JP2005240148A - High-tensile steel plate having excellent scuffing resistance and chemical conversion property, and method for manufacturing the same - Google Patents

High-tensile steel plate having excellent scuffing resistance and chemical conversion property, and method for manufacturing the same Download PDF

Info

Publication number
JP2005240148A
JP2005240148A JP2004054225A JP2004054225A JP2005240148A JP 2005240148 A JP2005240148 A JP 2005240148A JP 2004054225 A JP2004054225 A JP 2004054225A JP 2004054225 A JP2004054225 A JP 2004054225A JP 2005240148 A JP2005240148 A JP 2005240148A
Authority
JP
Japan
Prior art keywords
steel plate
chemical conversion
solid particles
projection
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004054225A
Other languages
Japanese (ja)
Inventor
Satoshi Ando
聡 安藤
Shinji Otsuka
真司 大塚
Yoshiharu Sugimoto
芳春 杉本
Masayasu Ueno
雅康 植野
Yukio Kimura
幸雄 木村
Yasuhiro Sotani
保博 曽谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2004054225A priority Critical patent/JP2005240148A/en
Publication of JP2005240148A publication Critical patent/JP2005240148A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-tensile steel plate capable of compatibly realizing both characteristics of die scuffing resistance and chemical conversion property and having excellent die scuffing resistance and chemical conversion property, and a method for manufacturing the same. <P>SOLUTION: In the method for manufacturing a high-tensile steel plate having excellent die scuffing resistance and chemical conversion property, solid particles of average grain size of 30-300 μm are blasted against the steel plate containing ≥ 0.1 mass% Si. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、自動車用鋼板などに好適な耐型かじり性と化成処理性に優れた鋼板及びその製造方法に関するものである。   The present invention relates to a steel plate excellent in mold galling resistance and chemical conversion treatment suitable for automobile steel plates and the like, and a method for producing the same.

近年、COの削減を目的とした、自動車の燃費向上への取り組みとして、自動車車体の軽量化が図られており、車体軽量化のアプローチとして、車体を構成する鋼板の高張力化が進んでいる。高張力鋼板では、素材の強度向上と加工性を両立させる為、Si、Mn、C等が通常添加されている。このうちSi、Mnは何れも易酸化性元素であり、通常の還元焼鈍雰囲気で、表層に酸化物として濃化しやすい。ここで、表層に濃化したこれらの酸化物は不活性である為、自動車塗装工程の下地処理であるリン酸塩処理工程において、Feのエッチング反応が均一に生じない。また、条件によっては、リン酸塩結晶が十分に成長できない場合がある。その結果、塗装後の塗料密着性や、腐食環境での膨れなどの課題を生じやすい。 In recent years, automobile body weight has been reduced as an effort to improve the fuel efficiency of automobiles for the purpose of reducing CO 2 , and as the approach for reducing body weight, higher tension of steel plates constituting the body has been advanced. Yes. In high-tensile steel sheets, Si, Mn, C, and the like are usually added in order to achieve both improvement in material strength and workability. Of these, Si and Mn are easily oxidizable elements, and are easily concentrated as oxides on the surface layer in a normal reduction annealing atmosphere. Here, since these oxides concentrated on the surface layer are inactive, the Fe etching reaction does not occur uniformly in the phosphate treatment process which is the base treatment of the automobile painting process. Moreover, depending on conditions, a phosphate crystal may not grow sufficiently. As a result, problems such as paint adhesion after coating and swelling in a corrosive environment are likely to occur.

一方、高張力鋼板をプレス成形する場合、軟鋼の場合と比較して、金型との接触部での面圧が高くなる。この結果、プレス成形時の型かじりが生じやすいという課題がある。一般に、面圧を変え、型かじりが生じる限界耐荷重を比較すると、強度レベルの高い鋼板の場合、限界耐荷重が大きい。また、表面に形成される易酸化性成分よりなる酸化物層の存在により、金型と鋼板の直接接触が妨げられ、凝着が生じ難くなるため、高張力鋼板の耐型かじり性は軟鋼に比較して良好である。   On the other hand, when press-molding a high-tensile steel plate, the surface pressure at the contact portion with the mold is higher than in the case of mild steel. As a result, there is a problem that mold galling is likely to occur during press molding. In general, when the limit load capacity at which the surface pressure is changed and die galling is compared, the steel sheet with a high strength level has a large limit load capacity. In addition, the presence of an oxide layer made of an easily oxidizable component formed on the surface prevents direct contact between the mold and the steel sheet, making it difficult for adhesion to occur. It is good compared.

化成処理性を向上させるためには、表面の活性度を高めることが有効である。しかし、酸化物層を酸処理やブラシロールなどで除去すると、上記のような高張力鋼板に固有の良好な耐型かじり性が低下する。   In order to improve chemical conversion property, it is effective to increase the activity of the surface. However, when the oxide layer is removed by acid treatment, brush roll, or the like, the good mold galling resistance inherent to the high-tensile steel sheet as described above is lowered.

従って、高張力鋼板の化成処理性と耐型かじり性の両立は、単純に表面の酸化物層を制御するのみでは困難である。   Therefore, it is difficult to achieve both the chemical conversion processability and the galling resistance of the high-tensile steel plate simply by controlling the surface oxide layer.

