JP2005238614A - Transparent sheet excellent in vacuum formability and formed product using the same - Google Patents

Transparent sheet excellent in vacuum formability and formed product using the same Download PDF

Info

Publication number
JP2005238614A
JP2005238614A JP2004051004A JP2004051004A JP2005238614A JP 2005238614 A JP2005238614 A JP 2005238614A JP 2004051004 A JP2004051004 A JP 2004051004A JP 2004051004 A JP2004051004 A JP 2004051004A JP 2005238614 A JP2005238614 A JP 2005238614A
Authority
JP
Japan
Prior art keywords
mass
sheet
rubber
parts
styrene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004051004A
Other languages
Japanese (ja)
Other versions
JP5027987B2 (en
Inventor
Hideaki Nishimura
英明 西村
Masafumi Hiura
雅文 日浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2004051004A priority Critical patent/JP5027987B2/en
Publication of JP2005238614A publication Critical patent/JP2005238614A/en
Application granted granted Critical
Publication of JP5027987B2 publication Critical patent/JP5027987B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a transparent sheet excellent in transparency and vacuum formability using a rubber modified styrenic polymer excellent in transparency, impact strength, and formability, and a formed product using it. <P>SOLUTION: The transparent sheet is a multilayered sheet comprising multilayered constituent components and stretched in a multi-axial direction, and the surface layer has an orientation factor relaxing stress within a specified range. The surface layer comprises a styrenic polymer composed of a disperse phase using a rubbery elastomer if necessary and a continuous phase comprising a polymer containing a styrenic monomer unit and a (meth)acrylic ester monomer unit. An intermediate layer comprises a rubber modified styrenic polymer composed of a disperse phase comprising a rubbery elastomer and a continuous phase comprising a polymer containing a specific range of a styrenic monomer unit % and a (meth)acrylic ester monomer unit % and the rubbery elastomer is a styrenic polymer composed of 30-50 mass% of a styrenic monomer unit and 70-50 mass% of a butadiene monomer unit. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、透明性、衝撃強度、及び成形性に優れたゴム変性スチレン系重合体を用いた、透明性と真空成形性に優れたシート及びその成形品に関するものである。   The present invention relates to a sheet excellent in transparency and vacuum moldability, and a molded product thereof, using a rubber-modified styrene polymer excellent in transparency, impact strength, and moldability.

包装用成形体の材料として、従来から透明性を必要とするものは塩化ビニル樹脂が使用されている。しかしながら、塩化ビニル樹脂は、廃棄物として焼却する際に発生する塩化水素による焼却炉の腐食間題、大気中に放出された塩化水素による大気汚染間題に加え、焼却炉で発生するダイオキシン類の原因物質のひとつとして考えられており、このような問題から塩化ビニル樹脂に代わる材料が求められてきている。これらの問題が生じない代替材料としてポリカーボネート、透明ABS等が一部市場で実績はあるものの、両者ともに価格が高く低価格の塩化ビニル樹脂の代替材料としての実用性に欠ける欠点があった。また、電子部品包装用成形体の材料としては剛性、耐衝撃性の良好なことも必要とされ、透明で、衝撃強度に優れ、剛性が高く、低価格の代替材料が望まれていた。   As a material for a molded article for packaging, a vinyl chloride resin has been conventionally used that requires transparency. However, vinyl chloride resin is not only used for incinerator corrosion due to hydrogen chloride generated during incineration as waste, and for air pollution caused by hydrogen chloride released into the atmosphere, but also for dioxins generated in incinerators. It is considered as one of the causative substances, and due to such problems, a material replacing vinyl chloride resin has been demanded. As alternative materials that do not cause these problems, polycarbonate, transparent ABS, and the like have some results in the market, but both of them have the disadvantage of lacking practicality as alternative materials for high-priced and low-priced vinyl chloride resins. In addition, the material for the molded article for packaging electronic parts is required to have good rigidity and impact resistance, and a transparent, excellent impact strength, high rigidity, and low cost alternative material has been desired.

一方、低価格の材料としてスチレン系重合体が存在する。スチレン系重合体は、透明性、成形性、剛性に優れた合成樹脂であるところから、家庭用品、電気製品、包装等の成形材料として広く用いられてきた。そして、利用分野が拡大するにつれてスチレン系重合体の衝撃強度向上が強く求められるようになってきた。
スチレン系重合体の衝撃強度を向上させるために、ゴム状弾性体を分散粒子として含有するスチレン系重合体、即ちゴム変性スチレン系重合体があり、バランスに優れた透明樹脂として知られている。また、ポリスチレンにスチレン−ブタジエンブロック共重合体をブレンドして衝撃強度を向上させる技術も知られている。しかし、このスチレン系重合体組成物は、成形加工時の熱履歴によりスチレン−ブタジエンブロック共重合体が架橋し、いわゆるゲル状物質が生成し、成形品外観を悪化させるという欠点を有している。さらに、このスチレン系重合体組成物は価格が高いという難点もある。一方、ゴム状弾性体を分散粒子として含有するスチレン系重合体、即ちゴム変性スチレン系重合体があり、その優れた熱履歴下での安定性や成形加工性もあいまって広い分野で使用されてきている。これらの透明樹脂は用途に応じて各種加工法により成形加工がなされるが、電子部品や食品等の包装材料に使用される場合、最終製品の経済性,性能を考慮し樹脂材料はシート化,熱成形を経て容器となる加工法が多くみられる。また、これらの熱成形加工は予めシート化された樹脂が加熱,引き延ばしにより賦型される加工法で熱板成形,圧空成形,真空成形等いくつかの方法があるが複雑形状成形品や深い成形絞りを要する容器等ではオス型のアクションと真空成形が組合わさったプラグアシストの真空成形がしばし使用されている。
On the other hand, styrenic polymers exist as low-cost materials. Styrenic polymers have been widely used as molding materials for household goods, electrical products, packaging and the like because they are synthetic resins with excellent transparency, moldability, and rigidity. As the field of application expands, there has been a strong demand for improvement in impact strength of styrenic polymers.
In order to improve the impact strength of the styrene polymer, there is a styrene polymer containing a rubber-like elastic body as dispersed particles, that is, a rubber-modified styrene polymer, which is known as a transparent resin having an excellent balance. Also known is a technique for improving impact strength by blending polystyrene with a styrene-butadiene block copolymer. However, this styrenic polymer composition has the disadvantage that the styrene-butadiene block copolymer is cross-linked by the heat history during the molding process, so-called gel-like substance is generated, and the appearance of the molded product is deteriorated. . Furthermore, this styrenic polymer composition has a drawback that it is expensive. On the other hand, there are styrenic polymers containing rubbery elastic particles as dispersed particles, that is, rubber-modified styrenic polymers, which have been used in a wide range of fields due to their excellent stability under heat history and moldability. ing. These transparent resins are molded by various processing methods depending on the application, but when used for packaging materials such as electronic parts and foods, the resin material is made into a sheet in consideration of the economy and performance of the final product. There are many processing methods that become containers after thermoforming. In addition, these thermoforming processes are a process in which a pre-sheeted resin is shaped by heating and stretching, and there are several methods such as hot plate molding, pressure forming, and vacuum molding. For containers that require squeezing, plug-assisted vacuum forming, which is a combination of male action and vacuum forming, is often used.

透明樹脂を使った真空成形容器では当然ながら良好な透明性をもった成形品が求められるが、上述の性能バランスを満足するゴム変性スチレン系重合体でも良好な賦型品が得られるも、成形時の急激な引き延ばしにより成形品中のゴム粒子が急激な形状変化を引き起こし成形品表面に曇りを起こすことが課題とされて、特定のラメラ構造を持つスチレン−ブタジエンブロック共重合体を表層に配する多層シートが提案されているが、リサイクル時の透明性低下や熱安定性の点で十分な効果を得られていなかった(例えば、特許文献1参照)。   Of course, vacuum molded containers using transparent resins require molded products with good transparency, but even with rubber-modified styrenic polymers that satisfy the above performance balance, good molded products can be obtained. The problem is that the rubber particles in the molded product cause a sudden change in shape due to rapid stretching at the time, causing the surface of the molded product to become cloudy. A styrene-butadiene block copolymer having a specific lamellar structure is disposed on the surface layer. Although a multilayer sheet has been proposed, sufficient effects have not been obtained in terms of transparency reduction and thermal stability during recycling (see, for example, Patent Document 1).

特開平7−314611号公報(請求項1〜請求項13)JP-A-7-314611 (Claims 1 to 13)

本発明は、上記のような技術状況の基で、透明で、耐衝撃強度に優れ、外観の良好な真空成形性に優れたシート及びその成形品を提供することを目的とする。   An object of the present invention is to provide a sheet and a molded product thereof that are transparent, excellent in impact strength, excellent in vacuum formability and excellent in vacuum formability, based on the above technical situation.

本発明者らは、前記課題を解決すべく鋭意検討した結果、多層構成が特定の成分からなり、かつ多軸方向に延伸加工された多層シートであることを特徴とする真空成形性に優れた透明シート、及びその成形品を見出し、本発明を完成するに至った。
即ち本発明は、(1)多層構成(A:表層,B:中間層,C:表層)が以下の成分からなり、かつ多軸方向に延伸加工された多層シートであることを特徴とするシートで、表層(A,C)層各々の配向緩和応力が下記の関係を満足することを特徴とするシート。
σM,σTが1MPa以下0.05MPa以上であり、|σM−σT|÷|σM+σT|の値が0.5以下である。
σM:表層(A,C)の縦方向の配向緩和応力(MPa)
σT:表層(A,C)の横方向の配向緩和応力(MPa)
表層(A,C)は、ゴム状弾性体からなる分散相が0〜5質量部であり、スチレン系単量体単位35〜75質量%及び(メタ)アクリル酸エステル系単量体単位65〜25質量%を含有する重合体からなる連続相が100〜95質量部であるスチレン系重合体(ただし分散層と連続層の合計は100質量部)。
中間層(B)は、ゴム状弾性体からなる分散相が1〜20質量部であり、スチレン系単量体単位35〜75質量%及び(メタ)アクリル酸エステル系単量体単位65〜25質量%を含有する重合体からなる連続相が99〜80質量部であるゴム変性スチレン系重合体において、ゴム状弾性体がスチレン単量体単位30〜50質量%とブタジエン単量体単位70〜50質量%からなるスチレン系重合体、(2)多層シートに用いる透明材料の25℃における屈折率が材料Aの屈折率=材料Bの屈折率±0.010、材料Cの屈折率=材料Bの屈折率±0.01である(1)記載のシート、(3)多層シートの延伸方法が2軸延伸法によって作られることを特徴とする(1)または(2)記載のシート、(4)(1)〜(3)のいずれかのシートを用いて得られる成形品、(5)成形品が食料品包装容器であることを特徴とする(4)記載の成形品、(6)成形品が電子部品包装容器であることを特徴とする(4)記載の成形品である。
As a result of intensive studies to solve the above problems, the inventors of the present invention have excellent vacuum formability characterized in that the multilayer structure is a multilayer sheet composed of specific components and stretched in the multiaxial direction. The present inventors have found a transparent sheet and a molded product thereof and have completed the present invention.
That is, the present invention is a sheet characterized in that (1) a multilayer structure (A: surface layer, B: intermediate layer, C: surface layer) is composed of the following components, and is a multilayer sheet stretched in a multiaxial direction. And the sheet | seat characterized by the orientation relaxation stress of each surface layer (A, C) layer satisfy | filling the following relationship.
σM and σT are 1 MPa or less and 0.05 MPa or more, and the value of | σM−σT | ÷ | σM + σT | is 0.5 or less.
σM: longitudinal orientational relaxation stress (MPa) of surface layers (A, C)
σT: orientational relaxation stress (MPa) in the lateral direction of the surface layer (A, C)
In the surface layers (A, C), the dispersed phase composed of a rubber-like elastic body is 0 to 5 parts by mass, and 35 to 75% by mass of a styrene monomer unit and 65 to (meth) acrylic acid ester monomer unit. Styrenic polymer whose continuous phase which consists of a polymer containing 25 mass% is 100-95 mass parts (however, the sum total of a dispersion layer and a continuous layer is 100 mass parts).
In the intermediate layer (B), the dispersed phase composed of a rubber-like elastic body is 1 to 20 parts by mass, and 35 to 75% by mass of styrene monomer units and 65 to 25 (meth) acrylate monomer units. In a rubber-modified styrenic polymer having a continuous phase of 99 to 80 parts by mass composed of a polymer containing mass%, the rubber-like elastic body comprises 30 to 50 mass% of styrene monomer units and 70 to 70 mass parts of butadiene monomer units. (2) The refractive index of the transparent material used for the multilayer sheet at 25 ° C. is the refractive index of the material A = the refractive index of the material B ± 0.010, the refractive index of the material C = the material B (3) The sheet according to (1) or (2), wherein the multilayer sheet is stretched by a biaxial stretching method, (4) ) (1) ~ (3) any sheet (5) The molded product according to (4), wherein the molded product is a food packaging container, (6) The molded product is an electronic component packaging container ( 4) It is a molded article as described.

本発明によれば、真空成形を経ても外観(透明性)悪化が少なく、シート生産性、成形加工性に優れ、且つ経済性,リサイクル性に優れた透明シートを得ることができる。
得られた真空成形性に優れた透明シートは、特に食品包装容器や電子部品包装容器に好適である。
According to the present invention, it is possible to obtain a transparent sheet which is less deteriorated in appearance (transparency) even after being subjected to vacuum forming, excellent in sheet productivity and molding processability, and excellent in economic efficiency and recyclability.
The obtained transparent sheet excellent in vacuum formability is particularly suitable for food packaging containers and electronic component packaging containers.

以下に本発明を詳しく説明する。
スチレン系重合体で使用されるゴム状弾性体は、スチレン−ブタジエンブロック共重合体である。そして、スチレン−ブタジエンブロック共重合体のスチレン単量体単位とブタジエン単量体単位の重量比が30〜50:70〜50であることがゴム変性スチレン系重合体の良好な透明性と衝撃強度のバランスがとれているために必要である。また、スチレン−ブタジエンブロック共重合体はポリスチレン部分の重量平均分子量(Mw)が45,000〜75,000の範囲にあることも必要である。Mwが45,000未満であるか75,000を越えると、ゴム変性スチレン系重合体の透明性が劣る。さらに、重量平均分子量(Mw)の数平均分子量(Mn)に対する比(Mw/Mn)は1.20〜1.80である。この範囲を外れるとやはりゴム変性スチレン系重合体の優れた透明性を得ることができない。なお、ポリスチレン部分の分子量は、スチレン−ブタジエンブロック共重合体を文献「RUBBERCHEMISTRY AND TECHNOLOGY」、Vol.58、P.16(Y.Tanaka,et.al.,1985)に記載の方法でオゾン分解して得たポリスチレンをGPCで測定し、各ピークに対応する分子量を標準ポリスチレンを用いて作成した検量線から求めて算出した。
The present invention is described in detail below.
The rubber-like elastic body used in the styrene polymer is a styrene-butadiene block copolymer. The rubber-modified styrenic polymer has good transparency and impact strength when the weight ratio of the styrene monomer unit to the butadiene monomer unit in the styrene-butadiene block copolymer is 30 to 50:70 to 50. Necessary for the balance. The styrene-butadiene block copolymer also needs to have a polystyrene part weight average molecular weight (Mw) in the range of 45,000 to 75,000. When Mw is less than 45,000 or exceeds 75,000, the rubber-modified styrenic polymer has poor transparency. Furthermore, the ratio (Mw / Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) is 1.20 to 1.80. Outside this range, the excellent transparency of the rubber-modified styrenic polymer cannot be obtained. In addition, the molecular weight of the polystyrene portion was determined using a styrene-butadiene block copolymer in the literature “RUBBERCHEMISTRY AND TECHNOLOGY”, Vol. 58, p. 16 (Y. Tanaka, et.al., 1985), polystyrene obtained by ozonolysis was measured by GPC, and the molecular weight corresponding to each peak was obtained from a calibration curve created using standard polystyrene. Calculated.

スチレン−ブタジエンブロック共重合体は、有機溶媒中で有機リチウム化合物を開始剤としてスチレン単量体とブタジエン単量体を特定の条件下に重合することによって得られる。有機溶媒としてはブタン、ペンタン、ヘキサン、イソペンタン、ヘプタン、オクタン、イソオクタン等の脂肪族炭化水素、シクロペンタン、メチルシクロペンタン、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン等の脂環式炭化水素あるいはベンゼン、トルエン、エチルベンゼン、キシレン等の芳香族炭化水素等公知の有機溶媒が使用できる。また、有機リチウム化合物は分子中に1個以上のリチウム原子が結合した化合物であり、例えばエチルリチウム、n−プロピルリチウム、イソプロピルリチウム、n−ブチルリチウム、sec−ブチルリチウム、t−ブチルリチウム等が使用できる。そして、スチレン−ブタジエンブロック共重合体のポリスチレン部分の重量平均分子量(Mw)は、スチレン単量体とブタジエン単量体の添加量に対する開始剤の添加量割合を調整することにより制御される。また、スチレン−ブタジエンブロック共重合体のポリスチレン部分の重量平均分子量(Mw)の数平均分子量(Mn)に対する比(Mw/Mn)は、酢酸、ステアリン酸のような有機酸、エタノール、ブタノールのようなアルコールあるいは水等の失活剤を、重合途中に使用量あるいは添加時期を調整して添加することにより制御される。   A styrene-butadiene block copolymer is obtained by polymerizing a styrene monomer and a butadiene monomer under specific conditions in an organic solvent using an organic lithium compound as an initiator. Examples of organic solvents include aliphatic hydrocarbons such as butane, pentane, hexane, isopentane, heptane, octane, and isooctane, cycloaliphatic hydrocarbons such as cyclopentane, methylcyclopentane, cyclohexane, methylcyclohexane, and ethylcyclohexane, or benzene, toluene, Known organic solvents such as aromatic hydrocarbons such as ethylbenzene and xylene can be used. An organic lithium compound is a compound in which one or more lithium atoms are bonded in the molecule, such as ethyl lithium, n-propyl lithium, isopropyl lithium, n-butyl lithium, sec-butyl lithium, t-butyl lithium and the like. Can be used. And the weight average molecular weight (Mw) of the polystyrene part of a styrene-butadiene block copolymer is controlled by adjusting the addition amount ratio of the initiator with respect to the addition amount of a styrene monomer and a butadiene monomer. Further, the ratio (Mw / Mn) of the weight average molecular weight (Mw) of the polystyrene portion of the styrene-butadiene block copolymer to the number average molecular weight (Mn) is such as organic acids such as acetic acid and stearic acid, ethanol and butanol. It is controlled by adding a quenching agent such as alcohol or water while adjusting the amount used or the timing of addition during the polymerization.

ゴム変性スチレン系重合体に含まれるゴム状弾性体は1〜15質量部である。ゴム状弾性体が1質量部未満では優れた衝撃強度を得ることができず、15質量部を越えると透明性、成形性が低下し好ましくない。   The rubber-like elastic body contained in the rubber-modified styrenic polymer is 1 to 15 parts by mass. If the rubber-like elastic body is less than 1 part by mass, an excellent impact strength cannot be obtained, and if it exceeds 15 parts by mass, the transparency and moldability deteriorate, which is not preferable.

連続相(以降、ゴム状弾性体からなる粒子層を分散層とよび、それ以外の連続した層をなす樹脂成分を連続層と称する)を形成する重合体単位であるスチレン系単量体及び(メタ)アクリル酸エステル系単量体について説明する。スチレン系単量体とは、スチレン、α−メチルスチレン、p−メチルスチレン、p−t−ブチルスチレン等を挙げることができるが、好ましくはスチレンである。これらスチレン系単量体は、単独で用いてもよいが二種類以上を併用してもよい。一方(メタ)アクリル酸エステル系単量体とは、メチルメタクリレート、エチルメタクリレート、メチルアクリレート、エチルアクリレート、n−ブチルアクリレート、2−メチルヘキシルアクリレート、2−エチルヘキシルアクリレート、オクチルアクリレート等があげられるが、好ましくはメチルメタクリレートまたはn−ブチルアクリレートである。これらの(メタ)アクリル酸エステル系単量体は単独で用いてもよいが二種類以上を併用してもよい。   A styrene monomer that is a polymer unit that forms a continuous phase (hereinafter, a particle layer made of a rubber-like elastic body is called a dispersion layer, and a resin component that forms the other continuous layer is called a continuous layer) and ( The (meth) acrylic acid ester monomer will be described. Examples of the styrene monomer include styrene, α-methyl styrene, p-methyl styrene, pt-butyl styrene, and the like, preferably styrene. These styrenic monomers may be used alone or in combination of two or more. On the other hand, examples of the (meth) acrylic acid ester monomer include methyl methacrylate, ethyl methacrylate, methyl acrylate, ethyl acrylate, n-butyl acrylate, 2-methylhexyl acrylate, 2-ethylhexyl acrylate, octyl acrylate, etc. Methyl methacrylate or n-butyl acrylate is preferable. These (meth) acrylic acid ester monomers may be used alone or in combination of two or more.

ゴム変性スチレン系重合体の連続相を形成するスチレン系単量体単位と、(メタ)アクリル酸エステル系単量体単位の質量比は35〜75:65〜25であり、好ましくは42〜59:58〜41である。スチレン系単量体単位と(メタ)アクリル酸エステル系単量体単位の質量比が35〜75:65〜25の範囲外では、ゴム変性スチレン系重合体及びゴム変性スチレン系樹脂組成物の透明性が低下し、さらにリサイクルシートにしたときの透明性が低下する。   The mass ratio of the styrene monomer unit forming the continuous phase of the rubber-modified styrene polymer and the (meth) acrylate monomer unit is 35 to 75:65 to 25, preferably 42 to 59. : 58-41. When the mass ratio of the styrene monomer unit to the (meth) acrylate monomer unit is outside the range of 35 to 75:65 to 25, the rubber-modified styrene polymer and the rubber-modified styrene resin composition are transparent. The transparency decreases when the recycled sheet is used.

尚、必要に応じてこれらの単量体と共重合可能なビニル系単量体、例えば、アクリル酸、メタアクリル酸、アクリロニトリル、N−フェニルマレイミド、N−シクロヘキシルマレイミド等を共重合させることもできる。   If necessary, a vinyl monomer copolymerizable with these monomers, for example, acrylic acid, methacrylic acid, acrylonitrile, N-phenylmaleimide, N-cyclohexylmaleimide and the like can be copolymerized. .

ゴム変性スチレン系重合体はスチレン系重合体の製造で常用されている塊状重合法、溶液重合法、懸濁重合法、乳化重合法等が用いられる。また、回分式重合法、あるいは連続式重合法のいずれの方法も用いることができる。これらの重合法は、重合開始剤としてアゾビスブチロニトリル、アゾビスシクロヘキサンカルボニトリル等のアゾ化合物や、ベンゾイルパーオキサイド、t−ブチルパーオキシベンゾエート、t−ブチルパーオキシ−2−エチルヘキサノエート、ジ−t−ブチルパーオキサイド、ジクミルパーオキサイド、エチル−3,3−ジ−(t−ブチルパーオキシ)ブチレート等の有機過酸化物を用いることができる。また、分子量調節剤としてt−ドデシルメルカプタン、n−ドデシルメルカプタン、4−メチル−2,4−ジフェニルペンテン−1を、また、可塑剤としてブチルベンジルフタレート等を必要に応じて添加してもよい。   As the rubber-modified styrene polymer, a bulk polymerization method, a solution polymerization method, a suspension polymerization method, an emulsion polymerization method and the like commonly used in the production of styrene polymers are used. In addition, either a batch polymerization method or a continuous polymerization method can be used. These polymerization methods include azo compounds such as azobisbutyronitrile and azobiscyclohexanecarbonitrile as polymerization initiators, benzoyl peroxide, t-butylperoxybenzoate, and t-butylperoxy-2-ethylhexanoate. Organic peroxides such as di-t-butyl peroxide, dicumyl peroxide, ethyl-3,3-di- (t-butylperoxy) butyrate can be used. In addition, t-dodecyl mercaptan, n-dodecyl mercaptan, 4-methyl-2,4-diphenylpentene-1 may be added as a molecular weight modifier, and butylbenzyl phthalate or the like may be added as a plasticizer, if necessary.

スチレン系重合体には性能を損なわない範囲で、高級脂肪酸金属塩及び/または高級脂肪酸エステル及び/又はポリエチレンワックス等の滑材を添加することもできる。   Lubricants such as higher fatty acid metal salts and / or higher fatty acid esters and / or polyethylene wax can be added to the styrenic polymer as long as the performance is not impaired.

スチレン系重合体には透明性の低下を引き起こさない範囲で他種のゴム状弾性体を添加することも可能である。透明性の低下が少ないゴム状弾性体の例としてスチレン−ブタジエン−スチレン共重合体(タフプレン125:旭化成)等があり、10質量%を越えないで添加することができる。10質量%を越えると材料の剛性低下、透明性の低下が大きくのぞましくない。   It is possible to add other types of rubber-like elastic bodies to the styrene polymer as long as the transparency is not lowered. Examples of rubber-like elastic bodies with little decrease in transparency include styrene-butadiene-styrene copolymers (Tufprene 125: Asahi Kasei) and the like, which can be added without exceeding 10% by mass. If it exceeds 10% by mass, the rigidity of the material and the transparency will not be greatly reduced.

多層シートの表層(A及びC)はゴム状弾性体からなる分散相が0〜5質量部であり、スチレン系単量体単位35〜75質量%及び(メタ)アクリル酸エステル系単量体単位65〜25質量%を含有する重合体からなる連続相が100〜5質量部であるスチレン系重合体であるが、好ましくは分散相が0〜4質量部であり連続相が100〜96質量部、特に好ましくは分散相が0〜3質量部であり連続相が100〜97質量部である。尚、AとCの表層の樹脂組成は、表層の条件を満たすならば、同一であっても異なっていても構わない。   The surface layer (A and C) of the multilayer sheet is 0 to 5 parts by mass of a dispersed phase composed of a rubber-like elastic body, 35 to 75% by mass of a styrene monomer unit, and a (meth) acrylate monomer unit. It is a styrenic polymer whose continuous phase consisting of a polymer containing 65 to 25% by mass is 100 to 5 parts by mass, preferably 0 to 4 parts by mass of the dispersed phase and 100 to 96 parts by mass of the continuous phase. Particularly preferably, the dispersed phase is 0 to 3 parts by mass and the continuous phase is 100 to 97 parts by mass. The resin compositions of the surface layers A and C may be the same or different as long as the surface layer conditions are satisfied.

本発明でシート状に加工する方法は特に限定されることはなく、Tダイ法,カレンダーロール法、インフレーション法,プレス成形法等の常法が上げられる。また、延伸法についても特に限定されることはなく、テンター法,チューブラー法といった2軸延伸法、ブロー成形等による多軸延伸法、さらには1軸延伸を含めた複数の加工によりシートの延伸方向を多軸化する方法など種々の常法が上げられるが好ましくは2軸延伸法である。   The method of processing into a sheet shape in the present invention is not particularly limited, and conventional methods such as a T-die method, a calender roll method, an inflation method, and a press molding method can be given. Also, the stretching method is not particularly limited, and the sheet is stretched by a plurality of processes including a biaxial stretching method such as a tenter method and a tubular method, a multiaxial stretching method such as blow molding, and further uniaxial stretching. Various conventional methods such as a method of making the direction multiaxial can be raised, but a biaxial stretching method is preferred.

本発明で言う多層構成とは異種のシート材料を重ね合わせて作られるものであり多層構成のシートを製造する方法には特に制限はなく、従来公知の多層シートの製造方法を採用することができる。すなわち、本発明のシートはラミネートが可能な種々の樹脂成形装置、例えば、カレンダー装置あるいはTダイ押出機でのラミネート融着や表層と中間層を同時に押出成形できるフィードブロックを持ったシート押出機等を用いて通常のシート化条件において製造することができる。   The multilayer structure referred to in the present invention is produced by superimposing different kinds of sheet materials, and the method for producing a sheet having a multilayer structure is not particularly limited, and a conventionally known multilayer sheet production method can be employed. . That is, the sheet of the present invention can be laminated with various resin molding apparatuses such as a sheet extruder having a feed block capable of simultaneously laminating and fusing with a calender apparatus or a T-die extruder, or a surface layer and an intermediate layer. Can be produced under ordinary sheeting conditions.

また、本発明の多層シート成形体の各構成層の材料には、これまでに説明した本発明を発現する構成以外に酸化防止剤、耐候剤、滑剤、可塑剤、着色剤、帯電防止剤、あるいは鉱油等の添加剤を、本発明のゴム変性スチレン系樹脂組成物の性能を損なわない範囲で配合してもよい。配合する時期については重合開始前、重合反応途中、重合体の後処理、重合体の造粒、成形、加工等の任意の段階を適宜選べる。   In addition, the material of each constituent layer of the multilayer sheet molded body of the present invention includes an antioxidant, a weathering agent, a lubricant, a plasticizer, a colorant, an antistatic agent, in addition to the configuration that expresses the present invention described above. Or you may mix | blend additives, such as mineral oil, in the range which does not impair the performance of the rubber modified styrene resin composition of this invention. Regarding the timing of blending, any stage such as before the start of polymerization, during the polymerization reaction, after-treatment of the polymer, granulation of the polymer, molding, and processing can be appropriately selected.

本発明における包装容器成形には、各種真空成形が適宜用いられる。その中でも深い絞り形状では賦型補助が可能なプラグアシストによる成形方式等が多く用いられる。プラグアシストによる成形方式としては、例えばプラグアシストフォーミング、プラグアシストリバースドローフォーミング、プラグアシスト−エアスリップフォーミング等による成形方式が挙げられる。   Various vacuum forming is suitably used for forming the packaging container in the present invention. Among them, in the deep drawing shape, a plug assist molding method capable of assisting shaping is often used. Examples of the molding method by plug assist include molding methods by plug assist forming, plug assist reverse draw forming, plug assist-air slip forming, and the like.

その際に海島構造でゴム補強したスチレン系重合体は、表面での急激な伸びと急冷による白化現象を引き起こす。表層(A、C)のゴム状弾性体からなる分散相が5重量部を超えると上記の理由から得られた成形品はシート成形品に比べ著しい透明性低下を示すので好ましくない。   At that time, the styrene polymer reinforced with rubber by the sea-island structure causes rapid elongation on the surface and whitening due to rapid cooling. If the dispersed phase composed of the rubber elastic bodies of the surface layers (A, C) exceeds 5 parts by weight, the molded product obtained for the above reasons is not preferable because it shows a significant decrease in transparency compared to the sheet molded product.

また、環境対応性、生産性,経済性からシート生産ではスクラップ材のリターンが一般的に行われる。その際に最終シートの透明性を維持するには中間層となる透明スチレン系樹脂(B)と相溶性が良く、屈折率の近い材料を表層(A,C)に選定することが必要である。実際には、表層の連続相は中間層と同様にスチレン系単量体単位35〜75質量%及び(メタ)アクリル酸エステル系単量体単位65〜25質量%を含有する重合体からなる連続相が100〜5質量部であるスチレン系重合体であることが望ましい。   In addition, scrap materials are generally returned in sheet production due to environmental friendliness, productivity and economy. In this case, in order to maintain the transparency of the final sheet, it is necessary to select materials having good compatibility with the transparent styrene resin (B) serving as the intermediate layer and having a refractive index close to the surface layers (A, C). . Actually, the continuous phase of the surface layer is a continuous layer composed of a polymer containing 35 to 75% by mass of styrene monomer units and 65 to 25% by mass of (meth) acrylate monomer units in the same manner as the intermediate layer. A styrenic polymer having a phase of 100 to 5 parts by mass is desirable.

真空成形性、透明性に優れたシートを得るには、表層(A、C)が2軸延伸法によって作られるものの場合、表層(A,C)の各々の配向緩和応力が以下の関係を満足することが望ましい。
σM,σTが1MPa以下0.05MPa以上であり、|σM−σT|÷|σM+σT|の値が0.5以下である。
σM:表層(A,C)の縦方向の配向緩和応力(MPa)
σT:表層(A,C)の横方向の配向緩和応力(MPa)

真空成形後の白化を抑制する意味で、表層(A,C)に含まれるゴム状弾性体は5質量部以下が望ましいが、その際にシート段階において配向(2軸延伸)させることで、ゴムが少ない表層にも2軸延伸ポリスチレン(OPS)などと同様に曲げ加工ができるような補強効果が現れてくる。この配向緩和応力σM,σTは、1MPa以下0.05MPa以上であることが必要であるが、好ましくは0.9以下0.05以上である。σM,σTが0.05より小さい場合、延伸による補強効果が小さい。また、σM,σTが1を越えると得られたシートの2次加工(熱盤成形等)においてシートの収縮が大きく、安定した生産に支障が生じる場合があり望ましくない。
さらに、|σM−σT|÷|σM+σT|の値は0.5以下であるが、好ましくは0.3以下である。この値が0.5より大であればシートの異方性が高く、安定した高い強度が得られにくい。
In order to obtain a sheet excellent in vacuum formability and transparency, when the surface layers (A, C) are made by a biaxial stretching method, the orientation relaxation stresses of the surface layers (A, C) satisfy the following relationship: It is desirable to do.
σM and σT are 1 MPa or less and 0.05 MPa or more, and the value of | σM−σT | ÷ | σM + σT | is 0.5 or less.
σM: longitudinal orientational relaxation stress (MPa) of surface layers (A, C)
σT: orientational relaxation stress (MPa) in the lateral direction of the surface layer (A, C)

In order to suppress whitening after vacuum forming, the rubbery elastic body contained in the surface layers (A, C) is preferably 5 parts by mass or less, but at that time, the rubber is formed by orientation (biaxial stretching) at the sheet stage. A reinforcing effect that can be bent similarly to biaxially oriented polystyrene (OPS) or the like also appears on the surface layer with a small amount. These orientation relaxation stresses σM and σT are required to be 1 MPa or less and 0.05 MPa or more, but preferably 0.9 or less and 0.05 or more. When σM and σT are smaller than 0.05, the reinforcing effect by stretching is small. On the other hand, if σM and σT exceed 1, in the secondary processing (hot plate forming or the like) of the obtained sheet, the sheet shrinks greatly, which may cause problems in stable production.
Furthermore, the value of | σM−σT | ÷ | σM + σT | is 0.5 or less, but is preferably 0.3 or less. If this value is larger than 0.5, the anisotropy of the sheet is high and it is difficult to obtain a stable high strength.

また、本発明における多層シートの中間層には、シートの透明性、強度物性等の要求性能を満足する範囲であれば、異なる樹脂層を適宜追加してもうけることも可能である。   Further, different resin layers can be appropriately added to the intermediate layer of the multilayer sheet in the present invention as long as the required performance such as transparency and strength properties of the sheet is satisfied.

本発明の真空成形性に優れた多層シート及びその成形品は、表層,中間層を分別回収することなくそのまま回収して溶融成形しても透明な成形体を得ることができるので環境にも優しいリサイクルにも適応した透明シートとして用いられる。   The multilayer sheet excellent in vacuum formability and the molded product of the present invention are environmentally friendly because a transparent molded body can be obtained even if the surface layer and intermediate layer are recovered without being separated and recovered and melt molded. Used as a transparent sheet suitable for recycling.

また、成形品は、ICマガジンやキャリアテープ等の産業部品,電子部品包装容器やアイスクリーム、飲料等のカップといった食品包装容器など真空成形を行う多岐にわたった製品分野で好適に用いられる。   In addition, the molded product is suitably used in a wide variety of product fields in which vacuum forming is performed such as industrial parts such as IC magazines and carrier tapes, food packaging containers such as electronic parts packaging containers, ice creams, and cups for beverages.

次に実施例をもって本発明を更に説明するが、本発明はこれらの例に限定されるものではない。尚、以下記載中に「部」,「%」とあるのはそれぞれ「質量部」,「質量%」を意味する。   EXAMPLES Next, although an Example demonstrates this invention further, this invention is not limited to these examples. In the following description, “parts” and “%” mean “parts by mass” and “% by mass”, respectively.

最初に、実施例及び比較例で使用したスチレン系重合体の製造について述べる。   First, the production of styrenic polymers used in Examples and Comparative Examples will be described.

スチレン系重合体−1
スチレン58.5部、メチルメタクリレート36.0部及びn−ブチルアクリレート5.5部のモノマー混合物に、スチレン−ブタジエンブロック共重合体A(スチレン単量体単位含量40%、ポリスチレン部分のMw62,500、Mw/Mn=1.52)を10.0部溶解し、重合開始剤としてベンゾイルパーオキサイド0.04部、連鎖移動剤としてt−ドデシルメルカプタン0.2部を添加し、撹拌しながら90℃で8時間加熱した後、冷却して塊状重合を停止した。ついで該反応混合液に新たに重合開始剤としてジクミルパーオキサイドを0.2部を添加した。純水200部にドデシルベンゼンスルホン酸ナトリウムを0.001部、第三リン酸カルシウム0.5部を懸濁安定剤として添加し、撹拌しながら混合液を分散させた。そしてこの混合液を100℃で2時間、115℃で3.5時間、130℃で2.5時間加熱重合させた。反応終了後、洗浄、脱水ならびに乾燥してビーズ状のゴム変性スチレン系重合体(共重合体−1)を得た。次に得られたビーズ状の重合体を2軸押出機(東芝機械社製TEM−35B)にてシリンダー温度220℃で押出を行いペレット化したゴム変性スチレン系重合体(P−1)を得た。P−1の組成を表1に示した。また、その材料物性を表2に示した。
Styrene polymer-1
A monomer mixture of 58.5 parts of styrene, 36.0 parts of methyl methacrylate and 5.5 parts of n-butyl acrylate was added to a styrene-butadiene block copolymer A (styrene monomer unit content 40%, polystyrene part Mw 62,500). , Mw / Mn = 1.52) is dissolved, 0.04 part of benzoyl peroxide is added as a polymerization initiator, and 0.2 part of t-dodecyl mercaptan is added as a chain transfer agent. And heated for 8 hours, and then cooled to stop bulk polymerization. Subsequently, 0.2 part of dicumyl peroxide was newly added to the reaction mixture as a polymerization initiator. To 200 parts of pure water, 0.001 part of sodium dodecylbenzenesulfonate and 0.5 part of tricalcium phosphate were added as suspension stabilizers, and the mixed solution was dispersed while stirring. The mixture was subjected to heat polymerization at 100 ° C. for 2 hours, 115 ° C. for 3.5 hours, and 130 ° C. for 2.5 hours. After completion of the reaction, washing, dehydration and drying were performed to obtain a bead-like rubber-modified styrene polymer (copolymer-1). Next, the obtained bead polymer was extruded with a twin screw extruder (TEM-35B manufactured by Toshiba Machine Co., Ltd.) at a cylinder temperature of 220 ° C. to obtain a rubber-modified styrenic polymer (P-1). It was. The composition of P-1 is shown in Table 1. The material properties are shown in Table 2.

Figure 2005238614
Figure 2005238614

Figure 2005238614
Figure 2005238614

スチレン系重合体−2
スチレン54部、メチルメタクリレート46.0部のモノマー混合物に、重合開始剤としてベンゾイルパーオキサイド0.04部、連鎖移動剤としてt−ドデシルメルカプタン0.2部を添加し、撹拌しながら90℃で8時間加熱した後、冷却して塊状重合を停止した。以下P−1作成時と同様に操作し、ビーズ状の変性スチレン系重合体,更に2軸押出機(東芝機械社製TEM−35B)にてシリンダー温度220℃で押出を行うことでペレット化したゴム変性スチレン系重合体(P−2)を得た。スチレン系重合体(P−2)を得た。得られたP−2の組成を表1に、またその物性を表2に示した。
Styrene polymer-2
To a monomer mixture of 54 parts of styrene and 46.0 parts of methyl methacrylate, 0.04 part of benzoyl peroxide as a polymerization initiator and 0.2 part of t-dodecyl mercaptan as a chain transfer agent were added, and the mixture was stirred at 90 ° C. for 8 hours. After heating for a time, the bulk polymerization was stopped by cooling. Thereafter, the pellets were formed by extruding at a cylinder temperature of 220 ° C. using a bead-like modified styrenic polymer and a twin screw extruder (TEM-35B manufactured by Toshiba Machine Co., Ltd.) in the same manner as in the preparation of P-1. A rubber-modified styrenic polymer (P-2) was obtained. A styrene polymer (P-2) was obtained. The composition of the obtained P-2 is shown in Table 1, and the physical properties are shown in Table 2.

スチレン系重合体−3
MS樹脂デンカTXポリマー 商品名:TX−400−300Lを P−3として試験に使用した。また、P−3の組成を表1に、その物性を表2に示した。
Styrene polymer-3
MS resin Denka TX polymer Trade name: TX-400-300L was used for the test as P-3. The composition of P-3 is shown in Table 1, and the physical properties are shown in Table 2.

スチレン系重合体−4
ブタジエン39部、スチレン26部、純水150部、オレイン酸カリウム0.5部、t−ブチルハイドロパーオキサイド0.13部、ロンガリット0.03部、硫酸第一鉄0.002部、エチレンジアミンテトラ酢酸ナトリウム塩0.003部ピロリン酸ナトリウム0.1部、t−ドデシルメルカプタン1.0部を撹拌機付きオートクレーブに仕込み温度45℃にて17時間重合した。得られたスチレン−ブタジエンゴムラテックスの数平均粒子径は0.08umであった。ラテックスにナトリウムスルホサクシネート0.005部を加えて安定化させた。このラテックスに攪拌下で0.2%塩化水素水溶液と2%水酸化ナトリウム水溶液を別添し加えることで、pHが8〜9を保つように調整しラテックス粒子を凝集肥大化させ、数平均粒子径0.2umのゴムラテックスを得た。このラテックスにスチレン19.5部、MMA13.5部、n−ブチルアクリレート2部、ジビニルベンゼン0.04部、t−ブチルフェノール0.5部、ジラウリルチオプロピオネート0.5部を添加した後、塩酸により共重合体を析出し、中和洗浄、脱水乾燥して粉末状の共重合体−2を得た。次に、共重合体1と共重合体−2とを80/20の比率で均一混合し2軸押出機(東芝機械社製TEM−35B)にてシリンダー温度220℃で押出を行うことでペレット化したゴム変性スチレン系重合体(P−4)を得た。得られたP−4の組成を表1に、またその物性を表2に示した。
Styrene polymer-4
39 parts of butadiene, 26 parts of styrene, 150 parts of pure water, 0.5 part of potassium oleate, 0.13 part of t-butyl hydroperoxide, 0.03 part of Rongalite, 0.002 part of ferrous sulfate, ethylenediaminetetraacetic acid Sodium salt 0.003 part Sodium pyrophosphate 0.1 part and t-dodecyl mercaptan 1.0 part were charged in an autoclave equipped with a stirrer and polymerized at a temperature of 45 ° C. for 17 hours. The number average particle diameter of the obtained styrene-butadiene rubber latex was 0.08 um. The latex was stabilized by adding 0.005 part of sodium sulfosuccinate. By adding a 0.2% aqueous solution of hydrogen chloride and a 2% aqueous solution of sodium hydroxide to the latex while stirring, the latex particles are coagulated and enlarged so as to maintain the pH of 8 to 9, and the number average particles A rubber latex having a diameter of 0.2 um was obtained. After adding 19.5 parts of styrene, 13.5 parts of MMA, 2 parts of n-butyl acrylate, 0.04 part of divinylbenzene, 0.5 part of t-butylphenol and 0.5 part of dilauryl thiopropionate to this latex. The copolymer was precipitated with hydrochloric acid, neutralized, washed, dehydrated and dried to obtain a powdery copolymer-2. Next, the copolymer 1 and the copolymer-2 are uniformly mixed at a ratio of 80/20 and extruded at a cylinder temperature of 220 ° C. with a twin-screw extruder (TEM-35B manufactured by Toshiba Machine Co., Ltd.). A modified rubber-modified styrenic polymer (P-4) was obtained. The composition of the obtained P-4 is shown in Table 1, and the physical properties are shown in Table 2.

スチレン系重合体−5
ポリスチレン樹脂(GPPS)デンカスチロール 商品名:MW−1−301をP−5として試験に使用した。また、P−5の組成を表1に、その物性を表2に示した。
Styrene polymer-5
Polystyrene resin (GPPS) Denkastyrol Trade name: MW-1-301 was used for the test as P-5. The composition of P-5 is shown in Table 1, and the physical properties are shown in Table 2.

次に多層延伸シートの作成について述べる。
上述のスチレン系樹脂(P−1〜P−5)をサンプルとして、T−ダイ方式の多層押出延伸機を用い各構成の多層シートを作成した。尚、多層押出機はメインの中芯用が65mmφのフルフライトスクリューの単軸押出機1台,表層用に40mmφのフルフライトスクリューの単軸押出機を1台からなり各々の溶融樹脂がフィードブロックで合流多層化される試験押出機を使用した。尚、シート化における各シリンダー温度は230℃にて運転、成形した。また、延伸(テンター方式)の延伸条件は、目的とする配向状態が現れるように随時調整し製膜を行った。
Next, preparation of a multilayer stretched sheet will be described.
Using the above styrene resins (P-1 to P-5) as samples, a multilayer sheet having each configuration was prepared using a T-die type multilayer extrusion stretching machine. The multi-layer extruder consists of a single 65mmφ full-flight screw single screw extruder for the main core and one 40mmφ full-flight screw single screw extruder for the surface layer. A test extruder that was joined and multilayered was used. In addition, each cylinder temperature in sheeting was operated and molded at 230 ° C. In addition, the stretching conditions of the stretching (tenter method) were adjusted as needed so that the intended orientation state appeared, and film formation was performed.

真空成形
試作したシートはプラグアシスト方式の浅野製作所製の真空成形機を使って図1の形状に成形した。尚、シートはA層側をプラグ側となるよう真空成形機に取り付け、成形条件はシート加熱によりシート表面が120℃に達した時点で真空成形を開始した。
Vacuum formed sheets were formed into the shape shown in FIG. 1 using a plug assist type vacuum forming machine manufactured by Asano. The sheet was attached to a vacuum forming machine so that the A layer side was on the plug side, and the forming conditions were that vacuum forming started when the sheet surface reached 120 ° C. by heating the sheet.

リサイクル試験
試作したシートは粉砕機を用い押出機に供給可能なサイズまで粉砕し、単層シートとして65mmφのフルフライトスクリュータイプの押出機をシリンダー温度230℃で運転し、0.8mm厚のシートを作成した。
○:リサイクル性良好
×:リサイクル性不良(白濁)
Recycling test Trial sheet was pulverized to a size that can be supplied to the extruder using a pulverizer, and a 65 mmφ full flight screw type extruder was operated as a single layer sheet at a cylinder temperature of 230 ° C. to obtain a 0.8 mm thick sheet. Created.
○: Good recyclability ×: Poor recyclability (white turbidity)

各測定方法及び判定基準
ペレットをインラインスクリュー射出成形機(東芝社製IS−50EP)にてシリンダー温度230℃で射出成形した試験片を試料に用いて求めた。但し、MFRは上記ペレットを用いた。各組成値及び各物性値の測定方法は次の通りである。
(1)アイゾット衝撃強度:ASTMD256に準拠して、12.7×64×6.4mm厚の試験片に深さ2.54mmのノッチを入れ、打撃速度3.46m/秒で測定した。
(2)MFR:JIS K7210に準拠し、温度200℃、荷重5Kgfで測定した。
(3)曇度:ASTM D1003に準拠し、30×90×2mm厚の試験片を用いて測定した。
(4)屈折率:30×90×2mm厚の試験片を用いて、固体屈折率計(株式会社アタゴ製RX−2000)にて測定した。(25℃雰囲気にて測定)
(5)組成確認:重合体の組成は熱分解ガスクロマトグラフィーにより標準物質を用いて作成した検量線を使い、各含有成分の定量を行った。
(6)肉厚測定:全体肉厚はマイクロメータにより測定した。また、多層シートの各層の厚みは、シート断面を砥粒を使って平滑化したのちに光学顕微鏡で観察し各層の厚みを算出した。
(7)折り曲げ試験:シート押出によって作ったサンプルシートを引き取り方向、反引き取り方向の2方向に折り曲げを行いシートの割れの発生を目視観察した。
○:良好(割れなし)
×:不良(割れあり)
(8)容器圧縮試験:真空成形品を図2の様に置き、上方より圧縮し割れの発生を観察した。
○:良好(割れなし)
×:不良(割れあり)
(9)カップ成形品の透明性:目視により測定した。
○:良好(曇りなし)
×:不良(表面曇りあり)
(10)ゴム変性スチレン系重合体のゴム状弾性体の量:赤外吸収スペクトル法により予め求めたゴム状弾性体のスチレンとブタジエンの重量比と赤外吸収スペクトル法により求めたゴム変性スチレン系重合体中のブタジエンの重量比から、ゴム変性スチレン系重合体中のゴム状弾性体の量を求めた。赤外吸収スペクトルは日本バイオラッドラボラトリーズ社製 FTS−575C型を用いて測定した。
(11)ゴム変性スチレン系重合体及びゴム非含有スチレン系重合体中の連続相の構成単位:ゴム変性スチレン系重合体及びゴム非含有スチレン系重合体をトルエンに溶解後、遠心分離を行い、上澄み液を分取しメタノールを加えスチレン−(メタ)アクリル酸エステル系共重合体を沈殿させた。この沈殿物を乾燥し、これを重クロロフォルムに溶解して2%溶液に調整し測定試料とし、FT−NMR(日本電子製 FX−90Q型)を用いて13Cを測定し、スチレン−(メタ)アクリル酸エステル系重合体のピーク面積から連続相の構成単位を求めた。
(12)配向緩和応力の測定:ASTM D1504に準じてシートの縦(押出方向)と横方向での配向緩和応力の最大値であるσMおよびσTを測定した。試験片はシートから20x135mmに切り出したものを使用した。
尚、表層の縦、横方向の配向緩和応力の測定は、表層を構成する単独の樹脂で多層シート作成時と同一条件でシートを別途作成し評価を行った。
Each measurement method and judgment standard pellets were obtained by using, as a sample, a test piece obtained by injection molding at a cylinder temperature of 230 ° C. with an inline screw injection molding machine (IS-50EP manufactured by Toshiba Corporation). However, the above pellets were used for MFR. The measuring method of each composition value and each physical property value is as follows.
(1) Izod impact strength: Based on ASTM D256, a test piece having a thickness of 12.7 × 64 × 6.4 mm was provided with a notch having a depth of 2.54 mm and measured at an impact speed of 3.46 m / sec.
(2) MFR: Measured according to JIS K7210 at a temperature of 200 ° C. and a load of 5 kgf.
(3) Haze: measured in accordance with ASTM D1003 using a test piece of 30 × 90 × 2 mm thickness.
(4) Refractive index: Measured with a solid refractometer (RX-2000 manufactured by Atago Co., Ltd.) using a test piece having a thickness of 30 × 90 × 2 mm. (Measured at 25 ° C)
(5) Composition confirmation: The composition of the polymer was quantified for each component using a calibration curve prepared using a standard substance by pyrolysis gas chromatography.
(6) Wall thickness measurement: The total wall thickness was measured with a micrometer. Further, the thickness of each layer of the multilayer sheet was calculated by observing with an optical microscope after smoothing the cross section of the sheet with abrasive grains.
(7) Bending test: A sample sheet made by sheet extrusion was bent in two directions, the take-up direction and the anti-take-up direction, and the occurrence of cracks in the sheet was visually observed.
○: Good (no cracks)
X: Defect (with cracks)
(8) Container compression test: A vacuum-formed product was placed as shown in FIG. 2 and compressed from above to observe the occurrence of cracks.
○: Good (no cracks)
X: Defect (with cracks)
(9) Transparency of the cup-formed product: measured by visual observation.
○: Good (no cloudiness)
X: Defect (with surface haze)
(10) Amount of rubber-like elastic body of rubber-modified styrenic polymer: rubber-modified styrene-type obtained by infrared absorption spectrum method and weight ratio of styrene and butadiene of rubber-like elastic body previously obtained by infrared absorption spectrum method From the weight ratio of butadiene in the polymer, the amount of rubber-like elastic material in the rubber-modified styrene polymer was determined. The infrared absorption spectrum was measured using FTS-575C type manufactured by Nippon Bio-Rad Laboratories.
(11) The structural unit of the continuous phase in the rubber-modified styrene polymer and the rubber-free styrene polymer: The rubber-modified styrene polymer and the rubber-free styrene polymer are dissolved in toluene, and then centrifuged. The supernatant liquid was collected and methanol was added to precipitate a styrene- (meth) acrylic acid ester copolymer. This precipitate is dried, dissolved in deuterated chloroform, adjusted to a 2% solution and used as a measurement sample, 13 C is measured using FT-NMR (manufactured by JEOL, FX-90Q type), and styrene- (meta ) The structural unit of the continuous phase was determined from the peak area of the acrylate polymer.
(12) Measurement of orientation relaxation stress: According to ASTM D1504, σM and σT, which are the maximum values of orientation relaxation stress in the longitudinal (extrusion direction) and lateral direction of the sheet, were measured. A test piece cut out from a sheet to 20 × 135 mm was used.
In addition, the measurement of the orientational relaxation stress in the vertical and horizontal directions of the surface layer was evaluated by separately preparing a sheet with the same resin as that for forming the multilayer sheet with a single resin constituting the surface layer.

実施例1〜実施例8
スチレン系共重合体P−1〜P−4の材料を用い、表3の層構成となるシートを作成した。また、得られたシートは真空成形機により図1のカップ形状品の成形を行い、それらシート,成形品の評価結果を表3に示した。
Examples 1 to 8
Using the materials of the styrene copolymers P-1 to P-4, sheets having the layer structure shown in Table 3 were prepared. Moreover, the obtained sheet | seat shape | molded the cup-shaped goods of FIG. 1 with the vacuum forming machine, and the evaluation result of these sheets and a molded article was shown in Table 3.

Figure 2005238614
Figure 2005238614

比較例1〜6
スチレン系共重合体P−1,P−2,P−4,P−5の材料を用い表4の層構成となるシートを作成した。また、得られたシートは真空成形機により図1のカップ形状品の成形を行い、それらシート,成形品の評価結果を表4に示した。
Comparative Examples 1-6
Sheets having the layer structure shown in Table 4 were prepared using materials of the styrene copolymers P-1, P-2, P-4, and P-5. The obtained sheets were molded into cup-shaped products shown in FIG. 1 using a vacuum forming machine, and the evaluation results of these sheets and molded products are shown in Table 4.

Figure 2005238614
Figure 2005238614

真空成形された成形品の断面図を示す。Sectional drawing of the molded article vacuum-formed is shown. 真空成形された成形品の圧縮試験の概略図を示す。The schematic of the compression test of the molded article vacuum-formed is shown.

Claims (6)

多層構成(A:表層,B:中間層,C:表層)が以下の成分からなり、かつ多軸方向に延伸加工された多層シートであることを特徴とするシートで、各々の表層(A,C)の配向緩和応力が下記の関係を満足することを特徴とするシート。
σM,σTが1MPa以下0.05MPa以上であり、|σM−σT|÷|σM+σT|の値が0.5以下である。
σM:表層(A,C)の縦方向の配向緩和応力(MPa)
σT:表層(A,C)の横方向の配向緩和応力(MPa)
表層(A,C)は、ゴム状弾性体からなる分散相が0〜5質量部であり、スチレン系単量体単位35〜75質量%及び(メタ)アクリル酸エステル系単量体単位65〜25質量%を含有する重合体からなる連続相が100〜95質量部であるスチレン系重合体(ただし分散層と連続層の合計は100質量部)。
中間層(B)は、ゴム状弾性体からなる分散相が1〜20質量部であり、スチレン系単量体単位35〜75質量%及び(メタ)アクリル酸エステル系単量体単位65〜25質量%を含有する重合体からなる連続相が99〜80質量部であるゴム変性スチレン系重合体において、ゴム状弾性体がスチレン単量体単位30〜50質量%とブタジエン単量体単位70〜50質量%からなるスチレン系重合体。
A multilayer structure (A: surface layer, B: intermediate layer, C: surface layer) is a multilayer sheet comprising the following components and stretched in a multiaxial direction, and each surface layer (A, A sheet characterized in that the orientation relaxation stress of C) satisfies the following relationship.
σM and σT are 1 MPa or less and 0.05 MPa or more, and the value of | σM−σT | ÷ | σM + σT | is 0.5 or less.
σM: longitudinal orientational relaxation stress (MPa) of surface layers (A, C)
σT: orientational relaxation stress (MPa) in the lateral direction of the surface layer (A, C)
In the surface layers (A, C), the dispersed phase composed of a rubber-like elastic body is 0 to 5 parts by mass, and 35 to 75% by mass of a styrene monomer unit and 65 to (meth) acrylic acid ester monomer unit. Styrenic polymer whose continuous phase which consists of a polymer containing 25 mass% is 100-95 mass parts (however, the sum total of a dispersion layer and a continuous layer is 100 mass parts).
In the intermediate layer (B), the dispersed phase composed of a rubber-like elastic body is 1 to 20 parts by mass, and 35 to 75% by mass of styrene monomer units and 65 to 25 (meth) acrylate monomer units. In a rubber-modified styrenic polymer having a continuous phase of 99 to 80 parts by mass composed of a polymer containing mass%, the rubber-like elastic body comprises 30 to 50 mass% of styrene monomer units and 70 to 70 mass parts of butadiene monomer units. A styrenic polymer comprising 50% by mass.
多層シートに用いる透明材料の25℃における屈折率が材料Aの屈折率=材料Bの屈折率±0.01、材料Cの屈折率=材料Bの屈折率±0.010であることを特徴とする請求項1記載のシート。 The refractive index at 25 ° C. of the transparent material used for the multilayer sheet is that the refractive index of the material A = the refractive index of the material B ± 0.01 and the refractive index of the material C = the refractive index of the material B ± 0.010. The sheet according to claim 1. 多層シートの延伸方法が2軸延伸法によって作られることを特徴とする請求項1または2記載のシート。 The sheet according to claim 1 or 2, wherein the multilayer sheet is stretched by a biaxial stretching method. 請求項1〜3のいずれか1項記載のシートを用いて得られることを特徴とする成形品。 A molded article obtained by using the sheet according to any one of claims 1 to 3. 成形品が食料品包装容器であることを特徴とする請求項4記載の成形品。 The molded article according to claim 4, wherein the molded article is a food packaging container. 成形品が電子部品包装容器であることを特徴とする請求項4記載の成形品。 The molded article according to claim 4, wherein the molded article is an electronic component packaging container.
JP2004051004A 2004-02-26 2004-02-26 Transparent sheet excellent in vacuum formability and molded product thereof Expired - Fee Related JP5027987B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004051004A JP5027987B2 (en) 2004-02-26 2004-02-26 Transparent sheet excellent in vacuum formability and molded product thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004051004A JP5027987B2 (en) 2004-02-26 2004-02-26 Transparent sheet excellent in vacuum formability and molded product thereof

Publications (2)

Publication Number Publication Date
JP2005238614A true JP2005238614A (en) 2005-09-08
JP5027987B2 JP5027987B2 (en) 2012-09-19

Family

ID=35020871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004051004A Expired - Fee Related JP5027987B2 (en) 2004-02-26 2004-02-26 Transparent sheet excellent in vacuum formability and molded product thereof

Country Status (1)

Country Link
JP (1) JP5027987B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009081963A1 (en) * 2007-12-26 2009-07-02 Denki Kagaku Kogyo Kabushiki Kaisha Sheet for packaging electronic part
WO2010147043A1 (en) * 2009-06-16 2010-12-23 電気化学工業株式会社 Embossed carrier tape and manufacturing method thereof
JP2011001113A (en) * 2009-06-22 2011-01-06 Denki Kagaku Kogyo Kk Embossed carrier tape and manufacturing method for the same
JP2011001062A (en) * 2009-06-16 2011-01-06 Denki Kagaku Kogyo Kk Embossed carrier tape and method for manufacturing the same
JP2016060192A (en) * 2014-09-22 2016-04-25 デンカ株式会社 Biaxially oriented styrenic resin laminated sheet, molded article, and food packaging container
WO2019146630A1 (en) * 2018-01-24 2019-08-01 デンカ株式会社 Laminated sheet and electronic component packaging container molded using same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0616744A (en) * 1992-03-31 1994-01-25 Dainippon Ink & Chem Inc Rubber-modified copolymer resin composition and production thereof
JPH07314611A (en) * 1994-03-31 1995-12-05 Dainippon Ink & Chem Inc Molding laminated resin sheet
JPH08244179A (en) * 1995-03-09 1996-09-24 Shinnitsuka Polymer Kk Transparent rubber modified styrene resin sheet
JPH08267674A (en) * 1995-03-30 1996-10-15 Mitsubishi Chem Corp Biaxially oriented stylene laminate
JPH11129407A (en) * 1997-10-28 1999-05-18 Denki Kagaku Kogyo Kk Laminated resin sheet
JP2000154257A (en) * 1998-11-18 2000-06-06 Denki Kagaku Kogyo Kk Molded part for electronic component packaging
JP2002059470A (en) * 2000-08-18 2002-02-26 Dainippon Ink & Chem Inc Method for manufacturing styrene resin moldings
JP2003040324A (en) * 2001-05-22 2003-02-13 Denki Kagaku Kogyo Kk Sheet

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0616744A (en) * 1992-03-31 1994-01-25 Dainippon Ink & Chem Inc Rubber-modified copolymer resin composition and production thereof
JPH07314611A (en) * 1994-03-31 1995-12-05 Dainippon Ink & Chem Inc Molding laminated resin sheet
JPH08244179A (en) * 1995-03-09 1996-09-24 Shinnitsuka Polymer Kk Transparent rubber modified styrene resin sheet
JPH08267674A (en) * 1995-03-30 1996-10-15 Mitsubishi Chem Corp Biaxially oriented stylene laminate
JPH11129407A (en) * 1997-10-28 1999-05-18 Denki Kagaku Kogyo Kk Laminated resin sheet
JP2000154257A (en) * 1998-11-18 2000-06-06 Denki Kagaku Kogyo Kk Molded part for electronic component packaging
JP2002059470A (en) * 2000-08-18 2002-02-26 Dainippon Ink & Chem Inc Method for manufacturing styrene resin moldings
JP2003040324A (en) * 2001-05-22 2003-02-13 Denki Kagaku Kogyo Kk Sheet

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009081963A1 (en) * 2007-12-26 2009-07-02 Denki Kagaku Kogyo Kabushiki Kaisha Sheet for packaging electronic part
WO2010147043A1 (en) * 2009-06-16 2010-12-23 電気化学工業株式会社 Embossed carrier tape and manufacturing method thereof
JP2011001062A (en) * 2009-06-16 2011-01-06 Denki Kagaku Kogyo Kk Embossed carrier tape and method for manufacturing the same
US20120094086A1 (en) * 2009-06-16 2012-04-19 Denki Kagaku Kogyo Kabushiki Kaisha Embossed carrier tape and method of production thereof
CN102482016A (en) * 2009-06-16 2012-05-30 电气化学工业株式会社 Embossed carrier tape and method for manufacturing the same
JP2011001113A (en) * 2009-06-22 2011-01-06 Denki Kagaku Kogyo Kk Embossed carrier tape and manufacturing method for the same
JP2016060192A (en) * 2014-09-22 2016-04-25 デンカ株式会社 Biaxially oriented styrenic resin laminated sheet, molded article, and food packaging container
WO2019146630A1 (en) * 2018-01-24 2019-08-01 デンカ株式会社 Laminated sheet and electronic component packaging container molded using same
CN111491797A (en) * 2018-01-24 2020-08-04 电化株式会社 Laminated sheet and electronic component packaging container molded by using same
JPWO2019146630A1 (en) * 2018-01-24 2021-02-04 デンカ株式会社 Laminated sheet and electronic component packaging container molded using it
US11292233B2 (en) 2018-01-24 2022-04-05 Denka Company Limited Laminated sheet and electronic component packaging container molded using same
JP7138665B2 (en) 2018-01-24 2022-09-16 デンカ株式会社 LAMINATED SHEET AND ELECTRONIC COMPONENTS PACKAGING CONTAINER MOLDED USING THE SAME

Also Published As

Publication number Publication date
JP5027987B2 (en) 2012-09-19

Similar Documents

Publication Publication Date Title
JP2008517093A (en) Improved rubber-modified monovinylidene aromatic polymer and molded article made therefrom
JP5027987B2 (en) Transparent sheet excellent in vacuum formability and molded product thereof
JP5901785B2 (en) Acrylic laminate film excellent in weather resistance and moldability and method for producing the same
US7569638B2 (en) Thermoplastic elastomer composition
JPH06279546A (en) Stretched styrene resin sheet
KR100878725B1 (en) Sheet and formed product thereof
JP4255654B2 (en) Transparent sheet excellent in antistatic property and molded product thereof
JP4318784B2 (en) Rubber-modified styrenic resin composition and sheet thereof
JP2001191461A (en) Heat-shrinkable multilayered film
JP4145560B2 (en) Transparent sheet excellent in antistatic property, molded product thereof, and production method thereof
JP4318783B2 (en) Rubber-modified styrenic resin composition and sheet thereof
JP4439189B2 (en) Transparent sheet excellent in vacuum formability and molded product thereof
JP2005239951A (en) Method for producing aromatic vinyl compound-based polymer
JP4358491B2 (en) Sheet and molded product thereof
JP4689793B2 (en) Rubber-modified styrenic resin composition
JP3602262B2 (en) A multilayer acrylic polymer, a method for producing the same, a method for producing a methacrylic resin composition using the polymer, and a resin composition thereof.
US20060122324A1 (en) Amorphous polyester resin composition
WO2008033646A2 (en) Rubber modified styrenic copolymer composition comprising high molecular weight elastomers
JP2002201324A (en) Resin composition, heat-shrinkable film and heat- shrinkable multilayer film
JP4467088B2 (en) Rubber-modified styrenic polymer
JP4459422B2 (en) Heat shrinkable multilayer film
JP2002060573A (en) Thermoplastic resin composition and method for producing the same
JP4702980B2 (en) Heat shrinkable multilayer film
JPH1081805A (en) Impact-resistant methacrylic resin composition
JP3410504B2 (en) Flexible multilayer resin and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110315

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110502

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110503

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120416

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120619

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120625

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5027987

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees