを0.7m、耐震壁の壁長Lと境界梁の梁長Lとの比を約1.5とし、さらに境界梁の梁成Dはせん断スパン比β=(L/D)を約1.5として決定した。 The specific performance of the structural frame according to the present invention shown in FIGS. 1 and 2 and the conventional structural frame shown in FIG. Compared with specific numerical values expressed in 1, assuming a 9.7m as an outer dimension L of shear walls, also 0.7m a wall thickness t of the shear walls, beam length of the wall length L W and the boundary beams Walls The ratio to L b was set to about 1.5, and the beam formation D of the boundary beam was determined with the shear span ratio β = (L b / D) set to about 1.5.

Figure 2005240303
Figure 2005240303

なお、耐震壁の壁長Lと境界梁の梁長Lとの比を約1.5としたのは、地震時の層間変形角を1/100と設定した場合に境界梁の部材角が設計上過大とならない1/40以下とするためである。また、境界梁の梁成Dをせん断スパン比βが約1.5となるように設定しているのは、曲げによる変形能力を確保するためである。 Incidentally, the ratio of the beam length L b of the wall length L W and the boundary beams shear walls was about 1.5, member angular boundary beams in the case of setting the story drift during an earthquake 1/100 This is because it is 1/40 or less which is not excessive in design. In addition, the reason why the beam span D of the boundary beam is set so that the shear span ratio β is about 1.5 is to ensure the deformability by bending.

この結果として、耐震壁の壁断面積は本願発明のほうが4%ほど小さくなっている。ここで梁の曲げ戻し増加長さLは、境界梁の端部曲げモーメントが耐震壁の重心位置までせん断力により延長される長さを示し、また転倒スパンLは構造架構の転倒に対して抵抗できる構造体の重心位置の距離を示している。 As a result, the wall cross-sectional area of the earthquake resistant wall is about 4% smaller in the present invention. Wherein bending of the beam back increasing length L r indicates the length of the bending moment end boundary beams is extended by a shear force to the center of gravity position of the shear walls, also fall span L t to overturn the structure Frames The distance of the center of gravity of the structure that can be resisted is shown.

表.1において、各耐震壁の断面二次モーメントを合計した値は、従来例の方が若干優れているが、本願発明の場合、強軸の耐震壁の両側に境界梁が配置されていることを考慮すると、強軸の耐震壁の曲げ抵抗と境界梁の曲げ戻し効果が同一であると仮定すれば、本願発明の方が従来例より1.89倍ほど優れているといえる。また、その他の性能である曲げ戻し増加長さL、梁成Dおよび転倒スパンLは、共に本願発明の方が優れていることが分かる。 table. In FIG. 1, the total value of the sectional moments of each shear wall is slightly better in the conventional example, but in the case of the present invention, the boundary beams are arranged on both sides of the strong shaft shear wall. Considering that the bending resistance of the strong shaft shear wall and the bending back effect of the boundary beam are the same, it can be said that the present invention is 1.89 times better than the conventional example. In addition, it can be seen that the present invention is superior in terms of other performances such as an increased bending back length L r , a beam formation D, and a fall span L t .

なお、ここで各耐震壁はRC構造の壁を想定しているが、特にこれに限定されたものではなく、鉄骨を内臓したRC構造の壁や鋼鈑で補強されたSRC構造の壁でもよい。また、境界梁は高靭性コンクリートからなるRC構造で、梁主筋をX型に配筋したりプレストレスを導入したりすることにより耐震性能を著しく向上させることができる。   Here, each seismic wall is assumed to be an RC structure wall, but is not particularly limited to this, and may be an RC structure wall with a built-in steel frame or an SRC structure wall reinforced with a steel plate. . Moreover, the boundary beam is an RC structure made of high-toughness concrete, and the seismic performance can be remarkably improved by arranging the beam main bars in an X shape or introducing prestress.