高張力鋼板の化成処理性を向上させる技術として、公知文献1には、焼鈍条件を制御し、表層のSi酸化物存在状態を最適化させる技術が開示されている。ところが、本技術では、焼鈍条件に制約を与えるのみならず、表層酸化物層が少ない為、耐型かじり性が低下するという欠点がある。   As a technique for improving the chemical conversion processability of a high-strength steel sheet, publicly known document 1 discloses a technique for controlling the annealing conditions and optimizing the presence of Si oxide in the surface layer. However, the present technology has not only limitations on the annealing conditions, but also has a drawback in that the mold galling resistance is reduced because the surface oxide layer is small.

また、特許文献2には、化成処理性、耐型かじり性を両立させる技術として、金属亜鉛層及びその表層にP、B、Siなどを含む酸化亜鉛主体の極薄皮膜を形成させる技術が開示されている。本技術によれば、表層酸化物の採用により耐型かじり性は向上する。しかし、Si、Mnなどの易酸化性物質を含有する高張力鋼板の場合には、表層に形成される酸化物層の影響が消去できず、化成処理性が十分得られないという欠点がある。また、本技術の場合、電解により亜鉛層を形成する必要があるので、改めて電解設備を通過させる必要があり、プロセス上の課題がある。
特開2003−113441号公報 特開平10−158858号公報
Patent Document 2 discloses a technique for forming a zinc oxide-based ultrathin film containing P, B, Si, etc. on the metal zinc layer and its surface layer as a technique for achieving both chemical conversion treatment and mold galling resistance. Has been. According to the present technology, the mold galling resistance is improved by employing the surface layer oxide. However, in the case of a high-strength steel sheet containing an easily oxidizable substance such as Si and Mn, there is a drawback that the effect of the oxide layer formed on the surface layer cannot be eliminated and the chemical conversion processability cannot be obtained sufficiently. Further, in the case of the present technology, since it is necessary to form a zinc layer by electrolysis, it is necessary to pass through the electrolysis equipment again, which causes a process problem.
JP 2003-113441 A JP-A-10-158858

本発明は、上記事情を考慮してなされたものであり、耐型かじり、化成処理性の両特性を両立し得る、耐型かじり性と化成処理性に優れた高張力鋼板及びその製造方法を提供することを目的とする。   The present invention has been made in consideration of the above circumstances, and provides a high-tensile steel sheet excellent in mold galling resistance and chemical conversion processability, and a method for producing the same, which can achieve both the characteristics of mold galling resistance and chemical conversion processability The purpose is to provide.

本発明の技術は、以下の点に特徴がある。
1)Siを0.1mass%以上含有する鋼板に対し、平均粒径が30〜300μmの固体粒子を投射することを特徴とする、耐型かじり性と化成処理性に優れた高張力鋼板の製造方法。
2)上記1)に記載の製造方法であって、投射距離を700mm以内、固体粒子の投射初速度が60m/s以上、固体粒子の密度が2g/cm以上、投射密度が0.2〜50kg/mであることを特徴とする、耐型かじり性と化成処理性に優れた高張力鋼板の製造方法。
The technology of the present invention is characterized by the following points.
1) Production of a high-tensile steel plate excellent in mold galling resistance and chemical conversion treatment, characterized by projecting solid particles having an average particle size of 30 to 300 μm to a steel plate containing 0.1 mass% or more of Si. Method.
2) The production method according to 1) above, wherein a projection distance is within 700 mm, a solid particle initial projection speed is 60 m / s or more, a solid particle density is 2 g / cm 3 or more, and a projection density is 0.2 to A method for producing a high-tensile steel sheet excellent in mold galling resistance and chemical conversion treatment, characterized by being 50 kg / m 2 .

3)上記1)又は2)に記載の製造方法により得られるSiを0.1mass%以上含有する鋼板であって、固体粒子の投射により形成される、ディンプル状の表面凹凸を有し、かつ表層より深さ方向に20μm以内の範囲の硬さが、深さ方向50μm以上の領域の硬さの1.1倍以上であることを特徴とする、耐型かじり性と化成処理性に優れた高張力鋼板。   3) A steel plate containing 0.1 mass% or more of Si obtained by the production method described in 1) or 2) above, having dimple-like surface irregularities formed by projection of solid particles, and a surface layer The hardness in the range of 20 μm or less in the depth direction is 1.1 times or more the hardness of the region in the depth direction of 50 μm or more. Tensile steel plate.

本発明によれば、耐型かじり、化成処理性の両特性を両立し得る、耐型かじり性と化成処理性に優れた高張力鋼板及びその製造方法を提供できる。   According to the present invention, it is possible to provide a high-strength steel sheet excellent in mold galling resistance and chemical conversion treatment, which can satisfy both characteristics of mold galling and chemical conversion treatment, and a method for producing the same.

