JP2005239441A - Method for recovering ruthenium from hydrochloric acid acidic solution - Google Patents

Method for recovering ruthenium from hydrochloric acid acidic solution Download PDF

Info

Publication number
JP2005239441A
JP2005239441A JP2004047703A JP2004047703A JP2005239441A JP 2005239441 A JP2005239441 A JP 2005239441A JP 2004047703 A JP2004047703 A JP 2004047703A JP 2004047703 A JP2004047703 A JP 2004047703A JP 2005239441 A JP2005239441 A JP 2005239441A
Authority
JP
Japan
Prior art keywords
ruthenium
hydrochloric acid
solution
gas
recovery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004047703A
Other languages
Japanese (ja)
Inventor
Keiko Ishizaki
圭子 石▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Original Assignee
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP2004047703A priority Critical patent/JP2005239441A/en
Publication of JP2005239441A publication Critical patent/JP2005239441A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a recovery technology, by which ruthenium can be efficiently separated and recovered from a hydrochloric acid acidic solution with good selectivity. <P>SOLUTION: The recovery method for recovering ruthenium from the hydrochloric acid acidic solution containing ruthenium is characterized by including a process comprising blowing ozone gas and chlorine gas into the hydrochloric acid acidic solution and separating ruthenium ions in the solution as ruthenium tetroxide (RuO<SB>4</SB>). At this time, it is preferable that ozone gas and chlorine gas are blown into the solution while controlling the concentration of hydrochloric acid in the solution to be ≤3 mol/L, and the temperature of the hydrochloric acid acidic solution is adjusted to be normal temperature to 100°C. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、塩酸酸性の溶液からのルテニウムの分離・回収方法に関する。   The present invention relates to a method for separating and recovering ruthenium from an acidic solution of hydrochloric acid.

ルテニウムは、近年、電子デバイスの薄膜電極等の電子材料や触媒の触媒粒子のような機能材料の原料として利用されることが多くなっており、また、貴金属に属し希少な金属であることから回収技術の確立の必要性が今後向上する金属の一つである。ルテニウムの回収技術については、いくつか知られたものがあり、例えば、ルテニウムメタルを含む廃棄物等をアルカリ溶解し、これに塩素ガスを吹き込み四酸化ルテニウムとして回収する方法がある。この方法で生成される四酸化ルテニウムは揮発性を有することから、溶液からの分離回収が容易となる(この回収技術については、特許文献1及びその従来技術の欄参照)。
特公平4−33733号公報
In recent years, ruthenium has been increasingly used as a raw material for functional materials such as electronic materials such as thin-film electrodes of electronic devices and catalyst particles of catalysts, and is recovered because it is a rare metal belonging to noble metals. This is one of the metals that needs to be established in the future. There are several known techniques for recovering ruthenium. For example, there is a method in which a waste containing ruthenium metal is dissolved in an alkali, and chlorine gas is blown into this to recover it as ruthenium tetroxide. Since ruthenium tetroxide produced by this method has volatility, it is easy to separate and recover from the solution (for this recovery technique, see Patent Document 1 and its prior art column).
Japanese Patent Publication No. 4-33733

また、他の方法としては、ルテニウムメタルを含む廃棄物等を硝酸性酸性溶液とし、この溶液に塩素ガスを吹き込むことで四酸化ルテニウムとして回収する方法がある。この方法は、核燃料再処理廃液からルテニウムを分離回収する方法に関するものである(この方法については特許文献2参照)。
特公平7−52234号公報
As another method, there is a method in which a ruthenium metal-containing waste or the like is made into a nitric acid acidic solution, and chlorine gas is blown into this solution to recover ruthenium tetroxide. This method relates to a method for separating and recovering ruthenium from nuclear fuel reprocessing waste liquid (refer to Patent Document 2 for this method).
Japanese Patent Publication No.7-52234

