JP2005239480A - Substrate having single-crystal thin-film layer, and its manufacturing method - Google Patents

Substrate having single-crystal thin-film layer, and its manufacturing method Download PDF

Info

Publication number
JP2005239480A
JP2005239480A JP2004051339A JP2004051339A JP2005239480A JP 2005239480 A JP2005239480 A JP 2005239480A JP 2004051339 A JP2004051339 A JP 2004051339A JP 2004051339 A JP2004051339 A JP 2004051339A JP 2005239480 A JP2005239480 A JP 2005239480A
Authority
JP
Japan
Prior art keywords
zinc oxide
thin film
substrate
film layer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004051339A
Other languages
Japanese (ja)
Inventor
Kenkichiro Kobayashi
健吉郎 小林
Yasumasa Tomita
靖正 富田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Foundation for Science and Technology Promotion
Original Assignee
Hamamatsu Foundation for Science and Technology Promotion
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Foundation for Science and Technology Promotion filed Critical Hamamatsu Foundation for Science and Technology Promotion
Priority to JP2004051339A priority Critical patent/JP2005239480A/en
Publication of JP2005239480A publication Critical patent/JP2005239480A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method, wherein a zinc oxide single-crystal thin-film layer having a smooth-surface is manufactured on a mica substrate with good reproducibility by promoting two-dimensional growth of zinc oxide precursors based on monomolecular adsorption by the use of a specific mica substrate and by reacting the zinc oxide precursor layer with water vapor. <P>SOLUTION: The manufacturing method for a substrate having a zinc oxide single-crystal thin-film layer comprises the following steps: a step for forming a zinc oxide precursor thin-film layer on a mica substrate; a step for reacting the precursor thin-film layer with water vapor; and a step for depositing a zinc oxide thin-film on a single-layer zinc oxide thin-film at a high temperature. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、酸化亜鉛前駆体化合物を特定のマイカ基板上に堆積させ、水蒸気処理することによって酸化亜鉛単層薄膜を堆積させ、この上に酸化亜鉛を堆積させて、単結晶薄膜層を有する基板を製造する方法に関する。   The present invention relates to a substrate having a single crystal thin film layer in which a zinc oxide precursor compound is deposited on a specific mica substrate, and a zinc oxide single layer thin film is deposited by steam treatment, and zinc oxide is deposited thereon. Relates to a method of manufacturing

酸化亜鉛(ZnO)は、禁制帯幅3.4eVを有する直接遷移型半導体であり、紫外線発光ダイオード(紫外線LED)などの短波長発光ディバイスへの応用が期待されている。さらに、最近、酸化亜鉛薄膜を紫外線発光源として用いて蛍光体を励起させることで、白色LEDとして一般の蛍光灯に用いることが検討されており、さらに酸化亜鉛薄膜による新しい応用分野が期待されている。   Zinc oxide (ZnO) is a direct transition type semiconductor having a forbidden band width of 3.4 eV, and is expected to be applied to short wavelength light emitting devices such as ultraviolet light emitting diodes (ultraviolet LEDs). Furthermore, recently, it has been studied to use a zinc oxide thin film as a UV light source to excite a phosphor, so that it can be used as a white LED in a general fluorescent lamp, and a new application field using a zinc oxide thin film is expected. Yes.

従来、酸化亜鉛薄膜は、サファイアなどの単結晶基板上に形成されていた。サファイアは、毒性がなく、化学的に安定であり、さらにその結晶構造は、六方晶系のウルツ型の結晶を成長させる基板として優れているため、GaN薄膜などを形成するための基板としても好適に用いられていた。また、薄膜を形成する方法としては、例えば、スパッター法、分子線エピタキシー法(MBE)、化学気相法、有機金属化学気相法などの種々の方法が採用されていた。しかしながら、前記種々の方法を採用しても、サファイア基板上に、表面が滑らかであり、かつ広範囲にわたって粒界の存在しない単結晶酸化亜鉛薄膜を形成することはできなかった。   Conventionally, a zinc oxide thin film has been formed on a single crystal substrate such as sapphire. Sapphire is non-toxic, chemically stable, and its crystal structure is excellent as a substrate for growing hexagonal wurtzite crystals, so it is also suitable as a substrate for forming GaN thin films, etc. It was used for. As a method for forming a thin film, various methods such as a sputtering method, a molecular beam epitaxy method (MBE), a chemical vapor phase method, and a metal organic chemical vapor phase method have been adopted. However, even if the various methods described above are employed, it has not been possible to form a single crystal zinc oxide thin film having a smooth surface and no grain boundary over a wide range on a sapphire substrate.