以下、本発明の高張力鋼板について説明する。
本発明における高張力鋼板は、引張り強度として340N/mm以上のものであり、冷延鋼板、熱延鋼板のいずれでも良い。また、所定の機械特性値を得る為に、鋼中には、Cの他にも、Si、Mn、P、Ti、Nb、V等が含有されていても良い。この中で、高張力鋼板の所定の機械特性値を得る為に、Si、Mnは特にその含有量が多く、両者、あるいはどちらかの一方の元素が、0.1mass%以上添加される。
Hereinafter, the high-tensile steel plate of the present invention will be described.
The high-tensile steel plate in the present invention has a tensile strength of 340 N / mm 2 or more, and may be either a cold-rolled steel plate or a hot-rolled steel plate. In addition to C, the steel may contain Si, Mn, P, Ti, Nb, V, etc. in order to obtain a predetermined mechanical property value. Among these, in order to obtain a predetermined mechanical property value of the high-tensile steel plate, the content of Si and Mn is particularly large, and both or one of the elements is added in an amount of 0.1 mass% or more.

通常、鋼板は熱間庄延または冷間圧延した後、焼鈍される。焼鈍はFeに対しては還元雰囲気であるが、Si、Mnなどは酸化し得る雰囲気であるため、鋼板表面ではこれらの元素が濃化し、酸化物を形成する。表層に形成されるSi、Mn系酸化物のうち、Mn酸化物は焼鈍後の硫酸や塩酸による酸洗により比較的容易に除去されるが、Si酸化物は残留しやすい。   Usually, steel sheets are annealed after hot rolling or cold rolling. Annealing is a reducing atmosphere for Fe, but Si, Mn, and the like are oxidizable atmospheres, so these elements are concentrated on the steel sheet surface to form oxides. Of the Si and Mn-based oxides formed on the surface layer, the Mn oxide is relatively easily removed by pickling with sulfuric acid or hydrochloric acid after annealing, but the Si oxide tends to remain.

ところで、表層に残留したSi酸化物は鋼板表面を不活性にする。この結果、自動車用塗装下地として処理される化成処理では、リン酸塩水溶液中で鋼がエッチングされにくく、リン酸塩結晶が繊密に形成し難くなるという問題がある。一方、ブラシロールなどで機械的にこれらの表面酸化物を除去する方法も可能であるが、表層酸化物が除去されると、先に述べたように、耐型かじり性に対し不利となる。   By the way, the Si oxide remaining in the surface layer inactivates the surface of the steel sheet. As a result, in the chemical conversion treatment that is processed as an automobile coating base, there is a problem in that the steel is difficult to be etched in the phosphate aqueous solution, and the phosphate crystals are difficult to form densely. On the other hand, a method of mechanically removing these surface oxides with a brush roll or the like is also possible. However, when the surface layer oxide is removed, it is disadvantageous for mold galling resistance as described above.

そこで、本発明では、Siを0.1mass%以上含有する高張力鋼板の化成処理性、耐型かじり性の両特性を両立させる為に、本鋼板に平均粒径が30〜300μmの固体粒子を投射する。以下、本発明について詳細に説明する。
まず、固体粒子の投射により、鋼板表面のSi系酸化物が破壊され、リン酸塩処理液と鉄地との反応性が改善される。さらに、固体粒子の投射により形成される、ディンプル状の表面凹凸の存在により、高面圧下でも凹部にプレス油が保持され、良好な潤滑性が持続する。ここで、「ディンプル状」とは、表面のくぼみの形状が、主として曲面から構成され、例えば球状の物体が表面に衝突して形成されるクレータ状のくぼみが多数形成されている形態である。固体粒子を投射することにより得られる表面では、くぼみ、すなわち凹部のサイズ、分布は投射される鋼板の硬さ、固体粒子の粒子径、密度、初期速度、投射距離、投射密度により決まる。ここで、鋼板の型かじり性に有効なディンプル形状では、油の保持される凹部が密に存在していることが重要である。
Therefore, in the present invention, in order to achieve both the chemical conversion processability and the anti-galling property of the high-strength steel plate containing 0.1 mass% or more of Si, solid particles having an average particle size of 30 to 300 μm are added to the steel plate. Project. Hereinafter, the present invention will be described in detail.
First, the projection of solid particles destroys the Si-based oxide on the surface of the steel sheet, improving the reactivity between the phosphating solution and the iron ground. Furthermore, due to the presence of dimple-like surface irregularities formed by projection of solid particles, press oil is held in the concave portions even under high surface pressure, and good lubricity is maintained. Here, the “dimple shape” is a form in which the shape of the surface depression is mainly composed of a curved surface, and for example, a large number of crater-like depressions formed by collision of a spherical object with the surface. On the surface obtained by projecting solid particles, the size and distribution of the depressions, that is, the recesses, are determined by the hardness of the steel sheet to be projected, the particle diameter, density, initial velocity, projection distance, and projection density of the solid particles. Here, in the dimple shape effective for the galling property of the steel plate, it is important that the concave portions where oil is held are densely present.

一方、適切な条件で固体粒子を投射することにより、表層部が局部的に変形を受ける為、表層のみが硬化する。この結果、高面圧での摺動においても、表面変形が生じにくく、摺動時の工具の掘り起こしによるかじりが生じ難くなる。さらに、真実接触面積が増加しにくいため、油切れによる金型と鋼板の直接接触部が少なくなり、凝着が生じ難く、凝着物の堆積によるかじりも抑制される。   On the other hand, since the surface layer portion is locally deformed by projecting solid particles under appropriate conditions, only the surface layer is cured. As a result, even during sliding at a high surface pressure, surface deformation is unlikely to occur, and galling due to tool digging during sliding is less likely to occur. Furthermore, since the true contact area is unlikely to increase, the direct contact portion between the mold and the steel plate due to running out of oil is reduced, adhesion is unlikely to occur, and galling due to accumulation of adhesion is suppressed.

一方、化成処理性を確保する為には、十分なエネルギーで固体粒子が鋼板に投射され、Si系酸化物を破壊することが重要である。   On the other hand, in order to ensure chemical conversion processability, it is important that solid particles are projected onto the steel sheet with sufficient energy to destroy the Si-based oxide.

以上を鑑み、Siを0.1mass%含有する高張力鋼板において、適度な油保持作用による耐型かじり性、Si系酸化物の破壊による化成処理性を両立させるためには、平均粒径が30〜300μmの固体粒子を、投射距離が700mm以内で投射することが好ましい。さらに、固体粒子の投射初速度が60m/s以上、固体粒子の密度が2g/cm以上、投射密度が0.2〜50kg/mであることがより有効な表面状態を得ることが可能である。 In view of the above, in a high-strength steel sheet containing 0.1 mass% of Si, in order to achieve both mold galling resistance by an appropriate oil retaining action and chemical conversion treatment by destruction of Si-based oxide, the average particle size is 30. It is preferable to project solid particles of ˜300 μm within a projection distance of 700 mm. Furthermore, it is possible to obtain a more effective surface state that the initial velocity of solid particles is 60 m / s or more, the density of solid particles is 2 g / cm 3 or more, and the projection density is 0.2 to 50 kg / m 2. It is.

本発明において、固体粒子の平均粒径は、30μm未満であると投射時の粒子の速度低下が大きく、鋼板への衝突時に十分なエネルギーを付与することができない。また粒子径が小さい場合、粒子の搬送や回収などのハンドリング面で困難となる。一方、粒子径が300μmを超えると、圧痕が大きくなるうえ、密な凹凸が形成されない。型かじりに対して有効な表面形態としては、密な凹凸を有することが有効であることが判明しており、粗さパラメータでの表示では、以下の範囲となる。   In the present invention, when the average particle size of the solid particles is less than 30 μm, the speed of the particles is greatly reduced during projection, and sufficient energy cannot be imparted at the time of collision with the steel plate. In addition, when the particle diameter is small, it becomes difficult in terms of handling such as particle conveyance and recovery. On the other hand, when the particle diameter exceeds 300 μm, the indentation becomes large and dense irregularities are not formed. As a surface form effective against mold galling, it has been found that it is effective to have dense unevenness, and the following range is displayed in the roughness parameter.

粗さRaとしては、0.3〜3μmの平均粗さ(平均粗さRaとはJIS B0601に規定される中心線平均粗さである)、ピークカウントPPIとしては、150〜600が好ましい。より好ましいPPIとしては、200〜400である。ここで、「ピークカウントPPI」とは、SAE911規格で規定されるように、1インチあたりの凹凸のピーク数である。なお、上記ピークカウントPPIは、カウントレベルが±0.625μmにおける値で表される。   As the roughness Ra, an average roughness of 0.3 to 3 μm (the average roughness Ra is a center line average roughness defined in JIS B0601) and a peak count PPI of 150 to 600 are preferable. A more preferred PPI is 200 to 400. Here, the “peak count PPI” is the number of uneven peaks per inch as defined in the SAE 911 standard. The peak count PPI is represented by a value at a count level of ± 0.625 μm.

さらに、型かじり性に有効な表面硬度としては、表面から深さ方向に20μm以内の範囲での硬度が、ビッカース硬度で120Hv以上であることが好ましい。先に述べたように、摺動時の表層の変形を生じ難くするためには、工具との摺動により影響を受ける、表面粗さレベルと同じ、数μm程度の深さ領域の硬さが重要であると考えられる。さらに、掘り起こしなどの現象に耐える為には、より深い位置での硬さも重要である。本発明により得られた、耐型かじり性に優れた鋼板の表面硬さは、深さ方向で20μm以内の領域で硬化していることから、高い硬度を有すべき領域を深さ方向20μm以内と規定した。   Furthermore, as the surface hardness effective for mold galling, it is preferable that the hardness within a range of 20 μm or less in the depth direction from the surface is 120 Hv or more in terms of Vickers hardness. As described above, in order to make it difficult to cause deformation of the surface layer during sliding, the hardness of a depth region of about several μm, which is affected by sliding with a tool, is the same as the surface roughness level. It is considered important. Furthermore, in order to withstand phenomena such as digging, the hardness at deeper positions is also important. The surface hardness of the steel sheet obtained by the present invention and excellent in resistance to mold galling is hardened in the region within 20 μm in the depth direction, so that the region that should have high hardness is within 20 μm in the depth direction. Stipulated.

なお、通常、鋼種によっても若干硬さが異なるため、表層部の硬さは、表層部以外の部分、即ち深さ方向に50μm以上の範囲で測定される硬さの1.1倍以上であることが必要である。1.1倍未満の場合、耐型かじり性が十分得られない。   In addition, since the hardness is usually slightly different depending on the steel type, the hardness of the surface layer portion is 1.1 times or more of the hardness measured in a portion other than the surface layer portion, that is, in a depth direction of 50 μm or more. It is necessary. When the ratio is less than 1.1 times, sufficient resistance to mold galling cannot be obtained.

この様な硬さは、鋼板の断面を研磨し、位置を変えてマイクロビッカースなどにより硬度測定することにより得られる。   Such hardness can be obtained by polishing the cross section of the steel sheet, changing the position, and measuring the hardness with micro Vickers or the like.

本発明の技術では、さらに、ディンプル形状を有し、かつ上記の粗さパラメータで表現されるような密な凹凸を有する形状を得ることも重要である。この為には、粒子径は300μm以下である必要がある。30〜300μmの粒子径を有する固体粒子を投射させることにより、所定のディンプル形状を得ることが可能である。しかし、さらに表層Si酸化物を破壊し、かつ表層を上記の硬さとするためには、固体粒子が鋼板に投射される際に十分なエネルギーを有している必要がある。そこで、本発明サイズの固体粒子の場合、好適な投射距離を検討したところ、700mm以下であれば良いことが明らかとなった。700mmを超えると、鋼板に到達した際の粒子の運動エネルギーが十分でなく、十分に酸化物を破壊できず、表層の硬化も十分でない。   In the technique of the present invention, it is also important to obtain a shape having a dimple shape and a dense unevenness as expressed by the roughness parameter. For this purpose, the particle diameter needs to be 300 μm or less. A predetermined dimple shape can be obtained by projecting solid particles having a particle diameter of 30 to 300 μm. However, in order to further destroy the surface layer Si oxide and make the surface layer have the above hardness, it is necessary to have sufficient energy when the solid particles are projected onto the steel plate. Therefore, in the case of the solid particles of the present invention, when a suitable projection distance was examined, it was found that it should be 700 mm or less. If it exceeds 700 mm, the kinetic energy of the particles when reaching the steel sheet is not sufficient, the oxide cannot be sufficiently destroyed, and the surface layer is not sufficiently cured.

さらに、上記と同じ理由で、固体粒子の投射初速度が60m/s以上、固体粒子の密度が2g/cm以上とすべきである。投射初速度が60m/s未満、あるいは固体粒子の密度が2g/cm未満の場合、投射距離を700mm以下としても、耐型かじり性に有効な微細凹凸を有するディンプル形状を得られない上に、化成処理性に有効なSi系酸化物の破壊、表層の硬化も十分行われない。 Furthermore, for the same reason as described above, the initial projection speed of the solid particles should be 60 m / s or more, and the density of the solid particles should be 2 g / cm 3 or more. When the initial projection speed is less than 60 m / s or the density of solid particles is less than 2 g / cm 3 , a dimple shape having fine irregularities effective for mold galling resistance cannot be obtained even if the projection distance is 700 mm or less. Further, the destruction of the Si-based oxide effective for chemical conversion treatment and the hardening of the surface layer are not sufficiently performed.

本発明において、固体粒子としては、金属系材料またはセラミックス系材料が好適である。金属系材料としては、例えば鉄系材料である炭素鋼、ステンレス鋼、高速度工具鋼(ハイス)、タングステンカーバイドなどの超硬合金が挙げられる。セラミックス系材料としては、例えばアルミナ、ジルコニアが挙げられる。   In the present invention, a metal material or a ceramic material is suitable as the solid particles. Examples of the metal-based material include iron-based materials such as carbon steel, stainless steel, high-speed tool steel (high speed), and cemented carbide such as tungsten carbide. Examples of the ceramic material include alumina and zirconia.

固体粒子の初速度上限は特に規定されないが、投射装置の上限で制限される。投射密度は鋼板に投射される面積により決められるが、鋼板のより広い範囲で所定の微細凹凸を有するディンプル形状を得る為には、平均投射密度として0.2〜50kg/mが好適であり、より好ましくは5〜25kg/mである。平均投射密度が0.2kg/m未満の場合、表面の加工される面積が少なく、効果が十分得られない。また、平均投射密度が50kg/mを超えると、鋼板表面に反りや損傷などが生じる。 The upper limit of the initial velocity of the solid particles is not particularly defined, but is limited by the upper limit of the projection device. The projection density is determined by the area projected on the steel sheet, but in order to obtain a dimple shape having predetermined fine irregularities in a wider range of the steel sheet, an average projection density of 0.2 to 50 kg / m 2 is suitable. More preferably, it is 5-25 kg / m < 2 >. When the average projection density is less than 0.2 kg / m 2 , the surface processed area is small and the effect cannot be obtained sufficiently. On the other hand, if the average projection density exceeds 50 kg / m 2 , warpage or damage occurs on the steel sheet surface.

本発明において、固体粒子の投射装置としては、空気式装置よりも遠心式装置が好ましい。空気式装置では粒子を投射させるノズルが小さい為、広幅の鋼板に投射するためにはノズルを多数配置する必要がある。これに対し、遠心式では広範囲での投射が可能であることに加え、固体粒子に十分な初速度を付与するのに有効である。   In the present invention, the solid particle projection device is preferably a centrifugal device rather than a pneumatic device. In a pneumatic apparatus, since the nozzle which projects a particle is small, in order to project on a wide steel plate, it is necessary to arrange many nozzles. On the other hand, in addition to being able to project in a wide range, the centrifugal method is effective for imparting a sufficient initial velocity to the solid particles.

本発明における製造方法として、例えば冷間圧延材に適用する場合には、以下のとおりとなる。即ち、鋼板に固体粒子を投射する装置、固体粒子を回収する装置、及び鋼板表面に付着あるいは残留する固体粒子を除去する装置から構成される設備を配し、冷間圧延、焼鈍、調質圧延の後、本発明の処理を施す。ここで、冷間圧延、焼鈍、調質圧延などの条件は特に限定されるものではなく、各工程後に洗浄工程などがあっても良い。さらに焼鈍の後に表面酸化物を除去する酸性水溶液処理などが施されていても良い。   As a manufacturing method in the present invention, for example, when applied to a cold rolled material, it is as follows. In other words, cold rolling, annealing, temper rolling is provided with equipment composed of a device that projects solid particles onto a steel plate, a device that collects solid particles, and a device that removes solid particles that adhere to or remain on the steel plate surface. Thereafter, the processing of the present invention is performed. Here, conditions, such as cold rolling, annealing, and temper rolling, are not specifically limited, A washing | cleaning process etc. may exist after each process. Further, an acidic aqueous solution treatment for removing the surface oxide may be performed after the annealing.

また、本発明の製造方法で得られた鋼板にさらに、コーティング、化学処理、電解処理などにより、亜鉛系めっきあるいは有機系又は、無機系、有機無機複合系の層を付与しても良い。   Further, a zinc-based plating or an organic or inorganic / organic-inorganic composite layer may be further applied to the steel plate obtained by the production method of the present invention by coating, chemical treatment, electrolytic treatment, or the like.

本発明の対象となる鋼板は、引張強度340N/mm以上であり、より好ましくは440N/mm以上である。Si濃度は0.1mass%以上が好ましいが、さらに好ましい範囲は、0.2mass%以上である。また熱間圧延鋼板、冷間圧延鋼板のいずれでも適用が可能である。 The steel plate which is the subject of the present invention has a tensile strength of 340 N / mm 2 or more, more preferably 440 N / mm 2 or more. The Si concentration is preferably 0.1 mass% or more, but a more preferable range is 0.2 mass% or more. In addition, any of a hot rolled steel plate and a cold rolled steel plate can be applied.

(実施例)
以下、本発明の実施例について説明する。
本実施例では、引張強度、C、Si、Mn、P濃度の異なる、板厚1.2mmの冷間圧延→焼鈍→調質圧延を経た下記表1に示す冷間圧延鋼板A,B,C,Dを用いた。そして、鋼板上に、遠心式投射装置又は空気式投射装置により下記表2に示す条件で固体粒子を投射した。なお、固体粒子の平均粒径は、パックマン・コールター社製のコールターカウンター(商品名:マルチサイザーIIE型)により測定した。

Figure 2005240148
(Example)
Examples of the present invention will be described below.
In this example, cold-rolled steel sheets A, B, and C shown in Table 1 below, which have undergone cold rolling, annealing, and temper rolling with a thickness of 1.2 mm, differing in tensile strength, C, Si, Mn, and P concentrations. , D were used. And the solid particle was projected on the steel plate on the conditions shown in following Table 2 with the centrifugal projection apparatus or the pneumatic projection apparatus. The average particle size of the solid particles was measured with a Coulter counter (trade name: Multisizer IIE type) manufactured by Pacman Coulter.
Figure 2005240148

Figure 2005240148
Figure 2005240148

投射後の鋼板を用い、以下の評価を行った。なお、比較として、投射を行わない鋼板も同様に評価した。また、実施例中、試料番号9及び10のサンプルを樹脂埋めした後研磨し、研磨面の硬さを位置を変えてマイクロビッカースにより測定した。結果を、下記表3に示す。

Figure 2005240148
The following evaluation was performed using the steel plate after projection. For comparison, a steel plate without projection was also evaluated in the same manner. Further, in the examples, samples Nos. 9 and 10 were filled with resin and then polished, and the hardness of the polished surface was measured by micro Vickers while changing the position. The results are shown in Table 3 below.
Figure 2005240148

1)型かじり性評価
図1に示す形状を有する工具(SKD11)を、図2に示す平板摺動装置により面圧を変化させ、型かじりの発生する限界面圧を測定した。図1において、符号Hは工具10の高さを、符号Lは工具10の底部の長さを、符号Lは工具10の横幅を示している。工具10は、図1の状態で図2に取り付けられる。
1) Evaluation of mold galling
The surface pressure of the tool (SKD11) having the shape shown in FIG. 1 was changed by a flat plate sliding device shown in FIG. In FIG. 1, the symbol H indicates the height of the tool 10, the symbol L 1 indicates the length of the bottom of the tool 10, and the symbol L 2 indicates the lateral width of the tool 10. The tool 10 is attached to FIG. 2 in the state of FIG.

また、図2の平板摺動装置は、主に、第1のロードセル11と、摺動テーブル12と、この摺動テーブル12に接したローラー13を有する上下動可能な摺動テーブル支持台14と、試料台15と、ツール16と、第2のロードセル17と、レール18とを備えている。試料19は試料台15に固定され、該試料台15は水平移動可能な摺動テーブル12の上面に固定されている。   2 mainly includes a first load cell 11, a sliding table 12, and a vertically movable sliding table support 14 having a roller 13 in contact with the sliding table 12. A sample stage 15, a tool 16, a second load cell 17, and a rail 18. The sample 19 is fixed to the sample table 15, and the sample table 15 is fixed to the upper surface of the sliding table 12 that can move horizontally.

前記摺動テーブル支持台14は摺動テーブル12の下面に設けられ、摺動テーブル12を押上げることにより、ツール16による試料19への押付荷重Nを測定するための前記第1ロードセル11が前記摺動テーブル支持台14に取付けられている。前記第2ロードセル17は、上記押し付け力を作用させた状態で摺動テーブル14を水平方向へ移動させるための摺動抵抗力Fを測定するためのもので、摺動テーブル14の一方の端部に取付けられている。なお、前記工具10と材料が重かじりとなり、引抜き力が装置の限界値として設定されている500kgfを超える場合を、型かじり発生とした。   The sliding table support 14 is provided on the lower surface of the sliding table 12, and the first load cell 11 for measuring the pressing load N applied to the sample 19 by the tool 16 by pushing up the sliding table 12 includes the first load cell 11. The slide table support 14 is attached. The second load cell 17 is for measuring a sliding resistance force F for moving the sliding table 14 in the horizontal direction in a state where the pressing force is applied. Installed on. The case where the tool 10 and the material were severely galvanized and the pulling force exceeded 500 kgf set as the limit value of the apparatus was regarded as die galling.

2)化成処理性
日本パーカライジング(株)製の化成処理液(商品名:PB−L3080)を用い、表面調整(日本パーカライジング(株)の商品名:プレパレンZ)→リン酸塩処理→水洗→乾燥の順で自動車塗装下地用の化成処理を施した。処理時間を10秒、30秒とし、通常の処理時間(120秒以上)より短い時間で処理を中止し、形成されるリン酸塩皮膜量を重量法により測定した。重量法ではクロム酸水溶液(CrO200g/l)に常温で20分浸漬し、リン酸塩を溶解、溶解前後の重量差を求めた。
2) Chemical conversion treatment Using a chemical conversion treatment solution (trade name: PB-L3080) manufactured by Nippon Parkerizing Co., Ltd., surface adjustment (trade name: preparen Z, Nippon Parkerizing Co., Ltd.) → phosphate treatment → water washing → drying In this order, the chemical conversion treatment for the automobile paint base was performed. The treatment time was 10 seconds and 30 seconds, the treatment was stopped in a time shorter than the normal treatment time (120 seconds or more), and the amount of the phosphate film formed was measured by the gravimetric method. In the gravimetric method, the sample was immersed in a chromic acid aqueous solution (CrO 3 200 g / l) at room temperature for 20 minutes to dissolve the phosphate, and the weight difference before and after dissolution was determined.

上記表2の結果より分かるように、固体粒子を投射しない場合(表2中の比較例:試料番号1,7,9,11)に比較し、本発明の条件で固体粒子を投射した鋼板(表2中の実施例:試料番号2,3,5,6,8,10,12)では、化成処理時の初期リン酸塩皮膜量が多くなっており、初期反応性が向上していることから化成処理性が改善されることが分かる。さらに、限界耐荷重も、固体粒子を投射しない場合(表2中の試料番号1,7,9,11)に比較し、約1.4〜1.8倍に増加しており、耐型かじり性が向上することがわかる。   As can be seen from the results in Table 2 above, compared to the case where solid particles are not projected (Comparative Example in Table 2: Sample Nos. 1, 7, 9, and 11), the steel plate on which the solid particles were projected under the conditions of the present invention ( In Examples in Table 2: Sample Nos. 2, 3, 5, 6, 8, 10, 12), the initial phosphate film amount during chemical conversion treatment is increased, and the initial reactivity is improved. It can be seen that the chemical conversion processability is improved. Further, the limit load capacity is increased by about 1.4 to 1.8 times compared to the case where solid particles are not projected (Sample Nos. 1, 7, 9, and 11 in Table 2). It can be seen that the property is improved.

また、上記表3より、本実施例における条件で、固体粒子を投射したサンプルの場合、表層より20μm以内の範囲の硬さが、深さ方向に50μm以上の位置での硬さの1.1倍以上であることがわかる。   Moreover, from the said Table 3, in the case of the sample which projected the solid particle on the conditions in a present Example, the hardness of the range within 20 micrometers from the surface layer is 1.1 of the hardness in the position of 50 micrometers or more in the depth direction. It turns out that it is more than double.

型かじり性評価をするための工具の斜視図。The perspective view of the tool for performing mold | steeling_steeling evaluation. 限界面圧を測定するための平板摺動装置の説明図。Explanatory drawing of the flat plate sliding apparatus for measuring a limit surface pressure.

符号の説明Explanation of symbols

10…工具、11,17…ロードセル、12…摺動テーブル、13…ローラー、14…摺動テーブル支持台、15…試料台、16…ツール、18…レール、19…試料。   DESCRIPTION OF SYMBOLS 10 ... Tool, 11, 17 ... Load cell, 12 ... Sliding table, 13 ... Roller, 14 ... Sliding table support stand, 15 ... Sample stand, 16 ... Tool, 18 ... Rail, 19 ... Sample.

Claims (3)

Siを0.1mass%以上含有する鋼板に対し、平均粒径が30〜300μmの固体粒子を投射することを特徴とする、耐型かじり性と化成処理性に優れた高張力鋼板の製造方法。 A method for producing a high-strength steel sheet excellent in mold galling resistance and chemical conversion property, characterized in that solid particles having an average particle diameter of 30 to 300 μm are projected onto a steel sheet containing 0.1 mass% or more of Si. 投射距離を700mm以内、固体粒子の投射初速度が60m/s以上、固体粒子の密度が2g/cm以上、投射密度が0.2〜50kg/mであることを特徴とする、請求項1に記載の耐型かじり性と化成処理性に優れた高張力鋼板の製造方法。 The projection distance is within 700 mm, the initial projection speed of solid particles is 60 m / s or more, the density of solid particles is 2 g / cm 3 or more, and the projection density is 0.2 to 50 kg / m 2. A method for producing a high-strength steel sheet excellent in mold galling resistance and chemical conversion treatment as described in 1. 請求項1又は2に記載の製造方法により得られるSiを0.1mass%以上含有する鋼板であって、固体粒子の投射により形成される、ディンプル状の表面凹凸を有し、かつ表層より深さ方向に20μm以内の範囲の硬さが、深さ方向50μm以上の領域の硬さの1.1倍以上であることを特徴とする、耐型かじり性と化成処理性に優れた高張力鋼板。 A steel plate containing 0.1 mass% or more of Si obtained by the production method according to claim 1, wherein the steel plate has dimple-like surface irregularities formed by projection of solid particles, and is deeper than the surface layer. A high-tensile steel plate excellent in mold galling resistance and chemical conversion property, characterized in that the hardness within a range of 20 μm or less in the direction is 1.1 times or more the hardness of a region of 50 μm or more in the depth direction.
JP2004054225A 2004-02-27 2004-02-27 High-tensile steel plate having excellent scuffing resistance and chemical conversion property, and method for manufacturing the same Pending JP2005240148A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004054225A JP2005240148A (en) 2004-02-27 2004-02-27 High-tensile steel plate having excellent scuffing resistance and chemical conversion property, and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004054225A JP2005240148A (en) 2004-02-27 2004-02-27 High-tensile steel plate having excellent scuffing resistance and chemical conversion property, and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2005240148A true JP2005240148A (en) 2005-09-08

Family

ID=35022184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004054225A Pending JP2005240148A (en) 2004-02-27 2004-02-27 High-tensile steel plate having excellent scuffing resistance and chemical conversion property, and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2005240148A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008108044A1 (en) 2007-03-01 2008-09-12 Jfe Steel Corporation High tensile cold rolled steel plate and method for manufacturing the cold rolled steel plate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008108044A1 (en) 2007-03-01 2008-09-12 Jfe Steel Corporation High tensile cold rolled steel plate and method for manufacturing the cold rolled steel plate

Similar Documents

Publication Publication Date Title
JP6048525B2 (en) Hot press molded product
Gong et al. Micro deep drawing of micro cups by using DLC film coated blank holders and dies
TWI500822B (en) Hot stamped body and method for producing hot stamped body
JP4782056B2 (en) High-strength steel sheet with excellent scale adhesion during hot pressing and manufacturing method thereof
JPWO2002033141A1 (en) Galvanized steel sheet, method for producing the same, and method for producing a press-formed product
MXPA05002680A (en) Zinc hot dip galvanized steel plate excellent in press formability and method for production thereof.
EP0540005B1 (en) Hot-dip zinc-coated steel sheets exhibiting excellent press die sliding property
JP6369659B1 (en) Hot-pressed plated steel sheet, hot-pressed plated steel sheet manufacturing method, hot-press formed product manufacturing method, and vehicle manufacturing method
JP2004003004A (en) Hot-dip galvanized steel sheet showing excellent press formability and its manufacturing process
JP2012130966A (en) Highly corrosion-resistant steel plate on which fingerprint and dirt are hardly conspicuous and method of manufacturing the same
JP3587180B2 (en) Stainless steel plate with excellent stain resistance and corrosion resistance and its manufacturing method.
JP6551270B2 (en) Method of manufacturing galvanized steel sheet
JP2005240148A (en) High-tensile steel plate having excellent scuffing resistance and chemical conversion property, and method for manufacturing the same
JP3818723B2 (en) Roughening method for stainless steel plate surface
JP3753062B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
JP3651665B2 (en) Cold-rolled steel sheet with excellent press formability and sharpness after painting
JP5648308B2 (en) Zinc-based plated steel sheet with excellent slidability
TWI716170B (en) Method for treating and phosphatizing metal board without acid
JP3367466B2 (en) Galvannealed steel sheet
Jing et al. The evolution of surface morphologies and microstructures during cold rolling after hydrogen reduction
CN111587298A (en) Hot-rolled hot-dip galvanized steel sheet having excellent surface appearance and method for manufacturing same
KR20160077716A (en) Self cleaning steel sheet and method for manufacturing the same
JP2003306756A (en) Hot dip galvanized steel sheet and method of producing the same
JP7375795B2 (en) Manufacturing method of press molded products
JP3903835B2 (en) Manufacturing method of plated steel sheet