ところで、近時の窒素規制により硝酸酸性溶液の使用が好ましくないとみられていることや、塩酸を用いた回収工程の適用が好ましい分野があることから、今後、塩酸酸性溶液からのルテニウム回収の必要性が高くなることが予測されている。例えば、触媒からの貴金属回収は、触媒を王水や塩酸により溶解して塩酸酸性溶液とした後になされている。そして、高活性化や耐触媒被毒性の付与を目的としてルテニウムを白金、ロジウム等と共に担持する触媒が最近広く使用されるようになっていることから、塩酸酸性溶液からのルテニウム回収の確立の必要性が高くなっている。   By the way, the use of acidic nitric acid solution seems to be unfavorable due to recent nitrogen regulation, and there is a field where application of recovery process using hydrochloric acid is preferable. It is predicted that the property will be higher. For example, the precious metal recovery from the catalyst is performed after dissolving the catalyst with aqua regia or hydrochloric acid to obtain a hydrochloric acid acidic solution. In addition, a catalyst that supports ruthenium together with platinum, rhodium, etc. has recently been widely used for the purpose of providing high activation and catalyst poisoning resistance, and it is necessary to establish ruthenium recovery from hydrochloric acid acidic solution. The nature is getting higher.

また、回収技術には回収効率は勿論のこと、目的金属のみを分離し回収できる選択性が求められる。上記の触媒からのルテニウム回収についていえば、触媒はルテニウムの他に白金、ロジウム、パラジウムといった複数の貴金属が担持されていることがあることから、これを溶解すれば溶液中に複数の貴金属が含まれている。この場合、選択性の乏しい回収技術では目的金属以外の金属も回収することとなり、再回収の工程が必要となる。   In addition, the recovery technique is required not only for the recovery efficiency but also for the selectivity capable of separating and recovering only the target metal. Speaking of ruthenium recovery from the above catalyst, the catalyst may carry a plurality of noble metals such as platinum, rhodium and palladium in addition to ruthenium. It is. In this case, a recovery technique with poor selectivity recovers a metal other than the target metal, and a re-recovery step is required.

本発明は、以上のような背景のもとになされたものであり、塩酸酸性溶液からのルテニウムを効率的に分離・回収することができ、選択性も良好な回収技術を提供することを目的とする。   The present invention has been made based on the background as described above, and an object of the present invention is to provide a recovery technique capable of efficiently separating and recovering ruthenium from an acidic hydrochloric acid solution and having good selectivity. And

本発明者等は、上記課題を解決すべく鋭意検討を行い、塩酸酸性溶液中のルテニウムの分離手段として最適な酸化剤の選定を行うこととした。その結果、酸化剤としてオゾンガスと塩素ガスとを同時に溶液に吹き込むことで、溶液中のルテニウムを酸化して四酸化ルテニウムとして分離することができることを見出し本発明に想到した。   The inventors of the present invention have intensively studied to solve the above problems, and have decided to select an optimum oxidizing agent as a means for separating ruthenium in an acidic hydrochloric acid solution. As a result, the inventors have found that ruthenium in a solution can be oxidized and separated as ruthenium tetroxide by simultaneously blowing ozone gas and chlorine gas into the solution as oxidizing agents.

即ち、本発明は、ルテニウムを含有する塩酸酸性溶液からルテニウムを回収する方法において、前記塩酸酸性溶液にオゾンガス及び塩素ガスを吹き込み、溶液中のルテニウムイオンを四酸化ルテニウム(RuO)として分離する工程を含むことを特徴とするルテニウムの回収方法である。 That is, according to the present invention, in a method for recovering ruthenium from an acidic hydrochloric acid solution containing ruthenium, ozone gas and chlorine gas are blown into the acidic hydrochloric acid solution to separate ruthenium ions in the solution as ruthenium tetroxide (RuO 4 ). It is a recovery method of ruthenium characterized by including this.

本発明によれば、塩酸酸性溶液中のルテニウムを選択的に分離回収することができる。この効果は、溶液中に複数の金属、例えば、白金やパラジウム等他の貴金属が含まれている場合においても発揮され、ルテニウムのみを選択的に分離できる。従って、本発明によれば、触媒のようにルテニウムに加えて他の貴金属を含む物からのルテニウム回収にも有用である。   According to the present invention, ruthenium in an acidic hydrochloric acid solution can be selectively separated and recovered. This effect is exhibited even when the solution contains a plurality of metals, for example, other noble metals such as platinum and palladium, and only ruthenium can be selectively separated. Therefore, according to the present invention, it is useful for recovering ruthenium from a material containing other noble metals in addition to ruthenium like a catalyst.

また、本発明に係る方法では、酸化剤として使用するオゾン及び塩素はガス状態であり、回収作業時に溶液の汚染の可能性が低くなる。この点、酸化剤として塩素酸ナトリウム等の塩を適用することも考えられるが、それではナトリウムのような不純物元素を溶液に残すこととなり、ルテニウム回収後にこのナトリウム除去の工程が必要となり、作業工程を煩雑とする。   Further, in the method according to the present invention, ozone and chlorine used as the oxidizing agent are in a gas state, and the possibility of contamination of the solution during the recovery operation is reduced. In this regard, it is conceivable to apply a salt such as sodium chlorate as an oxidizing agent, but this leaves an impurity element such as sodium in the solution, and this sodium removal step is required after ruthenium recovery, and the work process is reduced. Make it complicated.

ここで、本発明においてオゾンガス及び塩素ガスは、両者が存在して初めて酸化剤として作用する。本発明者によれば、オゾンのみ又は塩素のみの供給では溶液中のルテニウムの酸化は生じず、分離回収は不可能であることが確認されている。そして、オゾンガス及び塩素ガスの添加は、両者を同時に添加することが好ましい。オゾンガス、塩素ガスを別々に添加してもルテニウムの酸化反応は生じ得るが反応が不均一であり、反応を効率的に進行させるためには同時供給が必要である。また、ガスの供給はオゾンガスと塩素ガスとを混合して供給しても良い。添加するオゾンガスは、空気等との混合ガスが好ましく、塩素ガスは高純度のものが好ましい。   Here, in the present invention, ozone gas and chlorine gas act as an oxidizing agent only when both exist. According to the present inventor, it has been confirmed that the supply of only ozone or chlorine alone does not cause oxidation of ruthenium in the solution, and separation and recovery are impossible. And it is preferable to add both ozone gas and chlorine gas simultaneously. Even if ozone gas and chlorine gas are added separately, the ruthenium oxidation reaction may occur, but the reaction is non-uniform, and simultaneous supply is necessary for the reaction to proceed efficiently. Further, the gas may be supplied by mixing ozone gas and chlorine gas. The ozone gas to be added is preferably a mixed gas with air or the like, and the chlorine gas is preferably highly purified.

本発明において塩酸酸性溶液の好ましい塩酸濃度は、3mol/L以下である。3mol/Lを超えると、オゾンガス及び塩素ガスの吹き込み時間に長時間を要し、効率的なルテニウム回収が困難となる。回収効率(回収時間)の観点から、より好ましくは、0.01〜1.0mol/Lである。この塩酸酸性溶液の塩酸濃度の調整は、処理対象物(触媒等)を溶解する際の塩酸溶液を上記範囲とするのが好ましいが、上記範囲外の溶液で処理した場合にはルテニウム回収工程時において塩酸濃度を調整すると良い。   In the present invention, the preferred hydrochloric acid concentration of the hydrochloric acid acidic solution is 3 mol / L or less. If it exceeds 3 mol / L, it takes a long time to blow ozone gas and chlorine gas, and efficient ruthenium recovery becomes difficult. From the viewpoint of recovery efficiency (recovery time), it is more preferably 0.01 to 1.0 mol / L. The hydrochloric acid concentration of the hydrochloric acid acidic solution is preferably adjusted to the hydrochloric acid solution when dissolving the object to be treated (catalyst, etc.) within the above range, but when treated with a solution outside the above range, the ruthenium recovery step In this case, the hydrochloric acid concentration should be adjusted.

オゾンガス及び塩素ガスの吹き込み時の塩酸酸性溶液の温度は、常温〜100℃とするのが好ましい。常温(20℃)未満では酸化反応が進行し難く、また、100℃を超えると作業中に溶液の濃縮が生じ塩酸濃度が変化するからである。そして、反応速度を考慮すれば、特に好ましいのは80℃〜100℃である。   The temperature of the hydrochloric acid acidic solution when ozone gas and chlorine gas are blown is preferably from room temperature to 100 ° C. This is because if the temperature is lower than room temperature (20 ° C.), the oxidation reaction hardly proceeds, and if the temperature exceeds 100 ° C., the solution is concentrated during the operation and the hydrochloric acid concentration changes. And if reaction rate is considered, it is 80 to 100 degreeC especially preferable.

オゾンガス及び塩素ガスの吹込みによって、溶液中のルテニウムは四酸化ルテニウムへと酸化される。この四酸化ルテニウムは、揮発性を有することから、溶液よりガスとして放出される。そして、このガス状の四酸化ルテニウムをオフガスと共に回収し、塩酸溶液に通過させることで、ルテニウムを回収することができる。   By blowing ozone gas and chlorine gas, ruthenium in the solution is oxidized to ruthenium tetroxide. Since ruthenium tetroxide has volatility, it is released as a gas from the solution. And ruthenium can be collect | recovered by collect | recovering this gaseous ruthenium tetroxide with off-gas, and letting it pass through a hydrochloric acid solution.

尚、本発明に係る方法では、回収工程中に塩酸濃度が変動し回収効率に変化が生じることある。そこで、回収工程において適宜に水を添加して塩酸濃度を一定に保持しておくことが好ましい。   In the method according to the present invention, the concentration of hydrochloric acid fluctuates during the recovery process, and the recovery efficiency may change. Therefore, it is preferable to keep the hydrochloric acid concentration constant by appropriately adding water in the recovery step.

本発明によれば、塩酸酸性溶液中のルテニウムを効率的に分離回収することができる。本発明に係る方法では、溶液中に複数の金属が含まれている場合においてもルテニウムを選択的に回収することができ、溶液に不純物を残留させることもない。本発明によれば、触媒のようにルテニウムに加えて他の貴金属を含む物からのルテニウム回収にも有用である。   According to the present invention, ruthenium in an acidic hydrochloric acid solution can be efficiently separated and recovered. In the method according to the present invention, ruthenium can be selectively recovered even when a plurality of metals are contained in the solution, and no impurities remain in the solution. According to the present invention, it is useful for recovering ruthenium from a material containing other noble metals in addition to ruthenium like a catalyst.

実施例1:ここでは、白金、金、銀、パラジウム、ロジウム、イリジウム、ルテニウムの7種の貴金属を含む塩酸溶液を作成し、これに塩素ガス及びオゾンガスを吹き込み、溶液中の各金属濃度を測定しルテニウムの除去、回収の可否を確認した。塩酸溶液は塩酸濃度0.5mol/Lのものと1.5mol/Lのものの2種類を用意した。 Example 1 : Here, a hydrochloric acid solution containing seven kinds of noble metals such as platinum, gold, silver, palladium, rhodium, iridium, and ruthenium was prepared, and chlorine gas and ozone gas were blown into this, and the concentration of each metal in the solution was measured. It was confirmed whether or not ruthenium could be removed and recovered. Two types of hydrochloric acid solutions with a hydrochloric acid concentration of 0.5 mol / L and 1.5 mol / L were prepared.

図1は、本実施例で使用した試験装置の概略を示す。塩酸溶液10を入れたフラスコ20をウォーターバス21により所定温度に保持し、これに塩素ガスとオゾンガスとを同時に吹き込む。これにより塩酸溶液10中でルテニウムの酸化反応が生じ四酸化ルテニウムとなって反応後のオゾン、塩素ガスと共に系外へオフガスとして放出される。オフガスは、エタノール−塩酸溶液11を収容するルテニウム回収トラップ22、22‘を通過しルテニウムが回収される。そして、ルテニウムが除去されたオフガスは、オフガス処理槽23を通過し無害化される。 FIG. 1 shows an outline of a test apparatus used in this example. The flask 20 containing the hydrochloric acid solution 10 is maintained at a predetermined temperature by a water bath 21, and chlorine gas and ozone gas are simultaneously blown into the flask. As a result, an oxidation reaction of ruthenium occurs in the hydrochloric acid solution 10 to form ruthenium tetroxide and is released out of the system together with the ozone and chlorine gas after the reaction. The off gas passes through ruthenium recovery traps 22 and 22 'containing the ethanol-hydrochloric acid solution 11, and the ruthenium is recovered. The off-gas from which ruthenium has been removed passes through the off-gas treatment tank 23 and is rendered harmless.

ルテニウム回収試験は、塩酸溶液の温度を80℃とし、塩素ガスの供給量は0.5L/minとした。また、オゾンガスは1%オゾン(残部空気)を1L/minの供給量で供給した。そして、ガス供給から1時間経過後塩酸濃度を補償するために、水を40mL/hの速度で供給した。この実施例における回収前後の塩酸溶液中における各金属濃度を表1及び表2に示す。   In the ruthenium recovery test, the temperature of the hydrochloric acid solution was 80 ° C., and the supply amount of chlorine gas was 0.5 L / min. As ozone gas, 1% ozone (remaining air) was supplied at a supply rate of 1 L / min. Then, water was supplied at a rate of 40 mL / h to compensate for the hydrochloric acid concentration after 1 hour from the gas supply. Tables 1 and 2 show the concentration of each metal in the hydrochloric acid solution before and after the recovery in this example.

Figure 2005239441
Figure 2005239441

Figure 2005239441
Figure 2005239441

表1、2から、塩酸濃度0.5mol/Lの塩酸溶液では、塩素ガス及びオゾンガスを吹き込むことでルテニウム濃度が初期濃度1g/Lから0.001g/Lにまで減少した。一方、塩酸濃度1.5mol/Lの塩酸溶液についての試験では、基本的に0.5mol/Lの場合と同様の傾向が確認でき、塩素ガス及びオゾンガスの吹込みによるルテニウムの選択的分離、回収が確認できた。   From Tables 1 and 2, in the hydrochloric acid solution having a hydrochloric acid concentration of 0.5 mol / L, the ruthenium concentration decreased from the initial concentration of 1 g / L to 0.001 g / L by blowing chlorine gas and ozone gas. On the other hand, in the test on the hydrochloric acid solution having a hydrochloric acid concentration of 1.5 mol / L, basically the same tendency as in the case of 0.5 mol / L can be confirmed, and selective separation and recovery of ruthenium by blowing in chlorine gas and ozone gas. Was confirmed.

また、ルテニウム以外の金属濃度については、塩酸溶液の濃縮による変動がわずかにみられるが、ほとんど変化がなく初期濃度を維持していた。また、ルテニウム回収トラップ液中のルテニウム以外の貴金属濃度は1mg/L以下であった。これらの結果から、本発明に係る方法によるルテニウムの選択的分離、回収が確認できた。   In addition, the concentration of metals other than ruthenium was slightly changed due to the concentration of the hydrochloric acid solution, but there was almost no change and the initial concentration was maintained. The concentration of noble metals other than ruthenium in the ruthenium recovery trap liquid was 1 mg / L or less. From these results, selective separation and recovery of ruthenium by the method according to the present invention could be confirmed.

実施例2:実施例1より高濃度のルテニウムと白金を含む塩酸溶液を作成し、ガス吹込みによる回収を行った。塩酸濃度は0.5mol/Lとした。試験装置、条件は実施例1と同様とした。その結果を表3に示す。 Example 2 : A hydrochloric acid solution containing ruthenium and platinum having a higher concentration than that of Example 1 was prepared and recovered by gas blowing. The hydrochloric acid concentration was 0.5 mol / L. The test apparatus and conditions were the same as in Example 1. The results are shown in Table 3.

Figure 2005239441
Figure 2005239441

この実施例でも実施例1と同様塩素ガス及びオゾンガスの吹込みによるルテニウムの選択的分離が確認でき、2時間のガス吹き込みでルテニウム濃度は初期の0.5%にまで減少した。そして、実施例1と同様に塩酸濃度を調整しつつガス吹込みを継続すると、4時間のガス吹き込みで0.015g/Lにまでルテニウム濃度が減少した。また、この実施例でもルテニウムの選択的な回収が可能であった。   In this example, as in Example 1, selective separation of ruthenium by blowing chlorine gas and ozone gas was confirmed, and the ruthenium concentration decreased to 0.5% of the initial value after gas blowing for 2 hours. When the gas blowing was continued while adjusting the hydrochloric acid concentration in the same manner as in Example 1, the ruthenium concentration decreased to 0.015 g / L after 4 hours of gas blowing. Also in this example, selective recovery of ruthenium was possible.

実施例で使用した実験装置の概略を示す図。The figure which shows the outline of the experimental apparatus used in the Example.

符号の説明Explanation of symbols

10 塩酸溶液
20 フラスコ
21 ウオーターバス
22、22‘ ルテニウム回収トラップ
23 オフガス処理槽
10 Hydrochloric acid solution 20 Flask 21 Water bath 22, 22 'Ruthenium recovery trap 23 Off-gas treatment tank

Claims (3)

ルテニウムを含有する塩酸酸性溶液からルテニウムを回収する方法において、
前記塩酸酸性溶液にオゾンガス及び塩素ガスを吹き込み、溶液中のルテニウムイオンを四酸化ルテニウム(RuO)として分離する工程を含むことを特徴とするルテニウムの回収方法。
In a method for recovering ruthenium from an acidic hydrochloric acid solution containing ruthenium,
A method for recovering ruthenium, comprising a step of blowing ozone gas and chlorine gas into the hydrochloric acid acidic solution to separate ruthenium ions in the solution as ruthenium tetroxide (RuO 4 ).
塩酸酸性溶液の塩酸濃度を3mol/L以下としてオゾンガス及び塩素ガスを吹き込む請求項1記載のルテニウムの回収方法。 The method for recovering ruthenium according to claim 1, wherein ozone gas and chlorine gas are blown at a hydrochloric acid concentration in the hydrochloric acid acidic solution of 3 mol / L or less. 塩酸酸性溶液の温度を常温〜100℃としてオゾンガス及び塩素ガスを吹き込む請求項1又は請求項2記載のルテニウムの回収方法。
The method for recovering ruthenium according to claim 1 or 2, wherein ozone gas and chlorine gas are blown at a temperature of the hydrochloric acid acidic solution at room temperature to 100 ° C.
JP2004047703A 2004-02-24 2004-02-24 Method for recovering ruthenium from hydrochloric acid acidic solution Pending JP2005239441A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004047703A JP2005239441A (en) 2004-02-24 2004-02-24 Method for recovering ruthenium from hydrochloric acid acidic solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004047703A JP2005239441A (en) 2004-02-24 2004-02-24 Method for recovering ruthenium from hydrochloric acid acidic solution

Publications (1)

Publication Number Publication Date
JP2005239441A true JP2005239441A (en) 2005-09-08

Family

ID=35021577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004047703A Pending JP2005239441A (en) 2004-02-24 2004-02-24 Method for recovering ruthenium from hydrochloric acid acidic solution

Country Status (1)

Country Link
JP (1) JP2005239441A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4576470B1 (en) * 2009-05-29 2010-11-10 田中貴金属工業株式会社 Method for producing ammonium ruthenate
WO2012111542A1 (en) 2011-02-18 2012-08-23 三菱瓦斯化学株式会社 Method for collection of ruthenium or ruthenium compound
WO2012165510A1 (en) * 2011-05-31 2012-12-06 国立大学法人浜松医科大学 Recovery of reusable osmium tetroxide
KR101335353B1 (en) 2011-05-25 2013-12-02 성일하이텍(주) Method for manufacturing ruthenium-trichloride from scraps included ruthenium metal and oxides

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4576470B1 (en) * 2009-05-29 2010-11-10 田中貴金属工業株式会社 Method for producing ammonium ruthenate
JP2010275153A (en) * 2009-05-29 2010-12-09 Tanaka Kikinzoku Kogyo Kk Method for producing ammonium chlororuthenate
WO2012111542A1 (en) 2011-02-18 2012-08-23 三菱瓦斯化学株式会社 Method for collection of ruthenium or ruthenium compound
KR20140007437A (en) 2011-02-18 2014-01-17 미츠비시 가스 가가쿠 가부시키가이샤 Method for collection of ruthenium or ruthenium compound
US8940257B2 (en) 2011-02-18 2015-01-27 Mitsubishi Gas Chemical Company, Inc. Method for collection of ruthenium or ruthenium compound
KR101335353B1 (en) 2011-05-25 2013-12-02 성일하이텍(주) Method for manufacturing ruthenium-trichloride from scraps included ruthenium metal and oxides
WO2012165510A1 (en) * 2011-05-31 2012-12-06 国立大学法人浜松医科大学 Recovery of reusable osmium tetroxide
JPWO2012165510A1 (en) * 2011-05-31 2015-02-23 国立大学法人浜松医科大学 Recyclable osmium oxide (VIII) recovery
US9284623B2 (en) 2011-05-31 2016-03-15 National University Corporation Hamamatsu University School Of Medicine Recovery of reusable osmium tetroxide

Similar Documents

Publication Publication Date Title
Kim et al. Selective recovery of gold from waste mobile phone PCBs by hydrometallurgical process
RU2353684C2 (en) Method of joint separation of platinum metal
JP4323493B2 (en) Method for recovering platinum in waste liquid containing selenium using copper powder
JP2005523992A (en) Gold collection method
JP7206142B2 (en) Method for separating and recovering valuable metals
JP2012246198A (en) Method for purifying selenium by wet process
JP2005239441A (en) Method for recovering ruthenium from hydrochloric acid acidic solution
CA2411796A1 (en) Purification of metals from mixtures thereof
JP6636819B2 (en) Treatment method of metal-containing acidic aqueous solution
CN101560608B (en) Nitrogen-free wet-process refining method for gold-bearing materials
JP5339068B2 (en) Ruthenium purification and recovery method
JP5881469B2 (en) Ruthenium recovery method
JP5881502B2 (en) Ruthenium recovery method
JP2011132562A (en) METHOD FOR RECOVERING Co COMPOUND
JP2018044201A (en) Method of treating metal-containing hydrochloric acidic liquid
JP4134613B2 (en) Purification method for selenium, etc.
JP6882095B2 (en) Method for recovering precipitates containing platinum group elements
EP3532646B1 (en) Method for platinum group metals recovery from spent catalysts
JP2004143527A (en) Method for removing platinum and palladium in solution
JP2004190133A (en) Method of treating selenium, tellurium, and platinum group-containing material
JP2005126800A (en) Method for leaching reduced slag containing selenium and tellurium
JP2011208249A (en) Method for separating platinum group element
JPH0533071A (en) Method for separating and refining rhodium from aqueous solution
JP2004035968A (en) Method for separating platinum group element
JP6222469B2 (en) Platinum family recovery methods

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050921

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050921

A977 Report on retrieval

Effective date: 20080327

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20080731

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081119