この原因としては、サファイアと酸化亜鉛の格子定数の不整合によるものと考えられ、この格子定数の不整合の弊害を除く工夫がなされた。たとえば、特許文献1では、サファイア単結晶やシリコン単結晶などの基板上に、基板と形成する薄膜のそれぞれの格子定数の中間の格子定数を有するコランダム型構造酸化物を形成し、その上に、酸化亜鉛の薄膜積層結晶体を形成することが開示されている。この方法では、基板上に設けられた酸化物層により、酸化亜鉛と基板の間の格子定数の不整合を緩和し、酸化亜鉛薄膜の配向性、および、結晶性を向上させることができる。しかし、酸化亜鉛薄膜形成前に、基板に処理を施す必要性があり、工業的に好ましくない。また、この方法では結晶性は向上するものの単結晶の酸化亜鉛薄膜を形成することはできない。さらに、大田らは、イットリウム安定化ジルコニア単結晶基板の上に堆積させた酸化亜鉛を1200℃程度で熱処理すると平滑な酸化亜鉛単結晶薄膜が出来ることを報告し、格子定数の不整合は余り大きな障害にならないことを報告した(非特許文献1参照)。この方法は熱処理温度が高すぎるために工業的には全く応用できないが、平滑な酸化亜鉛単結晶薄膜を阻害している要因が格子定数の不整合以外に存在していることを示唆した。   The cause is considered to be due to mismatch of lattice constants of sapphire and zinc oxide, and a device was devised to eliminate the negative effects of mismatch of lattice constants. For example, in Patent Document 1, a corundum-type structure oxide having a lattice constant intermediate between the lattice constants of a thin film to be formed with a substrate is formed on a substrate such as a sapphire single crystal or a silicon single crystal. It is disclosed to form a zinc oxide thin film laminated crystal. In this method, the oxide layer provided on the substrate can alleviate the mismatch of the lattice constant between the zinc oxide and the substrate, thereby improving the orientation and crystallinity of the zinc oxide thin film. However, it is necessary to treat the substrate before forming the zinc oxide thin film, which is not industrially preferable. Further, although this method improves the crystallinity, a single crystal zinc oxide thin film cannot be formed. Furthermore, Ota et al. Reported that a smooth zinc oxide single crystal thin film can be formed by heat-treating zinc oxide deposited on an yttrium-stabilized zirconia single crystal substrate at about 1200 ° C., and the lattice parameter mismatch is too large. It was reported that there was no obstacle (see Non-Patent Document 1). Although this method cannot be applied industrially at all because the heat treatment temperature is too high, it is suggested that there are factors other than the mismatch of lattice constants that hinder a smooth zinc oxide single crystal thin film.

また、サファイア基板表面の酸素原子をチッ素原子に変換し、その上に酸化亜鉛を堆積させる方法が開示されている(非特許文献2参照)。サファイア基板上の酸素原子は、共有結合性が弱いため、亜鉛、酸化亜鉛または酸化亜鉛前駆体を堆積させた場合、サファイア基板表面全体にわたって2次元的に酸化亜鉛が堆積するよりも、酸化亜鉛同士が結合して3次元的な粒子成長をする方がエネルギー的に安定であるため、平滑な表面が得られないと考えられる。これに対して、前記方法では、サファイア基板の表面に存在する共有結合性が低い酸素原子が、共有結合性の高いチッ素原子に置換されるため、亜鉛、酸化亜鉛または酸化亜鉛前駆体が結合しやすくなり、平坦な酸化亜鉛単結晶薄膜が得られる。しかし、この方法により、基板表面の吸着力を改善することはできるものの、なお、その結合性は充分ではなく、さらにチッ化を過剰に行なうと基板の一部がエッチングされてしまい、基板の表面粗さが増大するという問題があった。また、酸化亜鉛薄膜形成前に、基板に処理を施す必要性があるため、工業的に好ましくない。   Also disclosed is a method of converting oxygen atoms on the sapphire substrate surface into nitrogen atoms and depositing zinc oxide thereon (see Non-Patent Document 2). Oxygen atoms on the sapphire substrate are weakly covalent, so when zinc, zinc oxide, or a zinc oxide precursor is deposited, the zinc oxide is deposited more than two-dimensionally over the entire surface of the sapphire substrate. It is considered that a smooth surface cannot be obtained because it is more energetically stable to combine and to grow three-dimensional particles. On the other hand, in the above method, since the oxygen atom having a low covalent bond existing on the surface of the sapphire substrate is replaced with a nitrogen atom having a high covalent bond, zinc, zinc oxide or a zinc oxide precursor is bonded. And a flat zinc oxide single crystal thin film is obtained. However, although this method can improve the adsorption force of the substrate surface, the bonding property is not sufficient, and if the substrate is excessively nitrided, a part of the substrate is etched, and the surface of the substrate There was a problem that the roughness increased. Moreover, since it is necessary to process a board | substrate before forming a zinc oxide thin film, it is industrially unpreferable.