請求項2記載の構造架構は、請求項1記載の構造架構において、強軸の耐震壁と弱軸の耐震壁との間に廊下が配置されてなることを特徴とするものである。本願発明は、境界梁と廊下を同じ位置に配置することで、共用施設の周囲に配置された執務室の床面積を狭めることなく、強軸の耐震壁を可能な限り長く配置することができる。   The structural frame according to claim 2 is characterized in that in the structural frame according to claim 1, a corridor is arranged between the strong-axis earthquake-resistant wall and the weak-axis earthquake-resistant wall. In the present invention, by arranging the boundary beam and the corridor at the same position, it is possible to arrange the strong shaft earthquake-resistant wall as long as possible without reducing the floor area of the office room arranged around the common facility. .

請求項3記載の構造架構は、請求項1または2記載の構造架構において、弱軸の耐震壁は設備スペースに配置されてなることを特徴とするものである。弱軸の耐震壁がこのような位置に配置されていることで、これと請求項2記載の実施形態を合わせることにより有効な転倒スパンを容易に確保することができるため、平面計画を阻害することなく、曲げ特性を向上させることができる。   The structural frame according to claim 3 is the structural frame according to claim 1 or 2, characterized in that the weak-axis seismic wall is arranged in the equipment space. By arranging the weak shaft earthquake-resistant wall at such a position and combining this with the embodiment of claim 2, it is possible to easily secure an effective fall span. Therefore, the bending characteristics can be improved.

一般に事務所建築の平面計画では、中央にエレベーター、設備施設、廊下などの共用施設が配置され、その周囲に執務室が配置される場合が多いため、この種の建物に本願発明の構造架構を適用すれば、執務室に入ることなく、廊下から設備室内の点検等を行うことが可能になり、またエレベーターからの出入りに制約されないため、設備スペースを確保しやすい。   In general, in the floor plan of office buildings, shared facilities such as elevators, equipment facilities, and corridors are often arranged in the center, and office rooms are often arranged around them. If applied, it becomes possible to inspect the equipment room from the corridor without entering the office room, and it is easy to secure equipment space because it is not restricted to entering and exiting from the elevator.

請求項4記載の構造架構は、請求項1〜3のいずれかに記載された構造架構において、強軸の耐震壁の壁長と境界梁の梁長との比が1.5以下に設定されてなることを特徴とするものである。   The structural frame according to claim 4 is the structural frame according to any one of claims 1 to 3, wherein the ratio of the wall length of the strong shaft earthquake resistant wall to the beam length of the boundary beam is set to 1.5 or less. It is characterized by.

本願発明の構造架構において、層間変形に対する部材角の比αは、概ね幾何学的な関係により決まり、強軸の耐震壁の壁長をLW、境界梁の梁長をLとした場合、その比αは、α=1+L/Lとなる。ここで、層間変形角の制限値を1/100とした場合には、境界梁の部材角は1/(100/α)となる。また境界梁の部材角は、例えばRC構造の場合、変形能力上許容できる値は1/50〜1/40である。 In the structural frame of the present invention, the ratio α of the member angle with respect to the interlayer deformation is generally determined by a geometrical relationship, where the wall length of the strong shaft earthquake resistant wall is L W and the beam length of the boundary beam is L b . The ratio α is α = 1 + L W / L b . Here, when the limit value of the interlayer deformation angle is 1/100, the member angle of the boundary beam is 1 / (100 / α). The member angle of the boundary beam is, for example, 1/50 to 1/40 in terms of deformation capability in the case of an RC structure.

層間変形角1/100で境界梁の部材角を1/40以内におさめるためには、αは1.5となる。このため、上記αを1.5以下とすることは、構造架構の構成上有意義なことである。   In order to keep the member angle of the boundary beam within 1/40 with an interlayer deformation angle of 1/100, α is 1.5. For this reason, setting the α to 1.5 or less is significant in the structure of the structural frame.

これを本願発明に対応させると、弱軸の耐震壁は曲げを殆ど負担せず、軸剛性のみを発揮することにより、強軸の耐震壁の両側に配置された境界梁の他端(弱軸の耐震壁側の端部)をモーメントの反曲点とすることができるため、境界梁の実長さの2倍を梁の有効長さとすることができる。そのため、例えば図2(b)に図示するような寸法であっても、αを1.5とすることができる。   If this is made to correspond to the present invention, the weak shaft shear wall bears almost no bending and exhibits only the shaft rigidity, so that the other ends of the boundary beams arranged on both sides of the strong shaft shear wall (weak shaft) The end of the earthquake-resistant wall side) can be the inflection point of the moment, so that the effective length of the beam can be twice the actual length of the boundary beam. Therefore, for example, even if the dimensions are as shown in FIG.

請求項5記載の構造架構は、請求項1〜4のいずれかに記載された構造架構において、境界梁のせん断スパン比が1.5以上に設定されてなることを特徴するものである。   The structural frame according to claim 5 is characterized in that, in the structural frame according to any of claims 1 to 4, the shear span ratio of the boundary beam is set to 1.5 or more.

境界梁のせん断スパン比βは、β=L/D=M/Q・Dであり、逆対称曲げの場合は、β=L/2・Dとなるが、本願発明の場合、境界梁のせん断スパン比βは、β=2L/2・D=L/Dとなる。 The shear span ratio β of the boundary beam is β = L b / D = M / Q · D, and β = L b / 2 · D in the case of anti-symmetric bending. The shear span ratio β is β = 2L b / 2 · D = L b / D.

せん断スパン比βは、梁の曲げによる変形能力を確保するために重要であり、この値が小さいとせん断破壊しやすくなるが、本願発明においては、このせん断スパン比βを大きく確保することができる。   The shear span ratio β is important for securing the deformability of the beam by bending, and if this value is small, shear fracture is likely to occur. However, in the present invention, this shear span ratio β can be secured large. .

なお、境界梁の配筋に際して強軸の耐震壁側端部を多く、弱軸の耐震壁側端部を可能な限り少なくすることによっても、境界梁のせん断スパン比βを大きくすることができる。   It is also possible to increase the shear span ratio β of the boundary beam by increasing the number of ends of the strong shaft on the shear wall side and reducing the number of weak shafts on the side of the shear wall as much as possible when arranging the boundary beams. .

この場合の配筋方法としては、例えば図6(a),(b),(c)にそれぞれ図示するように弱軸の耐震壁側の端部に二段筋を配筋しない方法、弱軸の耐震壁側の端部に配筋された主筋の定着長さを低減する方法、さらに境界梁に配筋された上下主筋を弱軸の耐震壁側の端部で絞る方法などがある。   As a bar arrangement method in this case, for example, as shown in FIGS. 6A, 6B, and 6C, a method that does not arrange a two-stage bar at the end of the weak axis on the side of the earthquake-resistant wall, There is a method of reducing the anchoring length of the main reinforcement arranged at the end of the earthquake-resistant wall side, and a method of narrowing the upper and lower main reinforcement arranged at the boundary beam at the end of the weak-axis earthquake-proof wall side.

境界梁の主筋がこのように配筋されていることで、例えば図5(a)に図示するように境界梁の曲げモーメントは強軸の耐震壁側端部で大きく、弱軸の耐震壁側端部では0か、もしくは0に近い値となる。したがって、M=L・Qであることから、せん断スパン比βは、β=M/Q・D=L・Q/Q・D=L/Dとなる。 Since the main reinforcement of the boundary beam is arranged in this way, the bending moment of the boundary beam is large at the end of the strong shaft side as shown in FIG. At the end, it is 0 or a value close to 0. Therefore, since M = L b · Q, the shear span ratio β is β = M / Q · D = L b · Q / Q · D = L b / D.

これに対して、図5(b)に図示するような両端で同様の曲げモーメントを負担する境界梁の場合、M=L・Q/2となるため、β=M/Q・D=L・Q/2・Q・D=L/2・Dとなる。 On the other hand, in the case of a boundary beam that bears the same bending moment at both ends as shown in FIG. 5B, M = L b · Q / 2, so β = M / Q · D = L b · Q / 2 · Q · D = L b / 2 · D.

以上のことから、本願発明では、通常の場合と比較してせん断スパン比βを大きくとることができるため、梁の曲げ変形能力が確保しやすくなる。なお、この特徴は境界梁が弱軸の耐震壁側端部でいくらかの曲げモーメントを負担する場合でも同様である。   From the above, in the present invention, since the shear span ratio β can be increased as compared with the normal case, it is easy to ensure the bending deformation ability of the beam. This feature is the same even when the boundary beam bears some bending moment at the end of the weak-walled seismic wall.

本願発明は、特に強軸の耐震壁の両側に境界梁が配置されていることで、強軸の耐震壁の片側にのみ境界梁が配置された従来の構造架構に比べて梁の曲げ戻し効果を倍確保することができるため、耐震壁の曲げ剛性と境界梁による曲げ戻し効果を十分に確保し、構造物全体の曲げ剛性を大幅に高めることができるため、耐震性の非常に高い建物を提供することができる。また、コア部の建築設計上の自由度を損なうこともない。   The invention of the present application is particularly advantageous in that the boundary beams are arranged on both sides of the strong shaft seismic wall, so that the beam can be bent back compared to the conventional structural frame in which the boundary beam is arranged only on one side of the strong shaft seismic wall. Therefore, the bending rigidity of the earthquake-resistant wall and the bending back effect by the boundary beam can be sufficiently secured, and the bending rigidity of the entire structure can be greatly increased. Can be provided. Moreover, the freedom degree in the architectural design of the core part is not impaired.

また、耐震壁と境界梁とを組み合わせた架構として、境界梁の梁成、せん断スパン比、および梁の部材角などの構造性能を高めることができる。   Moreover, structural performance such as the beam formation of the boundary beam, the shear span ratio, and the member angle of the beam can be enhanced as a frame in which the earthquake resistant wall and the boundary beam are combined.

図1は事務所ビルの基準階を示し、中央に共用施設としてエレベーター1、エレベーターホール2および廊下3がそれぞれ配置され、その周囲に執務室4が配置されている。エレベーター1とエレベーターホール2は複数、Y軸方向に並列に配置され、これら共用施設の両側と下側の周囲を取り巻くように廊下3がU字状に連続して配置されている。   FIG. 1 shows a standard floor of an office building, in which an elevator 1, an elevator hall 2 and a corridor 3 are arranged as shared facilities in the center, and an office room 4 is arranged around them. A plurality of elevators 1 and elevator halls 2 are arranged in parallel in the Y-axis direction, and a corridor 3 is continuously arranged in a U-shape so as to surround both sides and the lower periphery of these shared facilities.

また、図2(a),(b)は、上記事務所ビルの共用施設に適用された本願発明の構造架構を示し、エレベーター1と1との間、エレベーターホール2と執務室4との間およびエレベーター1と執務室4との間にそれぞれ配置された仕切り壁5a,5b,5cは、X軸方向に作用する外力Pに対する強軸の耐震壁(以下「耐震壁5a,5b,5c」という)として構築されている。 FIGS. 2 (a) and 2 (b) show the structural frame of the present invention applied to the shared facilities of the office building, between the elevators 1 and 1, and between the elevator hall 2 and the office room 4. FIG. The partition walls 5a, 5b, 5c respectively disposed between the elevator 1 and the office room 4 are strong-axis earthquake-resistant walls (hereinafter referred to as “earthquake-resistant walls 5a, 5b, 5c”) against the external force P 1 acting in the X-axis direction. Is built).

また、各エレベーター1およびエレベーターホール2と廊下3との間にそれぞれ配置された仕切り壁6a,6bは外力Pに対する弱軸の耐震壁(以下「耐震壁6a,6b」という)として構築されている。 Also, it built as respectively arranged partition walls 6a, 6b are weak axis with respect to the external force P 1 shear wall (hereinafter referred to as "shear walls 6a, 6b") between each elevator 1 and elevator hall 2 and corridors 3 Yes.

各耐震壁5a,5b,5cとその両側の耐震壁6a,6bとの間に境界梁7がそれぞれ配置され、また各耐震壁6aと6bとの間および各耐震壁6aと6aとの間に境界梁8がそれぞれ配置されている。さらに、執務室4の周囲に柱9が所定間隔おきに配置され、各柱9と9との間に大梁10が架け渡されている。   Boundary beams 7 are respectively arranged between the earthquake-resistant walls 5a, 5b and 5c and the earthquake-resistant walls 6a and 6b on both sides thereof, and between the earthquake-resistant walls 6a and 6b and between the earthquake-resistant walls 6a and 6a. Boundary beams 8 are respectively arranged. Furthermore, pillars 9 are arranged around the office room 4 at predetermined intervals, and large beams 10 are bridged between the pillars 9 and 9.

これら耐震壁5a,5b,5cと耐震壁6a,6b、さらに柱9はいずれも、一般に最下階から最上階まで連続して配置され、境界梁7と8、大梁10はいずれも各階の床部分に配置されている。なお、境界梁7は各階の床部分に限らず配置が可能である。   The seismic walls 5a, 5b, 5c, the seismic walls 6a, 6b, and the pillars 9 are generally arranged continuously from the lowest floor to the top floor, and the boundary beams 7 and 8 and the large beams 10 are all floors of each floor. Placed in the part. The boundary beam 7 can be arranged not only on the floor portion of each floor.

このような構成において、X軸方向に作用する外力Pに対し、強軸の各耐震壁5a,5b,5cは、各耐震壁の曲げ剛性と各耐震壁の両側に配置された境界梁7による曲げ戻し効果を十分に確保するため、架構全体の曲げ剛性が高められる。 In such a configuration, with respect to the external force P 1 acting on the X-axis direction, the shear wall 5a of the strong axis, 5b, 5c, the boundary beams 7 arranged on both sides of the bending rigidity and the shear wall of the shear walls The bending rigidity of the entire frame can be increased in order to sufficiently secure the bending return effect due to.

なお、Y軸方向に作用する外力Pに対しては、エレベーター1とエレベーターホール2の両側に配置された耐震壁6a,6bが強軸の耐震壁として働き、各耐震壁5a,5b,5cが弱軸の耐震壁として働く。 Incidentally, with respect to the external force P 2 acting on the Y-axis direction, the elevator 1 and elevator Walls 6a disposed on both sides of the hole 2, acts as Shear Walls 6b is strong axis, each shear wall 5a, 5b, 5c Works as a weak axis earthquake-resistant wall.

図3(a),(b)は、本願発明の変形例を示し、図3(a)の場合、強軸の耐震壁5a,5b,5cと弱軸の耐震壁6a,6bとの間に廊下3が配置されている。その結果、境界梁7と廊下3を同じ位置に配置することで、共用施設の周囲に配置された執務室4の床面積を狭めることなく、強軸の耐震壁5a,5b,5cを可能な限り長く配置することができる。   3 (a) and 3 (b) show a modification of the present invention. In the case of FIG. 3 (a), between the strong-axis earthquake-resistant walls 5a, 5b and 5c and the weak-axis earthquake-resistant walls 6a and 6b, FIG. Corridor 3 is arranged. As a result, by arranging the boundary beam 7 and the corridor 3 at the same position, it is possible to make the strong shaft earthquake-resistant walls 5a, 5b, 5c without reducing the floor area of the office room 4 arranged around the common facility. Can be placed as long as possible.

また、図3(b)の場合、弱軸の耐震壁6aと6bは設備スペース11に配置されている。弱軸の耐震壁6a,6bがこのような位置に配置されていることで、これと請求項2記載の実施形態を合わせることにより有効な転倒スパンを容易に確保することができるため、平面計画を阻害することなく、曲げ特性を向上させることができる。   In the case of FIG. 3 (b), the weak shafts 6 a and 6 b are disposed in the equipment space 11. Since the weak shaft earthquake-resistant walls 6a and 6b are arranged at such positions, an effective fall span can be easily secured by combining this with the embodiment of claim 2, and therefore, the plan plan The bending characteristics can be improved without hindering the above.

また、執務室4に入ることなく、廊下3から設備室内の点検等を行うことが可能になり、また各エレベーター1からの出入りに制約されないため、設備スペース11の空間を確保しやすい。   In addition, it is possible to inspect the equipment room from the corridor 3 without entering the office room 4, and since it is not restricted to entering and exiting from each elevator 1, it is easy to secure the space of the equipment space 11.

図4(a),(b)は、同じく本願発明の変形例を示し、強軸の耐震壁5がそれぞれC型と十字型に配置されており、平面計画に合わせて自由に選択することができる。   4 (a) and 4 (b) show a modified example of the present invention, in which the strong-axis seismic walls 5 are arranged in a C shape and a cross shape, respectively, and can be freely selected according to the plan plan. it can.

本願発明は、耐震壁の曲げ剛性と境界梁による曲げ戻し効果を十分に確保し、構造物全体の曲げ剛性を大幅に高めることにより、耐震性の非常に高い建物を提供することができる。   The present invention can provide a building having extremely high earthquake resistance by sufficiently securing the bending rigidity of the earthquake-resistant wall and the bending return effect by the boundary beam and greatly increasing the bending rigidity of the entire structure.

本願発明の構造架構が適用された事務所ビルの基準階の平面図である。It is a top view of the reference floor of the office building to which the structural frame of the present invention is applied. 本願発明の構造架構を示し、(a)はその一部縦断面図、(b)はその横断面図である。The structural frame of this invention is shown, (a) is the one part longitudinal cross-sectional view, (b) is the cross-sectional view. (a),(b)は、本願発明の構造架構が適用された事務所ビルの基準階の平面図である。(a), (b) is a top view of the reference | standard floor of the office building to which the structural frame of this invention was applied. (a),(b)は本願発明の構造架構を示す横断面図である。(a), (b) is a cross-sectional view which shows the structural frame of this invention. (a),(b)は境界梁の応力図である。(a), (b) is a stress diagram of the boundary beam. (a),(b) ,(c)は境界梁端部の配筋方法を示す一部縦断面図である。(a), (b), (c) is a partial longitudinal cross-sectional view which shows the bar arrangement method of a boundary beam edge part. 従来の構造架構が適用された事務所ビルを示し、(a)は基準階の平面図、(b)はその一部縦断面図、(c)はその横断面図である。An office building to which a conventional structural frame is applied is shown, (a) is a plan view of a reference floor, (b) is a partial longitudinal sectional view thereof, and (c) is a transverse sectional view thereof.

符号の説明Explanation of symbols

1 エレベーター
2 エレベーターホール
3 廊下
4 執務室
5 耐震壁
5a 耐震壁(仕切り壁)
5b 耐震壁(仕切り壁)
5c 耐震壁(仕切り壁)
6 耐震壁
6a 耐震壁(仕切り壁)
6b 耐震壁(仕切り壁)
7 境界梁
8 境界梁
9 柱
10 大梁
11 設備スペース
DESCRIPTION OF SYMBOLS 1 Elevator 2 Elevator hall 3 Corridor 4 Office room 5 Earthquake-resistant wall 5a Earthquake-resistant wall (partition wall)
5b Earthquake resistant wall (partition wall)
5c Earthquake resistant wall (partition wall)
6 Seismic wall 6a Seismic wall (partition wall)
6b Earthquake resistant wall (partition wall)
7 Boundary beam 8 Boundary beam 9 Column 10 Large beam 11 Facility space

Claims (5)

外力の作用方向と平行に配置された、前記外力に対して強軸の耐震壁と、当該耐震壁の両側に前記外力の作用方向と直交する方向にそれぞれ配置された、前記外力に対して弱軸の耐震壁と、前記強軸の耐震壁と前記弱軸の耐震壁との間にそれぞれ配置された境界梁とからなることを特徴とする構造架構。   Weak walls against the external force, which are arranged in parallel to the direction of external force, and weak against the external force, which are arranged on both sides of the earthquake-resistant wall in a direction perpendicular to the direction of the external force. A structural frame comprising an earthquake-resistant wall of a shaft and boundary beams arranged between the earthquake-resistant wall of the strong axis and the earthquake-resistant wall of the weak axis. 強軸の耐震壁と弱軸の耐震壁との間に廊下が配置されてなることを特徴とする請求項1記載の構造架構。   2. The structural frame according to claim 1, wherein a corridor is disposed between the strong-axis seismic wall and the weak-axis seismic wall. 弱軸の耐震壁は設備スペースに配置されてなることを特徴とする請求項1または2記載の構造架構。   3. The structural frame according to claim 1 or 2, wherein the weak-axis seismic wall is arranged in an equipment space. 強軸の耐震壁の壁長と境界梁の梁長との比が1.5以下に設定されてなることを特徴とする請求項1〜3のいずれかに記載された構造架構。   The structural frame according to any one of claims 1 to 3, wherein a ratio between a wall length of the strong shaft earthquake-resistant wall and a beam length of the boundary beam is set to 1.5 or less. 境界梁のせん断スパン比が1.5以上に設定されてなることを特徴する請求項1〜4のいずれかに記載された構造架構。












The structural frame according to any one of claims 1 to 4, wherein a shear span ratio of the boundary beam is set to 1.5 or more.












JP2004047976A 2004-02-24 2004-02-24 Structural frame Expired - Fee Related JP4222224B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004047976A JP4222224B2 (en) 2004-02-24 2004-02-24 Structural frame

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004047976A JP4222224B2 (en) 2004-02-24 2004-02-24 Structural frame

Publications (2)

Publication Number Publication Date
JP2005240303A true JP2005240303A (en) 2005-09-08
JP4222224B2 JP4222224B2 (en) 2009-02-12

Family

ID=35022325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004047976A Expired - Fee Related JP4222224B2 (en) 2004-02-24 2004-02-24 Structural frame

Country Status (1)

Country Link
JP (1) JP4222224B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006176967A (en) * 2004-12-21 2006-07-06 Takenaka Komuten Co Ltd Continuous layer earthquake resisting wall structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006176967A (en) * 2004-12-21 2006-07-06 Takenaka Komuten Co Ltd Continuous layer earthquake resisting wall structure

Also Published As

Publication number Publication date
JP4222224B2 (en) 2009-02-12

Similar Documents

Publication Publication Date Title
Harne Comparative study of strength of RC shear wall at different location on Multi-storied residential building
JP4247496B2 (en) Seismic reinforcement structure
JP4105191B2 (en) Column and beam frame
JP2005248438A (en) Building structure
JP4222224B2 (en) Structural frame
JP4937504B2 (en) Building
JPH0874317A (en) Skeleton structure of building
JP6019710B2 (en) Seismic reinforcement structure and method for existing buildings
JP2002266470A (en) Reinforcement or steel encased reinforced concrete beam having opening part, reinforcing method and reinforcing bar of its opening part
JP6890031B2 (en) Building reinforcement structure
JP4994191B2 (en) Structure
Satheesh et al. Torsional behavior of plan asymmetric shear wall buildings under earthquake loading
JP7307600B2 (en) building
JP7289589B2 (en) Structure of the concrete walls that make up the structure
JP5288845B2 (en) Building structure
JP2020502403A (en) Skyscraper
JP4800166B2 (en) housing complex
JP5385170B2 (en) Building frame structure
JP6045617B2 (en) Building
JP2010116701A (en) Building
JP2004169420A (en) Structure of building
JP5111920B2 (en) Seismic reinforcement structure for existing buildings
JP6444773B2 (en) Building group and building group construction method
JP3820521B2 (en) Building frame
JP3909559B2 (en) Seismic structure of a house

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081028

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081110

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141128

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees