JP2005239000A - Core for vehicular bumper - Google Patents

Core for vehicular bumper Download PDF

Info

Publication number
JP2005239000A
JP2005239000A JP2004052004A JP2004052004A JP2005239000A JP 2005239000 A JP2005239000 A JP 2005239000A JP 2004052004 A JP2004052004 A JP 2004052004A JP 2004052004 A JP2004052004 A JP 2004052004A JP 2005239000 A JP2005239000 A JP 2005239000A
Authority
JP
Japan
Prior art keywords
core
impact
bumper
core material
vehicle bumper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004052004A
Other languages
Japanese (ja)
Inventor
Takeshi Umetani
剛 梅谷
Yoshihiro Yamamoto
義弘 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2004052004A priority Critical patent/JP2005239000A/en
Publication of JP2005239000A publication Critical patent/JP2005239000A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Vibration Dampers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a core for a vehicular bumper capable of satisfying the required performance that the energy absorption during the collision remains substantially constant over the entire period from the time when the energy absorption reaches the peak of the impact value to the time when the absorption period of the collision energy by the core for the vehicular bumper is ended, and satisfying the required performance without reducing the energy absorption even in the second and subsequent repeated collisions in a plurality of collisions. <P>SOLUTION: The core for the vehicular bumper is constituted by combining a shock-absorbing material for compressive deformation and a shock-absorbing material for bending deformation. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、車両用バンパーに用いられ、特に歩行者保護機能を有する車両用バンパーに対して好適な性能を適用するものである。   The present invention is applied to a bumper for a vehicle and applies a suitable performance particularly to a bumper for a vehicle having a pedestrian protection function.

車両用バンパーとして、エネルギー吸収を高めるような工夫を施したバンパー芯材が種々考案されており、特に近年、歩行者に対する保護性能が高くなるように構成したものが、種々提案され、実用化されている。
例えば、車両の前端部に配置されているバンパー補強材と、バンパー補強材を覆うバンパーフェイシャー間に、衝撃吸収材を長手方向中央部において切断し、リブを備えたプレート材を衝撃吸収材の分割面に介装して衝撃吸収材の分割材同士を接着固定した車両用バンパー(例えば、特許文献1)や、中央部をハニカム材としその両サイドを発泡体として衝撃エネルギー吸収部材を用いた車両用バンパーにおいて、ハニカム材と発泡材とが所定範囲ラップしたラップ部で構成し、そのラップ部で両者複合されたエネルギー吸収特性となる車両バンパーがある(例えば、特許文献2)。
衝撃吸収構造体として内面に高さの異なるリブを配置し、衝撃荷重を複数に分けて最大荷重を低く保ちつつ衝撃を吸収する構造が提案されている(例えば、特許文献3)。
特開平11−1149号公報 実開平5−78654公報 特開平8−142785号公報
Various bumper core materials that have been devised to increase energy absorption have been devised as vehicle bumpers, and in recent years, various types of bumper cores designed to increase the protection performance against pedestrians have been proposed and put into practical use. ing.
For example, the shock absorber is cut at the longitudinal center between the bumper reinforcing material disposed at the front end of the vehicle and the bumper fascia covering the bumper reinforcing material, and the plate material with ribs is made of the shock absorbing material. A vehicle bumper (for example, Patent Document 1) in which the divided members of the shock absorbing material are bonded and fixed to each other through the dividing surface, or a shock energy absorbing member using a honeycomb material at the center and a foam on both sides thereof. In a vehicle bumper, there is a vehicle bumper having an energy absorption characteristic in which a honeycomb material and a foam material are formed by wrapping a predetermined range and both are combined in the wrapping portion (for example, Patent Document 2).
As a shock absorbing structure, a structure has been proposed in which ribs having different heights are arranged on the inner surface, and the shock is absorbed while the maximum load is kept low by dividing the impact load into a plurality (for example, Patent Document 3).
Japanese Patent Laid-Open No. 11-1149 Japanese Utility Model Publication No. 5-78654 JP-A-8-142785

前述した従来の車両用バンパー、衝撃吸収構造体においては、初回の衝突時において、圧縮初期のエネルギー吸収量が大きい為、要求性能を満足するが、2回目以降の繰り返し衝突においては衝撃吸収構造体の変形によりエネルギー吸収量が著しく低下し、要求性能を満足できないという問題があった。   In the conventional vehicle bumper and shock absorbing structure described above, the energy absorption amount in the initial stage of compression is large at the time of the first collision, so that the required performance is satisfied. However, in the second and subsequent repeated collisions, the shock absorbing structure is satisfied. As a result of the deformation, the amount of energy absorption is remarkably lowered and the required performance cannot be satisfied.

以上の課題に鑑み、本発明者らは鋭意検討の結果、圧縮変形による緩衝材と曲げ変形による緩衝材の緩衝特性を組み合わせることにより、衝撃力を押さえつつ衝突エネルギーを効率的に吸収可能であり、且つ、いずれの緩衝材も衝突完了後は、衝突前の形状に回復することから同衝撃による2回目の繰り返し衝突においても衝撃エネルギー吸収量が著しく低下することがないことを見出し本発明の完成に至った。   In view of the above problems, as a result of intensive studies, the present inventors can efficiently absorb the collision energy while suppressing the impact force by combining the cushioning characteristics of the cushioning material by compression deformation and the cushioning material by bending deformation. In addition, since any of the cushioning materials recovers to the shape before the collision after completion of the collision, it has been found that the amount of shock energy absorption is not significantly reduced even in the second repeated collision due to the same impact. It came to.

即ち本発明の第1は、圧縮変形による緩衝材と曲げ変形による緩衝材の組み合わせにより構成された車両バンパー用芯材に関する。好ましい態様としては、
(1)衝撃吸収後、形状が略全回復する、
(2)前記車両バンパー用芯材に対する衝撃値が、衝撃値のピークに達した時点から車両バンパー用芯材による衝撃エネルギーの吸収期間終了点までの全期間にわたって、略一定である、
(3)同じ衝撃力による2回の繰り返し衝突において、2回目の衝撃ピーク値が1回目の衝撃ピーク値の40%以上である、
(4)前記曲げ変形による緩衝材が、ゴム板からなる、
(5)前記圧縮変形による緩衝材が、合成樹脂からなる発泡成形体で構成された、
(6)前記圧縮変形による緩衝材を緩衝期間の全期間にわたって圧縮変形するように配置し、曲げ変形による緩衝材を衝撃初期において曲げ変形するように配置した、
(7)前記曲げ変形による緩衝材をバンパーの前後方向全幅にわたって設けた、
前記記載の車両バンパー用芯材に関する。
That is, a first aspect of the present invention relates to a vehicle bumper core material configured by a combination of a cushioning material by compression deformation and a cushioning material by bending deformation. As a preferred embodiment,
(1) The shape recovers almost completely after absorbing the impact.
(2) The impact value with respect to the core material for the vehicle bumper is substantially constant over the entire period from the time when the peak of the impact value is reached to the end point of the impact energy absorption period by the core material for the vehicle bumper.
(3) In two repeated collisions with the same impact force, the second impact peak value is 40% or more of the first impact peak value.
(4) The buffer material by the bending deformation is made of a rubber plate.
(5) The cushioning material by the compression deformation is composed of a foam molded body made of a synthetic resin.
(6) The cushioning material by the compression deformation is arranged so as to be compressed and deformed over the entire buffer period, and the cushioning material by the bending deformation is arranged to bend and deform at the initial stage of impact.
(7) The cushioning material by the bending deformation is provided over the entire width in the front-rear direction of the bumper.
The present invention relates to the core material for a vehicle bumper described above.

本発明の車両バンパー用芯材によれば、圧縮変形による緩衝材と曲げ変形による緩衝材との組み合わせで衝突エネルギーを吸収するので、芯材における衝撃荷重の緩衝期間の全期間にわたって、芯材に対する衝撃力が略一様になるように構成する事が可能となり、衝撃値を抑えつつ衝突エネルギーを効果的に吸収して、歩行者の保護性能を向上することが可能となる。   According to the core material for a vehicle bumper of the present invention, the collision energy is absorbed by the combination of the shock absorbing material due to compression deformation and the shock absorbing material due to bending deformation. It is possible to configure the impact force to be substantially uniform, and it is possible to effectively absorb the collision energy while suppressing the impact value, thereby improving the protection performance of the pedestrian.

また、前記車両バンパー用芯材に対する衝撃エネルギー吸収量が、衝撃エネルギー吸収量がピークに達した時点から車両バンパー用芯材による衝撃エネルギーの緩衝期間終了点までの全期間にわたって、略一定になるように設定したり、更には、曲げ変形による緩衝材を使用するので、1回目の衝突後、衝突前の形状に略回復し、従って、2回目の衝突においても衝突エネルギーを吸収する事が可能である。従って、圧縮変形による緩衝材を緩衝期間の全期間にわたって圧縮変形するよう配置し、曲げ緩衝材を緩衝期間の初期において曲げ変形するように配置すると、歩行者に作用する衝撃力を低く抑えつつ、緩衝期間全体を有効利用して衝突エネルギーを効率的に吸収することが可能である。   Further, the amount of impact energy absorbed by the vehicle bumper core is substantially constant over the entire period from the point at which the impact energy absorption reaches a peak until the end of the shock energy buffer period by the vehicle bumper core. In addition, since a cushioning material by bending deformation is used, the shape before the collision is almost recovered after the first collision, and therefore it is possible to absorb the collision energy even in the second collision. is there. Therefore, if the cushioning material by compression deformation is arranged so as to compressively deform over the entire period of the buffering period and the bending cushioning material is arranged so as to bend and deform at the initial stage of the buffering period, the impact force acting on the pedestrian is kept low, It is possible to efficiently absorb the collision energy by effectively using the entire buffer period.

曲げ変形による緩衝材をバンパーの前後方向の全幅にわたって設けたり、この曲げ変形による緩衝材を略水平面内において、バンパーの長さ方向に沿い且つバンパーの前後方向の全幅にわたって設けると、曲げ変形による緩衝材に対して衝突初期の段階から衝突荷重を作用させる事が可能になり、曲げ変形により衝突初期における衝突エネルギーを効果的に吸収できる。   If the cushioning material by bending deformation is provided over the entire width of the bumper in the front-rear direction, or if the cushioning material by bending deformation is provided along the length of the bumper and over the entire width in the front-rear direction of the bumper in a substantially horizontal plane, A collision load can be applied to the material from the initial stage of the collision, and the collision energy at the initial stage of the collision can be effectively absorbed by bending deformation.

圧縮変形による緩衝材を合成樹脂材からなる発泡成形体で構成すると、緩衝性能を充分に確保しつつ、必要な緩衝特性にあわせて発泡倍率を設定する事ができると共に、バンパーの芯材を軽量に構成できる。   If the cushioning material by compression deformation is made of a foamed molded product made of a synthetic resin material, the foaming ratio can be set according to the required cushioning characteristics while ensuring sufficient cushioning performance, and the bumper core material is lightweight. Can be configured.

本発明の車両バンパー用芯材は、圧縮変形による緩衝材と曲げ変形による緩衝材とを組み合わせてなる。2種類の緩衝材を芯材に用いることで芯材に作用する衝突エネルギーは、圧縮変形による緩衝材が緩衝期間の全期間にわたって圧縮変形することにより吸収されるとともに、曲げ変形による緩衝材が緩衝期間に初期を中心に曲げ変形することにより吸収されることになる。   The core material for a vehicle bumper according to the present invention is formed by combining a cushioning material by compression deformation and a cushioning material by bending deformation. The impact energy acting on the core material by using two types of shock absorbers as the core material is absorbed when the shock absorbing material due to compression deformation is compressed and deformed over the entire buffer period, and the shock absorbing material due to bending deformation is buffered. It is absorbed by bending deformation around the initial period in the period.

本発明の車両バンパー用芯材は、衝突荷重が作用した後、即ち、衝撃吸収後、略全回復する特徴をもっていることが好ましい。本発明において全回復とは、衝突荷重が作用する前のバンパー前後方向の芯材の幅長さに対し、衝突荷重が作用した後のバンパー前後方向の芯材の幅長さが、何れの箇所においても好ましくは90%以上、更に好ましくは95%以上になっていることをいう。   The core member for a vehicle bumper according to the present invention preferably has a characteristic that substantially completely recovers after a collision load is applied, that is, after shock absorption. In the present invention, the total recovery means that the width of the core material in the front-rear direction of the bumper after the collision load is applied to any width of the core material in the front-rear direction of the bumper before the collision load is applied. Is preferably 90% or more, more preferably 95% or more.

圧縮変形による緩衝材と曲げ変形による緩衝材を組み合わせることで、本発明の芯材は、衝突荷重が作用し始めて、緩衝期間の10〜20%で衝撃エネルギー吸収量がピークに達しその後、緩衝期間終了点までの全期間に渡って、略一定であることが好ましく、更には、衝撃エネルギー吸収量はピーク値に対し±40%で推移することが好ましい。   By combining the cushioning material by compression deformation and the cushioning material by bending deformation, the core material of the present invention begins to act on the impact load, and the impact energy absorption reaches a peak at 10 to 20% of the buffering period, and then the buffering period. It is preferable that it is substantially constant over the entire period up to the end point. Furthermore, it is preferable that the impact energy absorption amount changes at ± 40% with respect to the peak value.

更には、本発明の車両バンパー用芯材は、同じ衝撃力による2回の繰り返し衝突において、1回目の衝突エネルギー吸収量の前記ピーク値に対して、2回目衝突時の衝撃エネルギー吸収量の前記ピーク値が40%以上であることが好ましく、更には80%以上が好ましく、特には90%以上であることが好ましい。   Furthermore, the core material for a vehicle bumper according to the present invention has the impact energy absorption amount in the second collision with respect to the peak value of the first collision energy absorption amount in two repeated collisions with the same impact force. The peak value is preferably 40% or more, more preferably 80% or more, and particularly preferably 90% or more.

圧縮変形による緩衝材としては、圧縮変形により衝突荷重を緩衝可能なものであれば、特に限定はなく、例えば、合成樹脂や合成ゴム材料などを採用でき、合成樹脂としては、例えば、ポリスチレン系合成樹脂や、ポリエチレン系樹脂やポリプロピレン系樹脂などポリオレフィン系合成樹脂やこれらの共重合体、これらの発泡成形体が挙げられ、中でも合成樹脂からなる発泡成形体を用いることが芯材の軽量化できるため好ましい。   The buffer material by compression deformation is not particularly limited as long as it can buffer the impact load by compression deformation. For example, a synthetic resin or a synthetic rubber material can be adopted. Examples include resins, polyolefin-based synthetic resins such as polyethylene-based resins and polypropylene-based resins, copolymers thereof, and foam-molded products thereof. Among them, the use of foam-molded products made of synthetic resins can reduce the weight of the core material. preferable.

合成樹脂からなる発泡成形体の製造法には特に限定はなく、公知の方法、例えば押し出し成形法、ビーズ法などの方法を用いることができる。このような発泡成形体をビーズ法にて成形する場合には、素材自体に柔軟性を有することから、例えば、エチレンプロピレンランダムポリプロピレン樹脂、エチレンプロピレンブロックポリプロピレン樹脂、ホモポリプロピレンエチレンプロピレンブテンレンダムターポリマー、直鎖状低密度ポリエチレン(LLDPE)、架橋低密度ポリエチレン(架橋LDPE)などのポリオレフィン系樹脂を好適に利用できる。また、発泡成形体の発泡倍率は、原料ビーズの素材にもよるが、3〜150倍に範囲内が好ましい。具体的にはポリオレフィン系合成樹脂材料からなる予備発泡ビーズにおいては、発泡倍率が低すぎると衝撃力が大きくなる恐れがあり、小さすぎると充分に衝突エネルギーを吸収できない恐れがあるので、好ましくは2倍以上90倍以下、更に好ましくは2倍以上で60倍以下のものを採用することになる。   There is no particular limitation on the method for producing the foamed molded body made of a synthetic resin, and a known method such as an extrusion molding method or a bead method can be used. When molding such a foamed molded article by the bead method, since the material itself has flexibility, for example, ethylene propylene random polypropylene resin, ethylene propylene block polypropylene resin, homopolypropylene ethylene propylene butene end terpolymer, Polyolefin resins such as linear low density polyethylene (LLDPE) and crosslinked low density polyethylene (crosslinked LDPE) can be suitably used. Further, the expansion ratio of the foamed molded product is preferably in the range of 3 to 150 times, although it depends on the material of the raw material beads. Specifically, in the pre-expanded beads made of a polyolefin-based synthetic resin material, if the expansion ratio is too low, the impact force may be increased, and if it is too small, the collision energy may not be sufficiently absorbed. Double to 90 times, more preferably 2 to 60 times are adopted.

曲げ変形による緩衝材の素材としては、曲げ変形により衝突荷重で緩衝可能なものであれば、素材形状に特に限定はなく衝撃期間の60%圧縮においても80%回復するもの、更に好ましくは90%回復するものが好ましい。素材としては、合成ゴム材料や金属材料などを採用できる。ゴム板を採用することが回復力の条件を満たすことから好ましい。   The material of the buffer material by bending deformation is not particularly limited as long as the material can be buffered by a collision load by bending deformation, and the material can be recovered by 80% even at 60% compression during the impact period, more preferably 90%. Those that recover are preferred. Synthetic rubber materials or metal materials can be used as the material. Adopting a rubber plate is preferable because it satisfies the condition of resilience.

圧縮変形による緩衝材は、バンパー補強材とバンパーフェイシャー間の空間に適合する形状に形成され、該空間に隙間無く装着され、緩衝期間の全期間にわたって圧縮変形するようにバンパー補強材の前側に配置され、圧縮変形による緩衝材の高さ方向の途中部には車幅方向に延びる1つの開口部が圧縮変形による緩衝材の両端部分まで形成されている。   The cushioning material by compression deformation is formed in a shape that fits the space between the bumper reinforcement and the bumper fascia, and is installed in the space without any gap, and is placed on the front side of the bumper reinforcement so as to compressively deform over the entire cushioning period. One opening that is disposed and extends in the vehicle width direction is formed in the middle of the cushioning material in the height direction due to compression deformation up to both ends of the cushioning material due to compression deformation.

曲げ変形による緩衝材の形状としては、断面Π字形状が挙げられる。細長い略平板状の固定部と固定部の途中に相互に間隔をあけて直交状に固定した1対の曲げ部からなり、固定部と同じ長さの細長い平板状であり、固定部は圧縮変形による緩衝材の開口部よりも大きな外形に形成されて、開口部の後面を塞ぐように圧縮変形による緩衝材の後面にとりつけられている。そしてバンパーフェイシャー及び圧縮変形による緩衝材とともにバンパー補強材の前面に組み付けた状態で固定部の外周部が圧縮による緩衝材とバンパー補強材間に挟持されるように構成されている。   Examples of the shape of the buffer material by bending deformation include a cross-sectional shape. It consists of an elongated, substantially flat plate-like fixed part and a pair of bent parts fixed at right angles to each other in the middle of the fixed part. The fixed part is an elongated flat plate with the same length as the fixed part. Is formed in a larger outer shape than the opening of the cushioning material, and is attached to the rear surface of the cushioning material by compression deformation so as to block the rear surface of the opening. And the outer peripheral part of a fixing | fixed part is clamped between the buffer material by compression, and a bumper reinforcement material in the state assembled | attached to the front surface of the bumper reinforcement material with the bumper fascia and the buffer material by compression deformation.

曲げ部の両端部は、圧縮変形による緩衝材の固定溝内に装着されて圧縮変形による緩衝材に固定され、緩衝期間の初期において曲げ部が曲げ変形するように曲げ部の先端部は圧縮変形による緩衝材の開口部を通ってバンパーフェイシャー付近に配置されている。圧縮変形による緩衝材の開口部の内壁と曲げ部間及び上下の曲げ部間には曲げ許容空間が形成され曲げ部が曲げ変形するときに、圧縮変形による緩衝材の内壁や曲げ部同士が相互に干渉しないように設定して、曲げ部の曲げ変形が円滑に且つ確実になされるように構成されている。曲げ許容空間は、バンパーの前後方向の全幅に貫通穴を設けてもよいが、前方へ向けて開口する有底孔状に設けてもよく、この場合バンパー前後方向の全幅の1/3以上の深さに設定することが好ましい。更に曲げ部の曲げ変形が円滑且つ確実になされるように曲げ部同士の間隔と曲げ部と圧縮変形による緩衝材の間隔は、バンパー前後方向の全幅の1/3以上に設定することが好ましい。   Both ends of the bent portion are mounted in the fixing groove of the cushioning material by compression deformation and fixed to the cushioning material by compression deformation, and the distal end portion of the bending portion is compressed and deformed so that the bending portion is bent and deformed at the initial stage of the buffering period Is placed near the bumper fascia through the opening of the cushioning material. When the bending allowance space is formed between the inner wall of the opening of the cushioning material due to compressive deformation and the bent part, and between the upper and lower bent parts, the inner wall and the bent part of the cushioning material due to compressive deformation are mutually connected. It is configured so that the bending deformation of the bent portion can be made smoothly and reliably. The permissible bending space may be provided with a through-hole in the entire width of the bumper in the front-rear direction, but may be provided in the shape of a bottomed hole that opens toward the front. It is preferable to set the depth. Furthermore, it is preferable to set the distance between the bent parts and the distance between the bent parts and the cushioning material due to the compressive deformation to 1/3 or more of the entire width in the front-rear direction of the bumper so that the bending deformation of the bent parts can be performed smoothly and reliably.

車体の前端部には車幅方向に伸びるバンパー補強材が設けられ、バンパー補強材とバンパーフェイシャー間には本発明の芯材が装着される。   A bumper reinforcement extending in the vehicle width direction is provided at the front end of the vehicle body, and the core material of the present invention is mounted between the bumper reinforcement and the bumper fascia.

フロントバンパーは、バンパーフェイシャーと芯材とで構成され、前衝突時における衝突荷重は、バンパーフェイシャーを介して芯材3に伝達されて、両者の変形で受け止められ、更に大きな衝突荷重が作用すると、バンパー補強材に衝突荷重が作用して、バンパー補強材が変形することで受け止められる。リアバンパーの芯材としても同様に適用することが可能である。   The front bumper is composed of a bumper fascia and a core material, and the collision load at the time of the previous collision is transmitted to the core material 3 via the bumper fascia and is received by deformation of both, and when a larger collision load acts The bumper reinforcing material is received by a collision load acting on the bumper reinforcing material and the bumper reinforcing material being deformed. The same can be applied to the core material of the rear bumper.

(試験片)
圧縮による緩衝材として、ポリプロピレン系樹脂からなる予備発泡ビーズを用い、成形品倍率が45倍(鐘淵化学工業製原料エペラン―PP仕様)になるように、成形したものを150×100×55mmサイズにカットしたものを製作し、曲げによる緩衝材として、合成ゴム材料であるアクリロトリブタジエンゴムの板状部材からなり100×5×55mmサイズの曲げによる緩衝材を製作した。そして、2枚の曲げによる緩衝材を圧縮による緩衝材に間隔をあけて組みつけてなる試験片を作成した。
(Test pieces)
150 x 100 x 55 mm size molded pre-expanded beads made of polypropylene resin as the cushioning material by compression so that the magnification of the molded product becomes 45 times (raw material Eperan-PP specification manufactured by Kaneka Chemical Industry) A buffer material by bending of 100 × 5 × 55 mm made of a plate member of acrylotributadiene rubber, which is a synthetic rubber material, was manufactured as a buffer material by bending. Then, a test piece was prepared by assembling the cushioning material by bending two cushioning materials by compression with an interval.

また比較例として、曲げによる緩衝材のかわりに1回の圧縮で坐屈してしまうポリプロピレン系樹脂からなる非発泡の板状部材を組み合わせた試験片を作成した。
(試験方法)
各試験片を受け台に順次セットして、試験片の長さ方向の中央部に幅方向に沿ってφ70mmの丸棒からなる治具にて10mm/minの速度で圧縮し、試験片厚みに対し60%圧縮し、荷重を取り除いた後に再度同条件にて圧縮した。1回目圧縮時の試験片のピーク荷重値とその時の変位量、2回目圧縮時ピーク荷重値を測定し、荷重の減少率を算出し表1に示す測定結果を得た。
Moreover, the test piece which combined the non-foamed plate-shaped member which consists of polypropylene resin which buckles by one compression instead of the buffer material by bending was created as a comparative example.
(Test method)
Each test piece is sequentially set on a cradle, and is compressed at a speed of 10 mm / min with a jig made of a round bar of φ70 mm along the width direction at the center in the length direction of the test piece to obtain the thickness of the test piece. The sample was compressed 60%, and after removing the load, it was compressed again under the same conditions. The peak load value of the test piece at the time of the first compression, the displacement amount at that time, the peak load value at the time of the second compression were measured, the reduction rate of the load was calculated, and the measurement results shown in Table 1 were obtained.

Figure 2005239000
表1から、1回目の圧縮前後においてその寸法の減少率は、比較例のポリプロピレン系樹脂からなる非発泡の板状部材の箇所において16.6%であったのに対し、圧縮による緩衝材と曲げによる緩衝材を用いた本発明例は、2.0%、0.9%と略全回復をした。また、荷重減少率は45.8%であり、比較例の92.4%と比較して、荷重減少率を減少させる事ができ、繰り返しの衝撃においても性能低下が抑えられている事が分かった。
Figure 2005239000
From Table 1, the reduction rate of the dimension before and after the first compression was 16.6% in the portion of the non-foamed plate-like member made of the polypropylene resin of the comparative example, whereas the cushioning material by compression and In the present invention example using the buffer material by bending, 2.0% and 0.9% were almost fully recovered. Moreover, the load reduction rate is 45.8%, and compared with 92.4% of the comparative example, the load reduction rate can be reduced, and it is understood that the performance degradation is suppressed even in repeated impacts. It was.

フロントバンパーの縦断面図Front bumper longitudinal section フロントバンパーの正面図Front bumper front view 評価試験で用いた試験片の斜視図Perspective view of test piece used in evaluation test 同試験片の縦断面図Longitudinal section of the specimen 本発明の車両バンパー用芯材のエネルギー吸収曲線Energy absorption curve of core material for vehicle bumper of the present invention

符号の説明Explanation of symbols

1 バンパー補強材
2 バンパーフェイシャー
3 芯材
4 フロントバンパー
10 圧縮変形による緩衝材
11 開口部
12 固定溝
13 曲げ許容区間
20 曲げ変形による緩衝材
21 固定部
22 曲げ部
30 圧縮変形による緩衝材
31 曲げ変形による緩衝材
DESCRIPTION OF SYMBOLS 1 Bumper reinforcement material 2 Bumper fascia 3 Core material 4 Front bumper 10 Buffer material by compression deformation 11 Opening part 12 Fixing groove 13 Bending tolerance part 20 Buffer material by bending deformation 21 Fixing part 22 Bending part 30 Buffer material 31 by compression deformation 31 Bending deformation By cushioning material

Claims (8)

圧縮変形による緩衝材と曲げ変形による緩衝材の組み合わせにより構成された車両バンパー用芯材。   A vehicle bumper core material composed of a combination of a cushioning material by compression deformation and a cushioning material by bending deformation. 衝撃吸収後、形状が略全回復する、請求項1記載の車両バンパー用芯材。   The core member for a vehicle bumper according to claim 1, wherein the shape recovers substantially completely after absorbing the shock. 前記車両バンパー用芯材に対する衝撃値が、衝撃値のピークに達した時点から車両バンパー用芯材による衝撃エネルギーの吸収期間終了点までの全期間にわたって、略一定である請求項1または2に記載の車両バンパー用芯材。   The impact value with respect to the core material for a vehicle bumper is substantially constant over the entire period from the time when the peak of the impact value is reached to the end point of the impact energy absorption period by the core material for the vehicle bumper. Core material for vehicle bumpers. 同じ衝撃力による2回の繰り返し衝突において、2回目の衝撃ピーク値が1回目の衝撃ピーク値の40%以上である請求項1〜3何れか一項に記載の車両バンパー用芯材。   The core material for a vehicle bumper according to any one of claims 1 to 3, wherein the second impact peak value is 40% or more of the first impact peak value in two repeated collisions with the same impact force. 前記曲げ変形による緩衝材が、ゴム板からなる請求項1〜4のいずれか1項に記載の車両バンパー用芯材。   The core material for a vehicle bumper according to any one of claims 1 to 4, wherein the buffer material by bending deformation is made of a rubber plate. 前記圧縮変形による緩衝材が、合成樹脂からなる発泡成形体で構成された請求項1〜5のいずれか1項に記載の車両バンパー用芯材。   The core material for a vehicle bumper according to any one of claims 1 to 5, wherein the cushioning material by compression deformation is formed of a foamed molded body made of a synthetic resin. 前記圧縮変形による緩衝材を緩衝期間の全期間にわたって圧縮変形するように配置し、曲げ変形による緩衝材を衝撃初期において曲げ変形するように配置した請求項1〜6のいずれか1項に記載の車両バンパー用芯材。   The buffer material by the said compression deformation is arrange | positioned so that it may compress-deform over the whole period of a buffer period, and the buffer material by a bending deformation will be arrange | positioned so that it may bend and deform in the initial stage of an impact. Core material for vehicle bumpers. 前記曲げ変形による緩衝材をバンパーの前後方向全幅にわたって設けた請求項1〜7のいずれか1項に記載の車両バンパー用芯材。   The core member for a vehicle bumper according to any one of claims 1 to 7, wherein the buffer material by the bending deformation is provided over the entire width of the bumper in the front-rear direction.
JP2004052004A 2004-02-26 2004-02-26 Core for vehicular bumper Pending JP2005239000A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004052004A JP2005239000A (en) 2004-02-26 2004-02-26 Core for vehicular bumper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004052004A JP2005239000A (en) 2004-02-26 2004-02-26 Core for vehicular bumper

Publications (1)

Publication Number Publication Date
JP2005239000A true JP2005239000A (en) 2005-09-08

Family

ID=35021203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004052004A Pending JP2005239000A (en) 2004-02-26 2004-02-26 Core for vehicular bumper

Country Status (1)

Country Link
JP (1) JP2005239000A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7581769B2 (en) 2006-06-08 2009-09-01 Hayashi Telempu Co., Ltd. Bumper absorber and manufacturing method for the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7581769B2 (en) 2006-06-08 2009-09-01 Hayashi Telempu Co., Ltd. Bumper absorber and manufacturing method for the same

Similar Documents

Publication Publication Date Title
KR101051896B1 (en) Vehicle bumper structure
KR101287640B1 (en) Shock absorbing material and vehicle bumper
JP4163615B2 (en) Energy absorption unit
US7357444B2 (en) Tunable geometry for energy absorbing foam to lower peak load during side impact
KR20070055534A (en) Bumper assembly including energy absorber with vertical translation crush lobes
WO2004020256A1 (en) Collision energy-absorbing material for vehicle and collision energy-absorbing structure of vehicle using the material
JP2008522903A (en) Pedestrian bumper with thermoformed energy absorber
KR101013901B1 (en) Bumper Apparatus With Multi-Energy Absorbing Structure
CN102173291B (en) The energy-absorbing element of auto against management system
JP2001182769A (en) Shock-absorbing member
JP4298760B2 (en) Bumper absorber
JP5620078B2 (en) Shock absorber for shock absorber bumper for vehicles
US20040056491A1 (en) Bumper core
JP4121074B2 (en) Front bumper core
JP2005239000A (en) Core for vehicular bumper
JP4305053B2 (en) Collision energy absorption device for vehicle bumper
JPH06144133A (en) Metal bumper
JP3505418B2 (en) Shock absorbing structure for vehicles
JP5210117B2 (en) Bumperin force for vehicles
JP2005214242A (en) Vehicular energy absorber and vehicular collision energy absorption structure using the same
KR101057985B1 (en) Bumper Unit for Vehicle
JP4698198B2 (en) Bumper for vehicle and cushioning material thereof
KR101011000B1 (en) bumper for reducing impact to passenger
KR100812054B1 (en) Bumper assembly including an energy absorber
JPH01309845A (en) Multistage shock absorbing bumper