また、基板表面に共有結合性の高いSi原子やGaAsを有している基板を用いることも検討されたが、酸素雰囲気で薄膜堆積を行う場合には表面が酸化されてしまうため好ましくない。   In addition, the use of a substrate having a highly covalent Si atom or GaAs on the surface of the substrate has been studied. However, when a thin film is deposited in an oxygen atmosphere, the surface is oxidized, which is not preferable.

本発明では、基板の種類、酸化亜鉛の前駆体の処理法などについて、種々の研究をした結果、特定のマイカ基板を用いて、酸化亜鉛前駆体の単分子吸着による二次元成長を行わせ、酸化亜鉛前駆体層を水蒸気と反応させることにより平滑な酸化亜鉛単層膜を製造する。この単層薄膜上に酸化亜鉛単結晶薄膜層を再現性よく製造することができる方法を見出し、この発明を完成させた。   In the present invention, as a result of various studies on the type of substrate, the treatment method of the zinc oxide precursor, etc., using a specific mica substrate, two-dimensional growth by monomolecular adsorption of the zinc oxide precursor is performed, A smooth zinc oxide monolayer film is produced by reacting the zinc oxide precursor layer with water vapor. The inventors have found a method capable of producing a zinc oxide single crystal thin film layer on this single layer thin film with good reproducibility, and completed the present invention.

特開平5−254991号公報JP-A-5-254991 Heteroepitaxial growth of zinc oxide single crystal thin films on (111) plane YSZ by pulsed laser deposition. Ohta, Hiromichi; Tanji, Hiroaki; Orita, Masahiro; Hosono, Hideo; Kawazoe, Hiroshi, Materials Research Society Symposium Proceedings (1999), 570 (Epitaxial Growth-Principles and Applications), 309-313.Heteroepitaxial growth of zinc oxide single crystal thin films on (111) plane YSZ by pulsed laser deposition. Ohta, Hiromichi; Tanji, Hiroaki; Orita, Masahiro; Hosono, Hideo; Kawazoe, Hiroshi, Materials Research Society Symposium Proceedings (1999), 570 (Epitaxial Growth-Principles and Applications), 309-313. Molecular beam epitaxy growth of single-domain and high-quality ZnO layers on nitrided (0001) sapphire surface, Xinqiang Wang, Hiroyuki Iwaki, Masashi Murakami, Xiaolong Du, Yoshihiro Ishitani, Japanese Journal of Applied Physics, Vol.42, (2003).pp.L99-L101Molecular beam epitaxy growth of single-domain and high-quality ZnO layers on nitrided (0001) sapphire surface, Xinqiang Wang, Hiroyuki Iwaki, Masashi Murakami, Xiaolong Du, Yoshihiro Ishitani, Japanese Journal of Applied Physics, Vol.42, (2003) .pp.L99-L101

本発明は、特定のマイカ基板を用いて、酸化亜鉛前駆体の単分子吸着による二次元成長を行わせ、酸化亜鉛前駆体層を水蒸気と反応させることによって、平滑な酸化亜鉛単層薄膜堆積させ、この単層薄膜上に酸化亜鉛単結晶薄膜を再現性よく製造することができる製造方法を提供する。   The present invention uses a specific mica substrate to cause two-dimensional growth by monomolecular adsorption of a zinc oxide precursor, and reacts the zinc oxide precursor layer with water vapor to deposit a smooth zinc oxide single layer thin film. Provided is a production method capable of producing a zinc oxide single crystal thin film on this single layer thin film with good reproducibility.

すなわち、本発明は、マイカ基板上に酸化亜鉛の前駆体薄膜層を形成する工程、前記前駆体薄膜層を水蒸気と反応させる工程、および単層酸化亜鉛薄膜上に酸化亜鉛薄膜を堆積させる工程からなる酸化亜鉛単結晶薄膜層を有する基板の製造方法に関する。   That is, the present invention includes a step of forming a zinc oxide precursor thin film layer on a mica substrate, a step of reacting the precursor thin film layer with water vapor, and a step of depositing a zinc oxide thin film on a single-layer zinc oxide thin film. The present invention relates to a method for manufacturing a substrate having a zinc oxide single crystal thin film layer.

前記マイカ基板が、F2KMg3(AlSi310)からなるマイカ基板であることが好ましい。 The mica substrate is preferably a mica substrate made of F 2 KMg 3 (AlSi 3 O 10 ).

前記酸化亜鉛の前駆体薄膜層が、酢酸亜鉛の熱分解によって生成するμ4−オキソヘキサ−μ−アセタト四亜鉛[Zn4(μ4−O)(μ−CH3COO)6]からなる薄膜層であることが好ましい。 The precursor thin film layer of zinc oxide, produced by thermal decomposition of zinc acetate mu 4 - Okisohekisa -μ- acetato four zinc [Zn 4 (μ 4 -O) (μ-CH 3 COO) 6] thin film composed of It is preferable that

また、本発明は、前記製造方法から得られる酸化亜鉛単結晶薄膜層を有する基板に関する。   Moreover, this invention relates to the board | substrate which has a zinc oxide single crystal thin film layer obtained from the said manufacturing method.

本発明では、酸化亜鉛の前駆体薄膜層(単分子膜層)を高い吸着力で強固に基板上に形成させることができ、その結果として、平坦な表面の酸化亜鉛単結晶薄膜層(単層ZnO)を基板上に容易に形成することができ、高い性能の酸化亜鉛単結晶薄膜層を有する基板を工業的に製造することができる。   In the present invention, a zinc oxide precursor thin film layer (monomolecular film layer) can be firmly formed on a substrate with a high adsorption force. As a result, a zinc oxide single crystal thin film layer (single layer) having a flat surface can be obtained. ZnO) can be easily formed on the substrate, and a substrate having a high-performance zinc oxide single crystal thin film layer can be manufactured industrially.

本発明は、
第1工程:マイカ基板上に酸化亜鉛の前駆体薄膜層を形成する工程、
第2工程:前記前駆体薄膜層を水蒸気と反応させる工程、および
第3工程:前記水蒸気処理によって生成した単層薄膜の上に、酸化亜鉛薄膜を堆積させる工程
からなる酸化亜鉛単結晶薄膜層を有する基板の製造方法に関する。
The present invention
First step: forming a zinc oxide precursor thin film layer on a mica substrate;
A second step: a step of reacting the precursor thin film layer with water vapor; and a third step: a zinc oxide single crystal thin film layer comprising a step of depositing a zinc oxide thin film on the single layer thin film generated by the water vapor treatment. The present invention relates to a method for manufacturing a substrate having the same.

第1工程では、酸化亜鉛の前駆体を昇華させて、室温に保ったマイカ基板上に堆積させて、前駆体薄膜層を形成する。   In the first step, a precursor of zinc oxide is sublimated and deposited on a mica substrate kept at room temperature to form a precursor thin film layer.

マイカ上の堆積させる酸化亜鉛前駆体としては、酢酸亜鉛、ジエチル亜鉛、アセチルアセトナト亜鉛などをあげることができる。それらの中でも、分解してμ4−オキソヘキサ−μ−アセタト四亜鉛[Zn4(μ4−O)(μ−CH3COO)6]を生成できることから、酢酸亜鉛が好ましい。酢酸亜鉛が分解して生成するμ4−オキソヘキサ−μ−アセタト四亜鉛は、(1)分子の中にZn−O結合を有しており、(2)分子の凝集が酸化亜鉛と同じ結晶構造であり、(3)亜鉛が分子の外に存在して歪んだ4配位構造であるため、基板表面にある酸素原子と強い結合を形成することができる点で好ましい。 Examples of the zinc oxide precursor to be deposited on mica include zinc acetate, diethyl zinc, and acetylacetonato zinc. Among them, it is decomposed mu 4 - because it can generate Okisohekisa -μ- acetato four zinc [Zn 4 (μ 4 -O) (μ-CH 3 COO) 6], zinc acetate is preferred. Μ 4 -Oxohexa-μ-acetatotetrazinc produced by decomposition of zinc acetate has (1) a Zn—O bond in the molecule, and (2) a crystal structure in which the aggregation of the molecules is the same as that of zinc oxide. (3) Since it has a quaternary structure in which zinc exists outside the molecule and is distorted, it is preferable in that a strong bond can be formed with oxygen atoms on the substrate surface.

酸化亜鉛前駆体を堆積させる方法は、有機金属化学気相成長法(MOCVD)、分子線エピタキシー(MBE)法、レーザアブレーションなどがあげられる。これらの中でも、大面積に堆積できる点、堆積速度が速い点、量産性の点で、MOCVDが好ましい。   Examples of the method for depositing the zinc oxide precursor include metal organic chemical vapor deposition (MOCVD), molecular beam epitaxy (MBE), and laser ablation. Among these, MOCVD is preferable in that it can be deposited over a large area, the deposition rate is high, and the mass productivity is high.

昇華条件は、堆積させる酸化亜鉛前駆体の種類によるものであり、その堆積させる酸化亜鉛前駆体が昇華し、基板上に堆積する温度および時間であればよく、特に限定されるものではない。   The sublimation conditions depend on the type of zinc oxide precursor to be deposited, and are not particularly limited as long as the deposited zinc oxide precursor sublimates and deposits on the substrate.

本発明で用いるマイカ基板は、基板表面に共有結合性のSi−O結合を有しているため、亜鉛、酸化亜鉛または酸化亜鉛前駆体との結合が容易となる。マイカ基板表面上のSi−O結合と亜鉛、酸化亜鉛または酸化亜鉛前駆体が結合し、亜鉛、酸化亜鉛または酸化亜鉛前駆体が二次元成長し、酸化亜鉛の前駆体薄膜層(単分子膜層)を高い吸着力で強固に基板上に形成させることができる。その結果として、平坦な表面の酸化亜鉛単結晶薄膜層を基板上に容易に形成することができ、高い性能の酸化亜鉛単結晶薄膜層を有する基板を製造することができる。   Since the mica substrate used in the present invention has a covalent Si—O bond on the substrate surface, it can be easily bonded to zinc, zinc oxide, or a zinc oxide precursor. The Si-O bond on the surface of the mica substrate is combined with zinc, zinc oxide or a zinc oxide precursor, and zinc, zinc oxide or a zinc oxide precursor grows two-dimensionally, and a zinc oxide precursor thin film layer (monomolecular layer) ) Can be firmly formed on the substrate with a high adsorption force. As a result, a flat surface zinc oxide single crystal thin film layer can be easily formed on the substrate, and a substrate having a high performance zinc oxide single crystal thin film layer can be manufactured.

さらに、マイカ基板は、容易に劈開でき、必要に応じて清浄な表面を出すことができるため、コストのかかる研磨の作業がなくなるという長所をもっている。   Furthermore, the mica substrate has an advantage that it can be easily cleaved and a clean surface can be provided if necessary, eliminating the costly polishing operation.

マイカ基板としては、天然マイカ基板、合成マイカ基板のいずれも用いることができる。   As the mica substrate, either a natural mica substrate or a synthetic mica substrate can be used.

天然マイカとしては、白雲母(Muscovite):(OH)2KAl2(AlSi310)、ソーダ雲母(Paragonite):(OH)2NaAl2(AlSi310)、金雲母(Phlogopite):(OH)2KMg3(AlSi310)などがあげられる。これらは、20cm×20cm×1cm程度の大きさの原石が入手できる。高い透明性を要求する場合は、白雲母が好ましい。これらの天然マイカ基板は、600℃程度の温度まで使用可能である。 As natural mica, muscovite: (OH) 2 KAl 2 (AlSi 3 O 10 ), soda mica (Paragonite): (OH) 2 NaAl 2 (AlSi 3 O 10 ), phlogopite: ( OH) 2 KMg 3 (AlSi 3 O 10 ) and the like. As for these, the rough stone of the magnitude | size of about 20 cm x 20 cm x 1 cm can be obtained. When high transparency is required, muscovite is preferable. These natural mica substrates can be used up to a temperature of about 600 ° C.

合成マイカとしては、フッ素金雲母:F2KMg3(AlSi310)があげられる。フッ素金雲母は、(1)鉄の不純物を下げることができるため透明度を高めることが出来る、(2)1000℃程度の高温での使用が可能である、(3)大量生産により大幅にコストを下げることができるため好ましい。 Examples of the synthetic mica include fluorine phlogopite: F 2 KMg 3 (AlSi 3 O 10 ). Fluorophlogopite can (1) increase the transparency because it can reduce the impurities of iron, (2) can be used at a high temperature of about 1000 ℃, (3) mass production greatly cost It is preferable because it can be lowered.

基板温度が600℃程度までは、天然マイカ基板、合成マイカ基板のいずれも好適に用いることができる。ただし、基板温度が600℃をこえる場合、特に700℃以上となる場合においては、合成マイカを使用することが好ましい。   Either a natural mica substrate or a synthetic mica substrate can be suitably used up to a substrate temperature of about 600 ° C. However, when the substrate temperature exceeds 600 ° C., particularly when the substrate temperature is 700 ° C. or higher, it is preferable to use synthetic mica.

第二工程では、前記前駆体薄膜層を水蒸気と反応させ、前駆体薄膜層の酸化亜鉛前駆体を酸化亜鉛にする。   In the second step, the precursor thin film layer is reacted with water vapor to change the zinc oxide precursor of the precursor thin film layer to zinc oxide.

第一工程で得られた前駆体薄膜層を有する基板の基板温度を、100〜170℃に上昇させて、5〜60分保持し、水蒸気と反応させる。この時装置内の水の蒸気圧は2〜10Pa以上であることが好ましい。反応時間は水蒸気の圧力に依存し、水蒸気圧が少ない場合には反応時間は長くなり、逆に水蒸気圧が高いと短時間で反応は完了する。反応が不充分である場合には基板上の酸化亜鉛前駆体が、完全に酸化亜鉛にならない。   The substrate temperature of the substrate having the precursor thin film layer obtained in the first step is raised to 100 to 170 ° C., held for 5 to 60 minutes, and reacted with water vapor. At this time, the vapor pressure of water in the apparatus is preferably 2 to 10 Pa or more. The reaction time depends on the pressure of the water vapor. When the water vapor pressure is low, the reaction time becomes long. Conversely, when the water vapor pressure is high, the reaction is completed in a short time. If the reaction is insufficient, the zinc oxide precursor on the substrate will not be completely zinc oxide.

第三工程では、第二工程で得られた単層酸化亜鉛薄膜の上に、種々の方法で酸化亜鉛薄膜を堆積させる。堆積方法として、有機金属化学気相成長法(MOCVD)、分子線エピタキシー(MBE)法、レーザアブレーション、スパッター法などがある。大面積に堆積できる点、堆積速度が速い点、量産性の点で、MOCVDが好ましい。   In the third step, the zinc oxide thin film is deposited on the single-layer zinc oxide thin film obtained in the second step by various methods. Examples of the deposition method include metal organic chemical vapor deposition (MOCVD), molecular beam epitaxy (MBE), laser ablation, and sputtering. MOCVD is preferable in that it can be deposited over a large area, the deposition rate is high, and the mass productivity is high.

本発明の製造方法によると、アニール処理が不要であり、500℃程度の低温で酸化亜鉛単結晶薄膜層を形成することができるために、工業的にも容易に基板を作製することが可能となる。   According to the manufacturing method of the present invention, the annealing process is unnecessary, and since the zinc oxide single crystal thin film layer can be formed at a low temperature of about 500 ° C., the substrate can be easily produced industrially. Become.

この方法により得られた酸化亜鉛単結晶薄膜層の厚さは、特に限定されるものではなく、適宜所望の厚さになるように調整すればよい。   The thickness of the zinc oxide single crystal thin film layer obtained by this method is not particularly limited, and may be adjusted appropriately to a desired thickness.

本発明の製造方法により、平滑な酸化亜鉛単結晶薄膜層をマイカ基板上に再現性よく製造することができる。   By the production method of the present invention, a smooth zinc oxide single crystal thin film layer can be produced on a mica substrate with good reproducibility.

次に、本発明の製造方法を実施例を用いて説明するが、本発明は実施例に限定されるものではない。   Next, although the manufacturing method of this invention is demonstrated using an Example, this invention is not limited to an Example.

(基板)
実施例において使用した基板は、
ルツボ降下法により合成されたF2KMg3(AlSi310)からなる合成マイカ基板(伊藤機工(株)製)である。
(substrate)
The substrate used in the examples is
This is a synthetic mica substrate (made by Ito Kiko Co., Ltd.) made of F 2 KMg 3 (AlSi 3 O 10 ) synthesized by the crucible descent method.

実施例1
有機金属化学気相蒸着装置(MOCVD装置)を用いて、酢酸亜鉛を220℃で2分間昇華させ、基板温度を135℃に保ったマイカ基板上に[Zn4(μ4−O)(μ−CH3COO)6]を堆積させた。その後、全圧33Pa、水蒸気圧2Paの雰囲気で30分間保存して水と反応させて、単分子吸着している酸化亜鉛薄膜を得た。単層の薄膜生成は原子間力顕微鏡による観察から確認できた。また、単層の物質が酸化亜鉛であることは、単層膜のX線回折(XRD)測定からは確認できないが、基板温度135℃でμ4−オキソヘキサ−μ−アセタト四亜鉛[OZn4(CH3COO)6]を長時間体積させた厚い膜を前記水蒸気圧条件で水蒸気処理して得られた膜のXRDから、該膜は酸化亜鉛からなる膜であることが確認できたので、単層薄膜は酸化亜鉛であると考えられる。
Example 1
Using a metal organic chemical vapor deposition apparatus (MOCVD apparatus), zinc acetate was sublimated at 220 ° C. for 2 minutes, and [Zn 44 −O) (μ− CH 3 COO) 6 ] was deposited. Thereafter, it was stored for 30 minutes in an atmosphere of a total pressure of 33 Pa and a water vapor pressure of 2 Pa, and reacted with water to obtain a zinc oxide thin film adsorbed monomolecularly. Single-layer thin film formation was confirmed by observation with an atomic force microscope. Further, it cannot be confirmed from the X-ray diffraction (XRD) measurement of the single layer film that the single layer material is zinc oxide, but μ 4 -oxohexa-μ-acetatotetrazinc [OZn 4 ( From the XRD of the film obtained by steaming a thick film in which CH 3 COO) 6 ] was volumed for a long time under the steam pressure condition, it was confirmed that the film was a film made of zinc oxide. The layer film is considered to be zinc oxide.

この単層薄膜を各温度に加熱し、その表面形態を原子間力顕微鏡で観察した。その結果を図1に示す。充分水蒸気と反応させた単層膜では300℃までは形態に全く変化は認められず(図1(a))、堆積温度である570℃ではわずかに表面の粗さが増大した(図1(b))。この結果から、単層薄膜は570℃程度まで加熱しても、粒子成長はほとんど起こらず、2次元的成長にとって好ましい表面形態を保持していることが分かる。   This single layer thin film was heated to various temperatures, and the surface morphology was observed with an atomic force microscope. The result is shown in FIG. In the monolayer film sufficiently reacted with water vapor, no change in shape was observed up to 300 ° C. (FIG. 1A), and the surface roughness increased slightly at the deposition temperature of 570 ° C. (FIG. 1 ( b)). From this result, it can be seen that even when the single layer thin film is heated to about 570 ° C., particle growth hardly occurs and the surface morphology preferable for two-dimensional growth is maintained.

この単層薄膜の上に、MOCVD法により酸化亜鉛薄膜の堆積を行った。詳しい堆積条件は基板温度570℃、全圧100Pa、水蒸気圧6Pa、酸素12Paである。堆積時間は1時間である。得られた薄膜の表面形態を図2(倍率は、(a)1μm×1μm、(b)5μm×5μmである)に示す。粒子成長は見られず、表面の粗さも数nm程度と良好な酸化亜鉛薄膜が得られた。この薄膜は基板に垂直にc軸が配向しており、X線極点図測定から、面内の結晶方位が完全にそろっていることが明らかなった。この結果から、この薄膜は平滑な表面を持つ単結晶酸化亜鉛であることが確認された。   A zinc oxide thin film was deposited on the single layer thin film by MOCVD. Detailed deposition conditions are a substrate temperature of 570 ° C., a total pressure of 100 Pa, a water vapor pressure of 6 Pa, and oxygen of 12 Pa. The deposition time is 1 hour. The surface morphology of the obtained thin film is shown in FIG. 2 (magnification is (a) 1 μm × 1 μm, (b) 5 μm × 5 μm). Grain growth was not observed, and a good zinc oxide thin film with a surface roughness of about several nm was obtained. This thin film had a c-axis oriented perpendicular to the substrate, and X-ray pole figure measurement revealed that the in-plane crystal orientation was perfectly aligned. From this result, this thin film was confirmed to be a single crystal zinc oxide having a smooth surface.

比較例1
単層酸化亜鉛薄膜を作製しないで直接酸化亜鉛を堆積させた。基板は実施例1と同様の合成マイカ、基板温度570℃、全圧100Pa、水蒸気圧6Pa、酸素12Paである。得られた酸化亜鉛薄膜の表面形態を原子間力顕微鏡により観測した。その結果を図3(倍率は、(a)1μm×1μm、(b)5μm×5μmである)に示す。図から明らかのように、多数の粒子が存在し、表面粗さも20nmと非常に悪かった。
Comparative Example 1
Zinc oxide was deposited directly without producing a single layer zinc oxide thin film. The substrate is the same synthetic mica as in Example 1, the substrate temperature is 570 ° C., the total pressure is 100 Pa, the water vapor pressure is 6 Pa, and the oxygen is 12 Pa. The surface morphology of the obtained zinc oxide thin film was observed with an atomic force microscope. The results are shown in FIG. 3 (magnification is (a) 1 μm × 1 μm, (b) 5 μm × 5 μm). As is clear from the figure, there were a large number of particles, and the surface roughness was very poor at 20 nm.

単層ZnO膜の熱処理後のAFM表面画像を示す。熱処理温度は、(a)300℃、(b)570℃である。The AFM surface image after heat processing of a single layer ZnO film | membrane is shown. The heat treatment temperatures are (a) 300 ° C and (b) 570 ° C. 単層ZnO膜上に570℃で堆積させたZnO薄膜のAFM表面画像を示す。倍率は、(a)1μm×1μm、(b)5μm×5μmである。2 shows an AFM surface image of a ZnO thin film deposited at 570 ° C. on a single layer ZnO film. The magnification is (a) 1 μm × 1 μm and (b) 5 μm × 5 μm. 単層ZnOを形成しないで、直接ZnO薄膜を570℃で堆積させた場合のAFM表面画像を示す。倍率は、(a)1μm×1μm、(b)5μm×5μmである。The AFM surface image at the time of depositing a ZnO thin film directly at 570 degreeC, without forming single layer ZnO is shown. The magnification is (a) 1 μm × 1 μm and (b) 5 μm × 5 μm.

Claims (4)

マイカ基板上に酸化亜鉛の前駆体薄膜層を形成する工程、前記前駆体薄膜層を水蒸気と反応させる工程、さらに単層酸化亜鉛薄膜の上に高温で酸化亜鉛薄膜を堆積させる工程
からなる酸化亜鉛単結晶薄膜層を有する基板の製造方法。
Zinc oxide comprising a step of forming a zinc oxide precursor thin film layer on a mica substrate, a step of reacting the precursor thin film layer with water vapor, and a step of depositing a zinc oxide thin film at a high temperature on a single layer zinc oxide thin film A method for manufacturing a substrate having a single crystal thin film layer.
前記マイカ基板が、F2KMg3(AlSi310)からなるマイカ基板である請求項1記載の製造方法。 The manufacturing method according to claim 1, wherein the mica substrate is a mica substrate made of F 2 KMg 3 (AlSi 3 O 10 ). 前記酸化亜鉛の前駆体薄膜層が、酢酸亜鉛の熱分解によって生成するμ4−オキソヘキサ−μ−アセタト四亜鉛[Zn4(μ4−O)(μ−CH3COO)6]からなる薄膜層である請求項1または2記載の製造方法。 The precursor thin film layer of zinc oxide, produced by thermal decomposition of zinc acetate mu 4 - Okisohekisa -μ- acetato four zinc [Zn 4 (μ 4 -O) (μ-CH 3 COO) 6] thin film composed of The manufacturing method according to claim 1 or 2. 請求項1、2または3記載の製造方法により得られる酸化亜鉛単結晶薄膜層を有する基板。 The board | substrate which has a zinc oxide single crystal thin film layer obtained by the manufacturing method of Claim 1, 2 or 3.
JP2004051339A 2004-02-26 2004-02-26 Substrate having single-crystal thin-film layer, and its manufacturing method Pending JP2005239480A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004051339A JP2005239480A (en) 2004-02-26 2004-02-26 Substrate having single-crystal thin-film layer, and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004051339A JP2005239480A (en) 2004-02-26 2004-02-26 Substrate having single-crystal thin-film layer, and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2005239480A true JP2005239480A (en) 2005-09-08

Family

ID=35021613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004051339A Pending JP2005239480A (en) 2004-02-26 2004-02-26 Substrate having single-crystal thin-film layer, and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2005239480A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010056240A (en) * 2008-08-27 2010-03-11 Asahi Kasei Corp Semiconductor crystal fine particle thin film
JP2010070398A (en) * 2008-09-16 2010-04-02 Stanley Electric Co Ltd Method for growing zinc oxide single crystal layer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010056240A (en) * 2008-08-27 2010-03-11 Asahi Kasei Corp Semiconductor crystal fine particle thin film
JP2010070398A (en) * 2008-09-16 2010-04-02 Stanley Electric Co Ltd Method for growing zinc oxide single crystal layer

Similar Documents

Publication Publication Date Title
JP5451280B2 (en) Wurtzite crystal growth substrate, manufacturing method thereof, and semiconductor device
TWI312535B (en)
TW201108302A (en) Growth of reduced dislocation density non-polar gallium nitride by hydride vapor phase epitaxy
JP6418343B2 (en) Alumina substrate manufacturing method
WO2017121232A1 (en) Nitride substrate and method for producing the same
JP2009524251A (en) Method for promoting the growth of semipolar (Al, In, Ga, B) N via metalorganic chemical vapor deposition
CN100545314C (en) Be used to prepare the in-situ treatment method of sapphire substrate of high-quality zinc oxide film
Ji et al. Understanding the 2D-material and substrate interaction during epitaxial growth towards successful remote epitaxy: a review
Park et al. Synthesis and microstructural characterization of growth direction controlled ZnO nanorods using a buffer layer
EP3662505B1 (en) Mono- and multilayer silicene prepared by plasma-enhanced chemical vapor deposition
JP2004099412A (en) Material having zinc oxide thin film and method for manufacturing the same
Liu et al. Synthesis of iron sulfide and iron oxide nanocrystal thin films for green energy applications
Shin et al. Effects of different annealing atmospheres on the surface and microstructural properties of ZnO thin films grown on p-Si (1 0 0) substrates
JP2005239480A (en) Substrate having single-crystal thin-film layer, and its manufacturing method
WO2017164036A1 (en) Method for producing group iii nitride laminate
Lebedev et al. Formation of nanocarbon films on the SiC surface through sublimation in vacuum
JP2023516485A (en) Seed layers, heterostructures comprising seed layers, and methods of forming material layers using seed layers
Kobayashi et al. Boron Nitride Thin Films Grown on Graphitized 6H–SiC Substrates by Metalorganic Vapor Phase Epitaxy
KR100810026B1 (en) Method for controling size of zinc oxide nanorod arrays
KR101210958B1 (en) Fabrication Method of Ferromagnetic Single Crystal
KR101335722B1 (en) Manufacturing method of nanorods by hydrothermal process and thin film formation by atomic layer deposition, nanorods made by the same, and the device comprising the same
Orlov et al. ZnO nanostructures via hydrothermal synthesis on atomic layer deposited seed-layers
Wu et al. Characteristics of ZnO nanowall structures grown on GaN template using organometallic chemical vapor deposition
Hernández-Hernández et al. Synthesis of self-assembled Ge nanocrystals employing reactive RF sputtering
Zhang Nanoscale and macroscale aluminum nitride deposition via reactive magnetron sputtering method