JP2005238407A - Walking robot - Google Patents

Walking robot Download PDF

Info

Publication number
JP2005238407A
JP2005238407A JP2004053466A JP2004053466A JP2005238407A JP 2005238407 A JP2005238407 A JP 2005238407A JP 2004053466 A JP2004053466 A JP 2004053466A JP 2004053466 A JP2004053466 A JP 2004053466A JP 2005238407 A JP2005238407 A JP 2005238407A
Authority
JP
Japan
Prior art keywords
walking
walking robot
road surface
joint
relative rotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004053466A
Other languages
Japanese (ja)
Other versions
JP4508681B2 (en
Inventor
Masao Nishikawa
正雄 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai University
Original Assignee
Tokai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai University filed Critical Tokai University
Priority to JP2004053466A priority Critical patent/JP4508681B2/en
Publication of JP2005238407A publication Critical patent/JP2005238407A/en
Application granted granted Critical
Publication of JP4508681B2 publication Critical patent/JP4508681B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Manipulator (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To restrain consumption energy required when changing a direction of a walking robot in the walking robot. <P>SOLUTION: This walking robot walks by driving of legs, by having at least two legs composed of a plurality of link members and a joint part for connecting the respective link members. A leg tip part 24 is arranged on the tip of the legs. The leg tip part 24 has a first member 66 grounded on a walking road surface, and a second member 64 ungrounded on the walking road surface. In the height direction of the walking robot, the first member 66 is arranged on the walking road surface side more than the second member 64, and the first member 66 relatively freely rotate to the second member 64 with the height direction of the walking robot as the rotation axis. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、少なくとも二本の脚を有し、該脚により歩行運動が可能な歩行ロボットに関する。   The present invention relates to a walking robot having at least two legs and capable of walking motion with the legs.

従来、歩行ロボットの脚部構造としては、ひと固まりの剛体となって接地するものが多く、現在歩行ロボットの形として人々が目にできるものは、この構造のものに限られている。しかし、試験的に提案されたものには、複数の部分に脚部が分割され、互いに相対運動できるものもある。例えば、歩行ロボットの脚部において、ヒトの爪先を模した関節を備える技術が示されている(例えば、非特許文献1を参照。)。この脚部構造を有する歩行ロボットにおいては、胴体部に収納したモータの出力を、フレキシブルワイヤーを介して当該爪先関節に接続し、爪先を駆動するものである。   Conventionally, there are many leg structures of walking robots that are grounded as a group of rigid bodies, and what can be seen by people as the shape of walking robots is limited to this structure. However, some of the experimentally proposed ones have legs divided into a plurality of parts and can move relative to each other. For example, a technique of providing a joint imitating a human toe in a leg portion of a walking robot has been shown (for example, see Non-Patent Document 1). In the walking robot having this leg structure, the output of the motor housed in the body is connected to the toe joint via a flexible wire to drive the toe.

また、別の脚部構造については、脚部の接地面積を変更可能とする脚部構造が開示されている(例えば、特許文献1を参照。)。この脚部構造を有する歩行ロボットにおいては、歩行ロボットの安定性の向上を図るために、歩行の場所に応じて脚部の接地面積を変える。しかし、容量の小さなモータを大きな減速比を持つ減速機を介して、該モータの駆動力を脚部に伝えて接地面積を変更している。そのため、脚部の接地面積の変更に長い時間を要する。   Moreover, about another leg part structure, the leg part structure which can change the contact area of a leg part is disclosed (for example, refer patent document 1). In a walking robot having this leg structure, the contact area of the leg is changed according to the place of walking in order to improve the stability of the walking robot. However, a ground contact area is changed by transmitting a driving force of a motor having a small capacity to a leg through a reduction gear having a large reduction ratio. Therefore, it takes a long time to change the contact area of the legs.

また、歩行ロボットの向きを変更するために、歩行ロボットの脚部に受動的に動く脚関節を脚部先端に設けて、脚部を駆動することで当該関節が曲がり、形の上で爪先立ちを実現しようとした技術が開示されている(例えば、特許文献2を参照。)。この脚部構造を有する歩行ロボットにおいては、従来から行われている歩行ロボットの脚踏み動作による向き変更よりも、該変更に要する所要時間が少ないため、向き変更に要するエネルギー消費も減少することがうたわれている。
Furusho, Sano ”Sensor-Based Control of a Nine-Link Biped”, The International Journal of Robotics Research, (United States of America), Massachusetts Institute of Technology, April 1990, vol.9, No.2, p.83-98 特開平5−318337号公報 特開平4−122586号公報
In order to change the direction of the walking robot, a leg joint that moves passively at the leg of the walking robot is provided at the tip of the leg, and when the leg is driven, the joint bends and the tiptoe stands on the shape. A technique to be realized is disclosed (for example, see Patent Document 2). In a walking robot having this leg structure, since the time required for the change is less than the conventional direction change by the stepping motion of the walking robot, the energy consumption required for the direction change is also reduced. Is sung.
Furusho, Sano “Sensor-Based Control of a Nine-Link Biped”, The International Journal of Robotics Research, (United Stats of America), Massachusetts Institute of Technology, April 1990, vol.9, No.2, p.83- 98 JP-A-5-318337 JP-A-4-122586

歩行ロボットに対する何らかの要求に対して、例えば、歩行ロボットの目前にある障害物を回避するために歩行ロボットの向きを変える必要があるとき、歩行ロボットに足踏み動作をさせることで向きの変更を行うと、それに要する時間が長くなり、且つ歩行ロボット全体において多くの関節を駆動する必要があるため向き変更に要する消費エネルギーも増加する。   For any request to the walking robot, for example, when it is necessary to change the direction of the walking robot in order to avoid an obstacle in front of the walking robot, if the direction is changed by causing the walking robot to step on In addition, the time required for this increases, and since it is necessary to drive many joints in the entire walking robot, the energy consumption required for changing the direction also increases.

本発明では、上記した問題に鑑み、歩行ロボットにおいて、該歩行ロボットの向きを変更するときに要する消費エネルギーを抑制することを目的とする。   In view of the above problems, an object of the present invention is to suppress energy consumption required for changing the direction of a walking robot in a walking robot.

本発明においては、上記した課題を解決するために、複数のリンク部材と該リンク部材の各々を連結する関節部とで構成される脚を少なくとも二本有し、該脚の駆動により歩行を行う歩行ロボットにおいて、前記脚の先端に脚先部が設けられ、前記脚先部は、歩行路面と接地する第一部材と、該歩行路面と接地しない第二部材とを有し、前記歩行ロボットの高さ方向において該第一部材は該第二部材より歩行路面側に設けられ、且つ該第一部材は該第二部材に対して該歩行ロボットの高さ方向を回転軸として相対的に回転自在とする。   In order to solve the above-described problems, the present invention has at least two legs each composed of a plurality of link members and joint portions connecting the link members, and walks by driving the legs. In the walking robot, a leg tip portion is provided at a tip of the leg, and the leg tip portion includes a first member that contacts the walking road surface and a second member that does not contact the walking road surface. In the height direction, the first member is provided closer to the walking road surface than the second member, and the first member is rotatable relative to the second member with the height direction of the walking robot as a rotation axis. And

即ち、歩行ロボットの重量を支える脚において、歩行路面と接地する脚先部を、少なくとも第一部材と第二部材の二つの部材で構成するものである。この脚先部は、人間でたとえるならば足首から足指先までの部位に該当する。そして、歩行路面に接地する第一部材は該歩行路面に接地しない第二部材に対して、相対的に回転が可能である点が本発明の特徴点である。ここで、該回転は、歩行ロボットの高さ方向を回転軸として行われるが、この歩行ロボットの高さ方向とは、脚先部から該脚先部につながる歩行ロボットの脚、歩行ロボットの本体に向かう方向であり、例えば、水平な歩行路面に歩行ロボットがあるときは、該歩行路面に対して垂直な方向である。   That is, in the leg that supports the weight of the walking robot, the leg tip portion that contacts the walking road surface is constituted by at least two members, the first member and the second member. This leg tip corresponds to a part from the ankle to the tip of the toe if compared with a human. The feature of the present invention is that the first member that contacts the walking road surface can rotate relative to the second member that does not contact the walking road surface. Here, the rotation is performed with the height direction of the walking robot as a rotation axis. The height direction of the walking robot means the leg of the walking robot that connects the leg tip portion to the leg tip portion, and the main body of the walking robot. For example, when the walking robot is on a horizontal walking road surface, the direction is perpendicular to the walking road surface.

このように、歩行路面に接地する第一部材を歩行路面に接地しない第二部材に対して相対的に回転可能とすることで、歩行ロボットの向きが変更されることになる。そして、このとき、歩行ロボットの向きを変更する際に要する消費エネルギーは、向き変更が行われている摺動面における摩擦力に大きく影響される。本発明に係る歩行ロボットにおいては、第一部材と第二部材との間で相対的な回転が行われるため、歩行路面と第一部材間の摩擦力にかかわらず、換言すると、歩行路面の路面状況にかかわらず、第一部材と第二部材との間の略一定の摩擦力に抗することで、歩行ロボットの向きの変更が可能となる。その結果、歩行ロボットの向き変更に要する消費エネルギーを、歩行路面の路面状況にかかわらず、略一定とすることが可能となり、以て歩行ロボットの向き変更時の消費エネルギーの増加を抑制し得る。   Thus, the direction of the walking robot is changed by allowing the first member that contacts the walking road surface to rotate relative to the second member that does not contact the walking road surface. At this time, the energy consumption required for changing the direction of the walking robot is greatly influenced by the frictional force on the sliding surface where the direction is changed. In the walking robot according to the present invention, since relative rotation is performed between the first member and the second member, in other words, regardless of the frictional force between the walking road surface and the first member, in other words, the road surface of the walking road surface Regardless of the situation, the direction of the walking robot can be changed by resisting the substantially constant frictional force between the first member and the second member. As a result, the energy consumption required for changing the direction of the walking robot can be made substantially constant regardless of the road surface condition of the walking road surface, thereby suppressing an increase in energy consumption when changing the direction of the walking robot.

尚、歩行路面の路面状況によっては、第一部材と歩行路面との間の摩擦力が第一部材と第二部材との間の摩擦力より低い場合がある。そのような場合には、第一部材と歩行路面との間で相対的な回転が行われることで、歩行ロボットの向きが変更される。   Depending on the road surface condition of the walking road surface, the frictional force between the first member and the walking road surface may be lower than the frictional force between the first member and the second member. In such a case, the direction of the walking robot is changed by performing relative rotation between the first member and the walking road surface.

ここで、上述の歩行ロボットにおいて、前記第一部材と前記第二部材との間に、該第一部材と該第二部材間の摩擦力を所定摩擦力とする摩擦制御部材が設けられ、該第一部材と該第二部材との相対的な回転は該摩擦制御部材を介して行われるようにしてもよい。所定摩擦力とは、歩行ロボットの向き変更に際して要する消費エネルギーを抑制し得る程度の摩擦力であり、原則的に可及的に低い方が好ましい。このように摩擦制御部材を第一部材と第二部材との間に介在させることで、歩行ロボットの向きを変更するときの摩擦力を所定摩擦力として可及的に低減させて、歩行ロボットの向き変更に要する消費エネルギーを目標とする値に制御することが可能となる。   Here, in the above-described walking robot, a friction control member is provided between the first member and the second member so that a friction force between the first member and the second member is a predetermined friction force, The relative rotation between the first member and the second member may be performed via the friction control member. The predetermined frictional force is a frictional force that can suppress energy consumption required for changing the direction of the walking robot, and is preferably as low as possible in principle. Thus, by interposing the friction control member between the first member and the second member, the frictional force when changing the direction of the walking robot is reduced as much as possible as the predetermined frictional force. It becomes possible to control the energy consumption required for the direction change to a target value.

そして、上述の歩行ロボットにおいて、前記第一部材を前記歩行路面に接地した状態で、該第一部材と前記第二部材との相対的な回転を実行して前記歩行ロボットの向きを回転変更する歩行ロボット向き変更手段を、更に備えるようにしてもよい。例えば、歩行ロボットの脚の関節である、膝関節や腰関節からの駆動力によって、歩行ロボットの脚、即ち脚先部に設けられた第二部材に回転力を与えることで、第一部材と第二部材とが相対的な回転を行い、以て歩行ロボットの向きが変更される。   Then, in the above-described walking robot, with the first member in contact with the walking road surface, relative rotation between the first member and the second member is performed to rotate and change the direction of the walking robot. You may make it further provide a walking robot direction change means. For example, by applying a rotational force to the leg of the walking robot, that is, the second member provided on the leg tip, by the driving force from the knee joint or the hip joint, which is the joint of the leg of the walking robot, The second member rotates relative to the second member, thereby changing the direction of the walking robot.

また、上述の歩行ロボットにおいて、前記歩行ロボット向き変更手段は、前記脚先部を有する少なくとも二本の脚において、前記各第一部材が前記歩行路面に接地した状態での
該各第一部材における荷重中心によって決定される一の仮想円に沿った同一の回転方向に、該脚に駆動力を与えることで、該各第一部材と前記各第二部材との相対的な回転を行い、前記歩行ロボットの向きを変更してもよい。
Further, in the above-described walking robot, the walking robot direction changing means in each of the first members in a state where each of the first members is in contact with the walking road surface in at least two legs having the leg tip portion. By applying a driving force to the legs in the same rotational direction along one virtual circle determined by the load center, the first member and the second member are relatively rotated, The direction of the walking robot may be changed.

即ち、少なくとも二本の脚によって歩行ロボットが支えられている状態において、第一部材が歩行路面に接地しているとき、該脚に対して上述の方向に駆動力を与えると、第一部材と歩行路面との間の摩擦力によって第一部材と歩行路面との相対位置は変化せずに、駆動力の反力によって第一部材と第二部材とが相対的に回転する。これにより、歩行ロボットの向きが変更される。また、一の仮想円とは、歩行ロボットの各脚の第一部材に加わる荷重の中心を含む仮想円である。この仮想円に沿った方向に脚に駆動力を与えることで、歩行ロボットの向きが変更されるときに該歩行ロボットの重心が大きく変動して姿勢が不安定となるのを可及的に抑制し得る。   That is, when the walking robot is supported by at least two legs and the first member is in contact with the walking road surface, when the driving force is applied to the legs in the above-described direction, The relative position between the first member and the walking road surface is not changed by the frictional force between the walking road surface and the first member and the second member are relatively rotated by the reaction force of the driving force. Thereby, the direction of the walking robot is changed. One virtual circle is a virtual circle including the center of the load applied to the first member of each leg of the walking robot. By applying a driving force to the legs in the direction along this virtual circle, it is possible to suppress as much as possible that the center of gravity of the walking robot greatly fluctuates and the posture becomes unstable when the direction of the walking robot is changed. Can do.

また、上述までの歩行ロボットにおいて、前記第一部材と前記第二部材との相対的な回転を阻止する方向に該第一部材に付勢する付勢手段を、更に備え、前記第一部材と前記第二部材との相対的な回転が行われるときは、前記付勢手段による該第一部材への付勢力が低下し、若しくは該付勢手段による該第一部材への付勢を解除するようにしてもよい。   The walking robot described above may further include a biasing unit that biases the first member in a direction that prevents relative rotation between the first member and the second member. When the relative rotation with the second member is performed, the urging force applied to the first member by the urging means decreases or the urging force applied to the first member by the urging means is released. You may do it.

即ち、歩行ロボットが歩行するときや静止するとき等の、第一部材と第二部材との相対的な回転を行う必要がないときは、付勢手段によって第一部材に付勢することで該相対的な回転を阻止し、以て歩行ロボットの姿勢が不安定となることを抑制することができる。一方で、第一部材と第二部材との相対的な回転が行われるときは、付勢手段による付勢を低減、解除することで、第一部材と第二部材との相対的な回転をより円滑に行うことが可能となる。尚、付勢手段として、バネ等の弾性部材を用いるほかに、空気圧で駆動されるピストンを利用し、該ピストンに供給される空気圧を制御することで付勢力を制御するようにしてもよい。   That is, when there is no need to perform relative rotation between the first member and the second member, such as when the walking robot walks or stops, the biasing means biases the first member by It is possible to prevent relative rotation and thereby prevent the posture of the walking robot from becoming unstable. On the other hand, when the relative rotation of the first member and the second member is performed, the relative rotation between the first member and the second member is reduced by reducing or releasing the biasing by the biasing means. It becomes possible to carry out more smoothly. In addition to using an elastic member such as a spring as the urging means, the urging force may be controlled by using a piston driven by air pressure and controlling the air pressure supplied to the piston.

更に、上述までの歩行ロボットにおいて、前記第一部材と前記第二部材との相対的な回転の禁止または該禁止の解除を制御する制動手段を、更に備えるようにしてもよい。このように歩行ロボットが制動手段を有することで、第一部材と第二部材との相対的な回転が制御される。例えば、前記歩行ロボットの歩行時や静止時には、前記制動手段によって前記第一部材と前記第二部材との相対的な回転を禁止することで、歩行ロボットの姿勢が不安定となるのを抑制する。一方で、歩行ロボットの向きを変更するときは、前記制動手段によって前記第一部材と前記第二部材との相対的な回転の禁止が解除される。   Furthermore, the walking robot described above may further include a braking unit that controls prohibition of relative rotation between the first member and the second member or cancellation of the prohibition. Thus, the relative rotation of the first member and the second member is controlled by the walking robot having the braking means. For example, when the walking robot is walking or stationary, the braking means prohibits relative rotation between the first member and the second member, thereby suppressing the posture of the walking robot from becoming unstable. . On the other hand, when the direction of the walking robot is changed, the prohibition of relative rotation between the first member and the second member is canceled by the braking means.

また、前記脚先部において、前記第一部材とは別の第三部材によっても前記歩行路面と接地し、且つ該第三部材は前記第二部材に対して前記回転軸を中心とした相対的な回転を行わない場合、前記制動手段は、前記第一部材と前記第二部材との間における相対的な回転力を伝達させ、且つ前記第三部材の前記歩行路面との接地状態を解消させることで、該第一部材と該第二部材との相対的な回転を実行可能とし、前記第一部材と前記第二部材との間における相対的な回転力の伝達を遮断し、且つ前記第一部材と第三部材とを前記歩行路面に接地させることで、該第一部材と該第二部材との相対的な回転を禁止するようにしてもよい。   Further, in the leg tip portion, the third member different from the first member is also grounded with the walking road surface, and the third member is relative to the second member around the rotation axis. In the case where the rotation is not performed, the braking means transmits a relative rotational force between the first member and the second member, and cancels the ground contact state of the third member with the walking road surface. Thus, the relative rotation between the first member and the second member can be performed, the transmission of the relative rotational force between the first member and the second member is interrupted, and the first member You may make it prohibit the relative rotation of this 1st member and this 2nd member by grounding one member and the 3rd member on the said walking road surface.

即ち、第一部材と第二部材との間に生じる上述の相対的な回転力の伝達をクラッチのように制御することで、第一部材と第二部材との間の相対的な回転が禁止され、または該禁止が解除される。ここで、第一部材と第二部材との相対的な回転が禁止されるときは、第一部材と第三部材とが歩行路面と接地しているため、歩行ロボットの姿勢はより安定する。一方で、該回転が可能であるときは、第三部材と歩行路面との接地状態を解消することで、該回転時における摺動面積を、第一部材と第二部材との間の摺動面積、若しくは第一
部材と歩行路面との間の摺動面積に減少させて、以て該回転時に発生する摩擦力を軽減することが可能となる。
That is, the relative rotation between the first member and the second member is prohibited by controlling the transmission of the relative rotational force generated between the first member and the second member like a clutch. Or the prohibition is lifted. Here, when the relative rotation between the first member and the second member is prohibited, the posture of the walking robot is more stable because the first member and the third member are in contact with the walking road surface. On the other hand, when the rotation is possible, the sliding area between the first member and the second member is reduced by eliminating the ground contact state between the third member and the walking road surface. By reducing the area or the sliding area between the first member and the walking road surface, it is possible to reduce the frictional force generated during the rotation.

本発明によって、歩行ロボットにおいて、該歩行ロボットの向きを変更するときに要する消費エネルギーを抑制することが可能となる。   According to the present invention, in a walking robot, it is possible to suppress energy consumption required when changing the direction of the walking robot.

ここで、本発明に係る歩行ロボットの実施の形態について図面に基づいて説明する。   Here, an embodiment of a walking robot according to the present invention will be described with reference to the drawings.

図1に本発明を適用するのに適した2本の脚を有する歩行ロボット1の下半身の概略的な骨格図を示す。図1において、歩行ロボット1は左右それぞれの脚に6ケの関節を備える。当該6ケの関節は上から順に、脚部回転用の関節10、股関節部のピッチ方向の関節12、同ロール方向の関節14、膝関節部のピッチ方向の関節16、足関節部のピッチ方向の関節18、同ロール方向の関節20となっており、その下部には脚先部24が備えられる。   FIG. 1 shows a schematic skeleton diagram of the lower half of a walking robot 1 having two legs suitable for applying the present invention. In FIG. 1, a walking robot 1 has six joints on the left and right legs. The six joints are, in order from the top, a leg rotation joint 10, a hip joint pitch-direction joint 12, a roll-direction joint 14, a knee joint pitch-direction joint 16, and an ankle joint pitch direction. The joint 18 and the joint 20 in the same roll direction are provided, and a leg tip portion 24 is provided at the lower part thereof.

また、下半身の最上部には人体の骨盤に相当する腰板リンク26が用意される。腰板リンク26には関節の制御に必要な電源やアンプ(増幅器)、及び本発明に関係する蓄圧タンク90等が搭載されている。ここで、蓄圧タンク90は、後述する関節50内のピストン52の動力源となる高圧空気を貯留するためのタンクである。蓄圧タンク90に貯留されている高圧空気の供給については、後述する。   A waist plate link 26 corresponding to the pelvis of the human body is prepared at the uppermost part of the lower body. The waist plate link 26 is equipped with a power source and an amplifier (amplifier) necessary for joint control, a pressure accumulation tank 90 related to the present invention, and the like. Here, the pressure accumulation tank 90 is a tank for storing high-pressure air that becomes a power source of a piston 52 in the joint 50 described later. The supply of high-pressure air stored in the pressure accumulation tank 90 will be described later.

右脚と左脚とは鏡像の関係にあり、対称形状である。各々の番号の次のL、Rの文字はそれぞれ左、右を意味するもので、それ以外の意味はない。そして、以下において、例えば関節10L/Rと記載されるときは、左右両側の関節10Lと10Rを表すものとし、また、例えば関節10と表す場合と、関節10L/Rと表す場合とでは、その意味において差はない。股関節は図示のように3つの関節10、12、14から構成されており、股関節と膝関節との結合には大腿リンク30が用意され、また足関節も図示のように2つ関節18、20から構成されており、足関節と膝関節との結合にはスネリンク32が用意される。   The right leg and the left leg are mirror images and have a symmetrical shape. The letters L and R next to each number mean left and right, respectively, and have no other meaning. In the following description, for example, when it is described as joint 10L / R, it represents joints 10L and 10R on both the left and right sides, and for example, when it is expressed as joint 10 and when it is expressed as joint 10L / R, There is no difference in meaning. The hip joint is composed of three joints 10, 12, and 14 as shown in the figure, a thigh link 30 is prepared for coupling the hip joint and the knee joint, and the ankle joint is also shown as two joints 18 and 20 as shown in the figure. A snelink 32 is prepared for the connection between the ankle joint and the knee joint.

ここで、足関節に接続される脚先部24L/Rには、本発明に係る歩行ロボット1の向きを変更させる動作(以下、「向き変更動作」という)に関与する関節50R、50Lが設けられている。関節50L/Rは後述するように直線運動および回転運動を可能とするタイプの関節である。また、関節50L/Rにおいても、両脚の足部に鏡像の関係で同じ形式の関節が設けられている。   Here, the leg tips 24L / R connected to the ankle joints are provided with joints 50R and 50L related to an operation for changing the direction of the walking robot 1 according to the present invention (hereinafter referred to as “direction changing operation”). It has been. The joint 50L / R is a type of joint that enables linear motion and rotational motion as described later. Also in the joint 50L / R, joints of the same type are provided in the leg portions of both legs due to the mirror image.

ここで、図2には、向き変更動作に関与する関節50の構造が詳細に示されている。脚先部24には、蓄圧タンク90から供給される圧縮空気の空気圧によって駆動されるピストン52を一定方向に移動自在に収納するシリンダー54が設けられる。シリンダー54は異なる2つの直径からなり、空気圧を導き入れる圧力室56を形成している。またピストン52は、回り止めピン58によってシリンダー54に対して相対回転が阻止されている。その結果、ピストン52は図2における上下方向にのみ、空気圧によって移動させられる。尚、以下の記載にて上下と方向が示されるときは、各図における上下方向を意味する。また、ピストン52の上部空間60は大気開放になっており、その結果少ない圧縮空気の消費で所望の上下運動が実現できる構造となっている。   Here, FIG. 2 shows the structure of the joint 50 involved in the direction changing operation in detail. The leg tip portion 24 is provided with a cylinder 54 that accommodates a piston 52 that is driven by the air pressure of the compressed air supplied from the pressure accumulation tank 90 so as to be movable in a certain direction. The cylinder 54 has two different diameters and forms a pressure chamber 56 for introducing air pressure. Further, the piston 52 is prevented from rotating relative to the cylinder 54 by a detent pin 58. As a result, the piston 52 is moved by air pressure only in the vertical direction in FIG. In addition, when the following description shows an up-down direction and a direction, it means the up-down direction in each figure. Further, the upper space 60 of the piston 52 is open to the atmosphere, and as a result, a desired vertical movement can be realized with a small consumption of compressed air.

ここで、ピストン52の中心部には上下を貫通する形で回転軸62が配置されている。
この回転軸62の軸方向は、図2の上下方向であって歩行ロボット1の高さ方向と同一方向である。回転軸62の下側には、直接歩行路面と接地する第一部材66が回転軸62回りに回転自在に支持されている。また、以下において、ピストン52を第二部材52とも言う。また、脚先部24の先端には第一部材66とは独立して歩行路面に接地する第三部材64が設けられている。尚、第三部材64は脚先部24側に固定されている。ここで、第二部材(ピストン)52が図示位置にあるとき、即ち第二部材(ピストン)52が最上位置にあるときは、これら第一部材66の下面及び第三部材64の下面は実質的に同じ面となるように設計されている。
Here, a rotation shaft 62 is disposed in the center of the piston 52 so as to penetrate vertically.
The axial direction of the rotary shaft 62 is the vertical direction in FIG. 2 and the same direction as the height direction of the walking robot 1. A first member 66 that directly contacts the walking road surface is supported on the lower side of the rotation shaft 62 so as to be rotatable around the rotation shaft 62. Hereinafter, the piston 52 is also referred to as a second member 52. In addition, a third member 64 that contacts the walking road surface independently of the first member 66 is provided at the tip of the leg tip portion 24. The third member 64 is fixed to the leg tip portion 24 side. Here, when the second member (piston) 52 is in the illustrated position, that is, when the second member (piston) 52 is in the uppermost position, the lower surface of the first member 66 and the lower surface of the third member 64 are substantially the same. Are designed to have the same surface.

このように、第二部材(ピストン)52がシリンダー54の中において上下に移動することで、第一部材66が第三部材64より突出する方向に移動する。その結果、第二部材(ピストン)52が下方向に移動すると、第一部材66のみが歩行路面と接地した状態となり、且つ第三部材64は歩行路面と接地していない状態となる。その結果、第一部材66と第三部材64との間に段差δ(図5に図示されるδ)が生じ、その段差δが歩行ロボット1の高さ変化量として現れる。尚、図2に示される状態では、段差δは零である。   In this way, the second member (piston) 52 moves up and down in the cylinder 54, so that the first member 66 moves in a direction protruding from the third member 64. As a result, when the second member (piston) 52 moves downward, only the first member 66 is in contact with the walking road surface, and the third member 64 is not in contact with the walking road surface. As a result, a step δ (δ shown in FIG. 5) is generated between the first member 66 and the third member 64, and the step δ appears as a height change amount of the walking robot 1. In the state shown in FIG. 2, the step δ is zero.

また、第一部材66及び第三部材64は、路面と良く馴染むように、比較的柔らかい弾性材65、67が接着剤によってその接地表面に貼りつけられている。更に、第一部材66と第二部材(ピストン)52との間には、両者の間の滑りを良くする目的で、ドーナツ状の形状をした低摩擦係数を持つ第一樹脂板70が装着され、同時に第一部材66と第三部材64との間にはドーナツ状の形状をした比較的高い摩擦係数を持つ第二樹脂板72が装着されている。   The first member 66 and the third member 64 have relatively soft elastic members 65 and 67 attached to the grounding surface with an adhesive so as to be well adapted to the road surface. Further, between the first member 66 and the second member (piston) 52, a doughnut-shaped first resin plate 70 having a low friction coefficient is mounted for the purpose of improving the slip between them. At the same time, a second resin plate 72 having a relatively high coefficient of friction is mounted between the first member 66 and the third member 64.

回転軸62の上部には、第二部材(ピストン)52が蓄圧タンク90からの空気圧によって下降したあと、空気圧が除去された場合に、速やかに図示の最上位置に復帰するために、リターンスプリング80が用意されている。リターンスプリング80によって図示の最上位置にピストンが復帰したときは、第二樹脂板72がストッパーとなり、第一樹脂板70は除荷されるような寸法となっているものとする。即ち、第一樹脂板70の厚さは、第二樹脂板72の厚さより僅かに薄い寸法である。尚、第一樹脂板70、第二樹脂板72、第二部材(ピストン)52及び第一部材66との接触関係については後述する。   In the upper part of the rotating shaft 62, a return spring 80 is provided to quickly return to the uppermost position shown in the figure when the air pressure is removed after the second member (piston) 52 is lowered by the air pressure from the pressure accumulating tank 90. Is prepared. It is assumed that when the piston is returned to the uppermost position shown in the figure by the return spring 80, the second resin plate 72 serves as a stopper and the first resin plate 70 is unloaded. That is, the thickness of the first resin plate 70 is slightly thinner than the thickness of the second resin plate 72. The contact relationship between the first resin plate 70, the second resin plate 72, the second member (piston) 52, and the first member 66 will be described later.

また、図2に示す82は図1に示した足関節ロール用関節20L/Rを駆動するモータであり、図2に示す84はモータ82の出力を減速して増力する減速機を収納した部分、図2に示す76は足関節のピッチ関節18L/Rを収納するカバーである。   2 is a motor that drives the ankle roll joint 20L / R shown in FIG. 1, and 84 shown in FIG. 2 is a portion that houses a reduction gear that decelerates the output of the motor 82 to increase its power. 2 is a cover for accommodating the pitch joint 18L / R of the ankle joint.

次に、図3には、第二部材(ピストン)52へ供給する空気圧の制御を行う空気圧制御回路が示されている。蓄圧タンク90には逆止弁91を介して高圧空気が注入されており、その空気圧を減圧弁92で所望のレベルに減圧する。そして、電磁弁94の開弁によって、高圧空気が第二部材(ピストン)52L/Rを押し下げるように圧力室56L/Rに導かれる。この電磁弁94は通電時には、図3に示す左側の回路構成となることで、減圧弁92の出力を圧力室56L/Rに導くが、通電が停止されると図示の回路構成となることで、圧力室56を大気に連通する。このような電磁弁94は通常使用されるものであって、広く市販されている。例示の電磁弁は、パイロット弁として売られているもので、通電時の消費電力が僅かに0.5Wの電磁弁である。   Next, FIG. 3 shows an air pressure control circuit that controls the air pressure supplied to the second member (piston) 52. High pressure air is injected into the accumulator tank 90 via a check valve 91, and the air pressure is reduced to a desired level by the pressure reducing valve 92. Then, by opening the electromagnetic valve 94, the high pressure air is guided to the pressure chamber 56L / R so as to push down the second member (piston) 52L / R. When the solenoid valve 94 is energized, the circuit configuration on the left side shown in FIG. 3 is used to guide the output of the pressure reducing valve 92 to the pressure chamber 56L / R. The pressure chamber 56 communicates with the atmosphere. Such a solenoid valve 94 is normally used and is widely commercially available. The illustrated solenoid valve is sold as a pilot valve, and is a solenoid valve that consumes only 0.5 W when energized.

また、図4には上述の電磁弁94や歩行ロボット1の関節のアクチュエータであるモータ等から構成される制御装置の概略構成が示されている。CPU(中央演算装置)100は歩行ロボット1の脚運動を決める歩容データを収めてあるメモリ102にアクセスして歩容データを読み取り、更に現在の各関節の関節角度値、関節角速度値を読み取る。その後、モータ106が発揮すべきモータトルクを計算して、このモータトルクを指令値とし
てアンプ(増幅器)104に送る。アンプ104はこの指令値から電流値を算出、決定してモータ106を駆動する。モータ106が駆動されると関節は角度を変えるから、その角度を適切なセンサ(角度計)108で読み取り、角度情報としてCPU100に送る。
FIG. 4 shows a schematic configuration of a control device including the above-described electromagnetic valve 94 and a motor that is an actuator of a joint of the walking robot 1. A CPU (Central Processing Unit) 100 accesses a memory 102 that stores gait data for determining the leg motion of the walking robot 1, reads gait data, and further reads the current joint angle value and joint angular velocity value of each joint. . Thereafter, the motor torque to be exhibited by the motor 106 is calculated, and this motor torque is sent to the amplifier (amplifier) 104 as a command value. The amplifier 104 calculates and determines a current value from the command value and drives the motor 106. When the motor 106 is driven, the joint changes its angle, and the angle is read by an appropriate sensor (angle meter) 108 and sent to the CPU 100 as angle information.

図4でアンプ104やモータ106、角度計108は本実施例の場合は関節の数に応じた数、即ちそれぞれ12ケずつ存在するが、図面においては説明の簡素化のために3つだけが模式的に描かれている。尚、歩容データの様式は、この実施例では予め算出された各関節角度の時系列データの形で収納されているものとする。その一例は、例えば特開平4-201187の第六図に詳細に開示されている。   In FIG. 4, there are twelve amplifiers 104, motors 106, and goniometers 108 according to the number of joints in the present embodiment, that is, twelve each. However, in the drawing, only three are provided to simplify the explanation. It is drawn schematically. In this embodiment, the gait data format is stored in the form of time series data of joint angles calculated in advance. One example thereof is disclosed in detail in FIG. 6 of Japanese Patent Laid-Open No. 4-201187, for example.

ここで、図5に基づいて、歩行ロボット1における向き変更動作について、第二部材(ピストン)52の移動に伴う第一部材66、第三部材64、第一樹脂板70及び第二樹脂板72の接触関係とともに、説明する。図5(a)は、第二部材(ピストン)52が最上位置(図2に示す位置)にあるときの該接触関係を示す図であり、図5(b)は、蓄圧タンク90からの空気圧により第二部材(ピストン)52が最下位置にあるときの該接触関係を示す図である。   Here, based on FIG. 5, the first member 66, the third member 64, the first resin plate 70, and the second resin plate 72 associated with the movement of the second member (piston) 52 in the direction changing operation in the walking robot 1. This will be described together with the contact relationship. FIG. 5A is a view showing the contact relationship when the second member (piston) 52 is at the uppermost position (position shown in FIG. 2), and FIG. 5B is the air pressure from the accumulator tank 90. It is a figure which shows this contact relationship when the 2nd member (piston) 52 exists in the lowest position by this.

図5(a)に示すように、第二部材(ピストン)52が最上位置にあるときは、上述したように、第一部材66は第二樹脂板72と接触しており、且つ第一部材66の下面と第三部材64の下面とは実質的に同一面に位置する。この状態では、第一部材66は摩擦係数が比較的高い第二樹脂板72と接触しているため、第一部材66の回転軸62周りの回転は抑制される。一方で、第一部材66は、第一樹脂板70とは接触しておらず、また第二部材(ピストン)52は、回り止めピン58を介して第三部材64の設けられた脚先部24と一体的な構造を採っている。従って、第一部材66と第二部材(ピストン)52との間において相対的な回転が起こりえない。よって、図5(a)に示すような接触状態は、歩行ロボット1の姿勢の安定性がより求められる歩行時や静止時等に好適な状態である。   As shown in FIG. 5A, when the second member (piston) 52 is in the uppermost position, as described above, the first member 66 is in contact with the second resin plate 72, and the first member. The lower surface of 66 and the lower surface of the third member 64 are substantially in the same plane. In this state, since the first member 66 is in contact with the second resin plate 72 having a relatively high friction coefficient, the rotation of the first member 66 around the rotation shaft 62 is suppressed. On the other hand, the first member 66 is not in contact with the first resin plate 70, and the second member (piston) 52 is a leg tip portion where the third member 64 is provided via a detent pin 58. 24 and an integral structure. Therefore, relative rotation cannot occur between the first member 66 and the second member (piston) 52. Therefore, the contact state as shown in FIG. 5A is a suitable state when walking or when the posture stability of the walking robot 1 is further required.

また、図5(b)に示すように、第二部材(ピストン)52が最下位置にあるときは、第二部材(ピストン)52が第一樹脂板70を介して第一部材66を押し出している状態となる。このとき、上述したように、第一部材66が歩行路面と接地した状態となり、且つ第三部材64は歩行路面と接地していない状態となる。その結果、第一部材66と第三部材64との間に段差δが生じる。この状態では、第一部材66は摩擦係数が比較的低い第一樹脂板70と接触しているため、第一部材66もしくは第二部材(ピストン)52に回転力が付与されると、第一部材66と第二部材(ピストン)との間に相対的な回転が生じる。   5B, when the second member (piston) 52 is in the lowest position, the second member (piston) 52 pushes the first member 66 through the first resin plate 70. It will be in the state. At this time, as described above, the first member 66 is in contact with the walking road surface, and the third member 64 is not in contact with the walking road surface. As a result, a step δ is generated between the first member 66 and the third member 64. In this state, since the first member 66 is in contact with the first resin plate 70 having a relatively low coefficient of friction, when a rotational force is applied to the first member 66 or the second member (piston) 52, the first member 66 A relative rotation occurs between the member 66 and the second member (piston).

即ち、第三部材64が歩行路面と接地していない状態となるため、歩行路面と第一部材66、より正確には、弾性材67と歩行路面との間の摩擦力より第一樹脂板70と第一部材66との間の摩擦力が小さい場合には、第一部材66もしくは第二部材(ピストン)52に回転力が付与されると、第一樹脂板70を介在させた状態で、第一部材66と第二部材(ピストン)52との間に相対的な回転が生じる。そして、該相対的な回転が生じることで、歩行ロボット1の向きが変更される。   In other words, since the third member 64 is not in contact with the walking road surface, the first resin plate 70 is determined by the frictional force between the walking road surface and the first member 66, more precisely, the elastic material 67 and the walking road surface. When the frictional force between the first member 66 and the first member 66 is small, when a rotational force is applied to the first member 66 or the second member (piston) 52, the first resin plate 70 is interposed, A relative rotation occurs between the first member 66 and the second member (piston) 52. The direction of the walking robot 1 is changed by the relative rotation.

尚、歩行路面と第一部材66、より正確には、弾性材67と歩行路面との間の摩擦力が第一樹脂板70と第一部材66との間の摩擦力より小さい場合には、第一部材66もしくは第二部材(ピストン)52に回転力が付与されると、第一部材66が歩行路面に対して相対的に回転し、その結果歩行ロボット1の向きが変更される。この場合、第三部材64が歩行路面とは接地していないため、歩行ロボット1の向きの変更の際に抗すべき摩擦力は比較的小さい。   In addition, when the friction force between the walking road surface and the first member 66, more precisely, the elastic material 67 and the walking road surface is smaller than the friction force between the first resin plate 70 and the first member 66, When a rotational force is applied to the first member 66 or the second member (piston) 52, the first member 66 rotates relative to the walking road surface, and as a result, the direction of the walking robot 1 is changed. In this case, since the third member 64 is not in contact with the walking road surface, the frictional force to be resisted when the direction of the walking robot 1 is changed is relatively small.

このように構成される関節50を有する歩行ロボット1は、蓄圧タンク90から第二部材(ピストン)52に供給される空気圧を制御することで、第二部材(ピストン)52の位置が制御される。その結果、第一部材66と第二部材(ピストン)52との間の相対的な回転が禁止され、または該禁止が解除されることで、歩行ロボット1の向き変更動作が行われることになる。従って、本実施例においては、電磁弁94への通電を制御して第二部材(ピストン)52の位置を制御することが、本発明に係る制動手段に相当する。   The walking robot 1 having the joint 50 configured as described above controls the position of the second member (piston) 52 by controlling the air pressure supplied from the pressure accumulation tank 90 to the second member (piston) 52. . As a result, the relative rotation between the first member 66 and the second member (piston) 52 is prohibited, or the prohibition of the prohibition is released, whereby the direction change operation of the walking robot 1 is performed. . Therefore, in this embodiment, controlling the energization to the electromagnetic valve 94 to control the position of the second member (piston) 52 corresponds to the braking means according to the present invention.

ここで、歩行ロボット1の向き変更動作のために、第一部材66もしくは第二部材(ピストン)52に回転力を付与するための脚の制御について以下に説明する。以下の制御は、上述したように、第二部材(ピストン)52が最下位置となったとき、即ち、制動手段によって第一部材66を第二部材(ピストン)52との相対的な回転の禁止が解除されたときに、行われる。   Here, the control of the legs for applying the rotational force to the first member 66 or the second member (piston) 52 for the direction changing operation of the walking robot 1 will be described below. As described above, the following control is performed when the second member (piston) 52 is in the lowest position, that is, the first member 66 is rotated relative to the second member (piston) 52 by the braking means. This is done when the ban is lifted.

図6に歩行ロボット1の向き変更動作の基本原理を示す。図6(a)は歩行ロボット1の上部から見た脚の動かし方を示している。図6(a)では、歩行ロボット1の重心は図の座標原点Oに一致する。また、このとき、歩行ロボット1は、圧力室56L/Rに高圧空気が供給されて第二部材(ピストン)52L/Rが下側方向に移動することで、脚先部24L/Rにおいては第一部材66L/Rにおいてのみが、歩行路面と接地している。このときの脚先部24L/Rの位置を太線で示す。また、脚先部24L/Rに作用する分布荷重の中心点をPL、PRとする。この中心点PL、PRが2つの脚先部24L/Rの第一部材66L/R(図で点線の円で表示)の中央に来るように関節50を除く脚関節が調節されている場合を想定し、この場合を例にとって歩行ロボット1の向き変更動作について説明する。   FIG. 6 shows the basic principle of the direction changing operation of the walking robot 1. FIG. 6A shows how to move the leg as viewed from the top of the walking robot 1. In FIG. 6A, the center of gravity of the walking robot 1 coincides with the coordinate origin O in the figure. At this time, the walking robot 1 is supplied with high-pressure air to the pressure chamber 56L / R, and the second member (piston) 52L / R moves downward, so that the first leg portion 24L / R Only one member 66L / R is in contact with the walking road surface. The position of the leg tip portion 24L / R at this time is indicated by a bold line. In addition, the center points of distributed loads acting on the leg tip portions 24L / R are PL and PR. The case where the leg joints other than the joint 50 are adjusted so that the center points PL and PR are in the center of the first members 66L / R (indicated by dotted circles) of the two leg tip portions 24L / R. Assuming this case, the direction changing operation of the walking robot 1 will be described as an example.

図6(a)に示す状態で脚先部24L/Rの方向が歩行ロボット1の胴体に対して変化しないよう固定した状態で、反時計回りに左右両脚を回転させるべく、関節50を除く脚関節に駆動力を与える。しかし、第一部材66L/Rと歩行路面との間には摩擦が存在するため、この駆動力は歩行ロボット1が地球を反時計回りに回転させる動作となる。一方で、ニュートンの作用・反作用の法則によって、歩行ロボット1は地球から時計回りの回転力を受けることとなる。そして地球の慣性モーメントは歩行ロボット1のそれよりも圧倒的に大きいため、結果的に歩行ロボット1は、自身が時計方向に回転運動する回転力を受ける。ここで、第一部材66と歩行路面との間の摩擦力より、第一部材66L/Rと第一樹脂板70L/Rとの間の摩擦力が小さいときは、該回転力により、第一部材66L/Rと第二部材(ピストン)52L/Rとが相対的に回転し、その結果、歩行ロボット1が時計回り方向にその向きを変更する。   In the state shown in FIG. 6A, the legs excluding the joint 50 are used to rotate the left and right legs counterclockwise in a state where the direction of the leg tips 24L / R is fixed so as not to change with respect to the body of the walking robot 1. Give driving force to the joint. However, since friction exists between the first member 66L / R and the walking road surface, this driving force causes the walking robot 1 to rotate the earth counterclockwise. On the other hand, due to Newton's law of action / reaction, the walking robot 1 receives a clockwise rotational force from the earth. Since the inertia moment of the earth is overwhelmingly larger than that of the walking robot 1, as a result, the walking robot 1 receives a rotational force that rotates in a clockwise direction. Here, when the frictional force between the first member 66L / R and the first resin plate 70L / R is smaller than the frictional force between the first member 66 and the walking road surface, the rotational force causes the first The member 66L / R and the second member (piston) 52L / R rotate relatively, and as a result, the walking robot 1 changes its direction in the clockwise direction.

ここで、歩行ロボット1の向き変更動作の様子を図6(b)に示す。図6(b)は地球に固定した座標から歩行ロボット1を見た様子を示している。歩行ロボット1の両脚の状態は、図6(a)に示す状態にある左右両脚に、該脚を図6(a)、(b)に示す仮想円TCに沿って動かすべく駆動力を、関節50を除く脚関節によって与える。この仮想円TCは中心点PL、PRを通る円として定義される。本実施例においては、仮想円の中心は、座標原点Oと一致している。   Here, the state of the direction changing operation of the walking robot 1 is shown in FIG. FIG. 6B shows a state where the walking robot 1 is viewed from coordinates fixed on the earth. The state of both legs of the walking robot 1 is such that the driving force is applied to the left and right legs in the state shown in FIG. 6 (a) to move the legs along the virtual circle TC shown in FIGS. 6 (a) and (b). Provided by leg joints except 50. This virtual circle TC is defined as a circle passing through the center points PL and PR. In the present embodiment, the center of the virtual circle coincides with the coordinate origin O.

そして、駆動力が左右の両脚に与えられることで、上述したように歩行ロボット1の向きが図6(b)に示すように時計回転方向に変更する。そして、本実施例においては、歩行ロボット1の向きが、PL、PRにおける仮想円TCの接線方向に一致すると、歩行ロボット1の向き変更動作が終了する。その結果、歩行ロボット1は図6(a)の状態から時計方向にθR(座標原点Oを中心とする回転角)だけ旋回する。このとき、歩行ロボットの両脚も点PL、点PRを中心にθS(歩行ロボット1の両脚の荷重中心PL、PRを
中心とする回転角)だけ回転するが、幾何学的な関係からθRとθSとは互いに相等しい。
Then, as the driving force is applied to the left and right legs, the direction of the walking robot 1 is changed to the clockwise direction as shown in FIG. 6B as described above. In this embodiment, when the direction of the walking robot 1 coincides with the tangential direction of the virtual circle TC in PL and PR, the direction changing operation of the walking robot 1 ends. As a result, the walking robot 1 turns from the state of FIG. 6A in the clockwise direction by θR (rotation angle about the coordinate origin O). At this time, both legs of the walking robot also rotate around the points PL and PR by θS (the rotation angles about the load centers PL and PR of both legs of the walking robot 1), but θR and θS are geometrically related. Are equal to each other.

ここで、2つの平面が一定の歩行ロボット1の重量を受けながら互いに回転摺動する場合には、回転抵抗は接地面積が広い程大きくなる。そこで、空気圧によって第一部材66L/Rを突出させることで、回転動作時の回転抵抗を減らし、然る後に股関節の関節10L/Rを固定したまま第一部材66L/Rの中心が仮想円TCに沿って反時計方向に回転するべく、関節50を除く関節を駆動することで、少ない回転抵抗のもとで、安定した姿勢を保ちながら歩行ロボット1の向き変更動作を実行できる。   Here, when the two planes rotate and slide relative to each other while receiving a constant weight of the walking robot 1, the rotational resistance increases as the ground contact area increases. Therefore, by projecting the first member 66L / R by air pressure, the rotational resistance during the rotational operation is reduced, and then the center of the first member 66L / R is the virtual circle TC while the hip joint 10L / R is fixed. By driving the joints other than the joint 50 so as to rotate in the counterclockwise direction, the direction changing operation of the walking robot 1 can be executed while maintaining a stable posture with a small rotational resistance.

更に、膝関節も望ましくは真っ直ぐに伸ばして固定した状態で向き変更動作を行えば、即ち関節10L/Rと関節16L/Rは一定の関節角度を保持したまま向き変更動作を行えば、より少ないエネルギーで向きの変更が行える。   Further, if the knee joint is desirably straightened and fixed and the direction changing operation is performed, that is, the joints 10L / R and the joint 16L / R are operated with the constant joint angle maintained, the number of the joints is less. The direction can be changed with energy.

また、本実施例の脚先部24の関節50は、第二部材(ピストン)52と第一部材66との間には相対回転運動を少ない摩擦で実現するために、低摩擦係数を持つ第一樹脂板70が介在している。従って、歩行路面の摩擦係数が高いアスファルト路面のような歩行路面であっても、歩行路面と第一部材66との間の摩擦係数とは無関係に、第二部材(ピストン)52と第一部材66との間の摩擦力が向き変更動作時における抵抗力となる。従って、歩行路面と第一部材66との摩擦力に拘わらず、一定の消費エネルギーで向き変更動作が実行し、該消費エネルギーの増加を抑制し得る。   Further, the joint 50 of the leg tip portion 24 of the present embodiment has a low friction coefficient in order to realize a relative rotational movement with a small amount of friction between the second member (piston) 52 and the first member 66. One resin plate 70 is interposed. Therefore, the second member (piston) 52 and the first member are independent of the friction coefficient between the walking road surface and the first member 66 even on a walking road surface such as an asphalt road surface having a high friction coefficient on the walking road surface. The frictional force between 66 and 66 becomes a resistance force during the direction changing operation. Therefore, regardless of the frictional force between the walking road surface and the first member 66, the direction changing operation can be executed with constant energy consumption, and an increase in the energy consumption can be suppressed.

尚、このことは、歩行ロボット1において、歩行路面がプラスタイルのように滑りやすい路面の場合には電磁弁94に通電することなく(圧縮空気を消耗することなく)、向き変更動作を行うことを否定するものではない。そのような選択は、歩行ロボット1に環境に関する知識ベースを与えておくだけで容易に実施可能である。   This means that the walking robot 1 performs the direction changing operation without energizing the solenoid valve 94 (without consuming compressed air) when the walking road surface is slippery like plastic. Is not to deny. Such a selection can be easily performed only by giving the walking robot 1 a knowledge base about the environment.

更に、向き変更動作時に、本出願人が特願2002−205845で開示している関節制動装置を使って、本実施例における関節10、16の駆動モータにブレーキをかけ、当該関節の駆動モータへの電力供給を停止すれば、より少ないエネルギー消費で向き変更動作を実行できる。   Further, during the direction changing operation, the joint braking device disclosed by the present applicant in Japanese Patent Application No. 2002-205845 is used to brake the drive motors of the joints 10 and 16 in the present embodiment. If the power supply is stopped, the direction changing operation can be executed with less energy consumption.

本発明に係る歩行ロボット1の第二の実施例を、図7に基づいて説明する。本実施例では、図2に示す脚先部24に代えて脚先部540が設けられ、且つ脚先部540には図2に示す関節50に代えて、向き変更動作に関与する関節500が設けられる。ここで、図7には、向き変更動作に関与する関節500の構造が詳細に示されている。尚、脚先部540は、上述の脚先部24と同様に、歩行ロボット1の重量を受けて歩行路面と接地する部位である。また、本実施例に係る歩行ロボット1は、脚先部540および関節500を除きその他の構成は、図1に示す歩行ロボット1と同様であるが、脚先部540は上述のピストン52を有しないため、蓄圧タンク90および図3に示す空気圧制御回路を有しない。   A second embodiment of the walking robot 1 according to the present invention will be described with reference to FIG. In this embodiment, a leg tip portion 540 is provided instead of the leg tip portion 24 shown in FIG. 2, and a joint 500 involved in the direction changing operation is provided on the leg tip portion 540 instead of the joint 50 shown in FIG. Provided. Here, FIG. 7 shows the structure of the joint 500 involved in the direction changing operation in detail. In addition, the leg tip part 540 is a part which receives the weight of the walking robot 1 and contacts the walking road surface in the same manner as the leg tip part 24 described above. The walking robot 1 according to the present embodiment is the same as the walking robot 1 shown in FIG. 1 except for the leg tip 540 and the joint 500, but the leg tip 540 has the piston 52 described above. Therefore, the pressure accumulation tank 90 and the air pressure control circuit shown in FIG. 3 are not provided.

脚先部540は、第一部材501と第二部材502とを有する。第一部材501は、弾性材505を介して歩行路面と接地する。一方で、第二部材502は、歩行ロボットの高さ方向において第一部材501の上側に位置し、歩行路面とは接地しない。また、第一部材501と第二部材502との間には、両者の間の滑りを良くする目的で、ドーナツ状の形状をした低摩擦係数を持つ樹脂板504が設けられている。樹脂板504の中心の穴には、後述する回転軸503が通る。   The leg tip portion 540 includes a first member 501 and a second member 502. The first member 501 contacts the walking road surface via the elastic member 505. On the other hand, the second member 502 is positioned above the first member 501 in the height direction of the walking robot, and does not contact the walking road surface. A resin plate 504 having a doughnut-like shape and a low friction coefficient is provided between the first member 501 and the second member 502 for the purpose of improving the slip between them. A rotation shaft 503 (described later) passes through the central hole of the resin plate 504.

ここで、第一部材501と第二部材502を上下に貫通する形で回転軸503が配置されている。この回転軸503の軸方向は、図7の上下方向であって歩行ロボット1の高さ方向と同一方向である。そして、回転軸503の下側には第一部材501が、回転軸503とセレーション等で隙間がない状態で固定されている。一方で、回転軸503の上側には第二部材502が設けられているが、回転軸503と第二部材502とはゆるみ嵌めとなっている。従って、第一部材501が第二部材502に対して相対的な回転ができる構造となっている。そして、回転軸503の第二部材502より上側の部位において、その一端が回転軸503に固定され回転軸503の軸周りに巻かれる巻きバネ503が設けられている。尚、巻きバネ503の他端は第二部材502に取り付けられている。   Here, the rotating shaft 503 is disposed so as to penetrate the first member 501 and the second member 502 in the vertical direction. The axial direction of the rotating shaft 503 is the vertical direction in FIG. 7 and the same direction as the height direction of the walking robot 1. And the 1st member 501 is being fixed to the lower side of the rotating shaft 503 without the clearance gap between the rotating shaft 503 and serrations. On the other hand, the second member 502 is provided on the upper side of the rotation shaft 503, but the rotation shaft 503 and the second member 502 are loosely fitted. Accordingly, the first member 501 can rotate relative to the second member 502. A winding spring 503 is provided at a portion above the second member 502 of the rotating shaft 503, one end of which is fixed to the rotating shaft 503 and wound around the axis of the rotating shaft 503. The other end of the winding spring 503 is attached to the second member 502.

また、第一部材501と第二部材502との間に樹脂板504が設けられていない部位が存在し、該部位にクリック機構510が設けられている。クリック機構510は、第二部材502に固定されたバネ510aと、第一部材501上に設けられたV字状の窪み510bと、窪み510bにその一部が嵌り込む球体であってバネ510aと接続される球510cとから構成される。   Further, there is a portion where the resin plate 504 is not provided between the first member 501 and the second member 502, and the click mechanism 510 is provided at the portion. The click mechanism 510 is a spring 510a fixed to the second member 502, a V-shaped recess 510b provided on the first member 501, and a sphere that is partially fitted into the recess 510b. Sphere 510c to be connected.

そして、第一部材501が第二部材502に対して所定の位置にあるとき、球510cは窪み510bに嵌り込むとともに、バネ510aによって第一部材501に押しつけられている。そのため、図6に示すように歩行ロボット1の脚の関節の駆動により回転軸503を中心とした回転力が付加された場合でも該回転力が球510cを窪み510bから押し出す力より小さいときは、第一部材501と第二部材502との相対的な回転が阻止される。即ち、球510cが第一部材501と第二部材502との相対的な回転を阻止する障害物として機能する。一方で、該回転力が球510cを窪み510bから押し出す力より大きくなると、球510cが窪み510bから押し出されるため、第一部材501と第二部材502との相対的な回転は阻止されることなく、円滑に行われる。従って、クリック機構510は、第一部材501と第二部材502との相対的な回転を阻止する方向に第一部材501に付勢する、本発明に係る付勢手段に相当する。また、クリック機構510により、第一部材501が第二部材502に対して容易に回転移動し、歩行ロボットの姿勢が不安定となるのが抑制される。   When the first member 501 is in a predetermined position with respect to the second member 502, the ball 510c is fitted into the recess 510b and pressed against the first member 501 by the spring 510a. Therefore, as shown in FIG. 6, even when a rotational force about the rotational axis 503 is applied by driving the leg joint of the walking robot 1, if the rotational force is smaller than the force pushing the ball 510c out of the recess 510b, The relative rotation between the first member 501 and the second member 502 is prevented. That is, the ball 510 c functions as an obstacle that prevents relative rotation between the first member 501 and the second member 502. On the other hand, when the rotational force becomes larger than the force pushing the ball 510c out of the recess 510b, the ball 510c is pushed out of the recess 510b, so that the relative rotation between the first member 501 and the second member 502 is not prevented. Done smoothly. Accordingly, the click mechanism 510 corresponds to an urging unit according to the present invention that urges the first member 501 in a direction that prevents relative rotation between the first member 501 and the second member 502. Further, the click mechanism 510 prevents the first member 501 from easily rotating and moving with respect to the second member 502, and the posture of the walking robot from being unstable.

また、図7に示す520は図1に示した足関節ロール用関節20L/Rを駆動するモータであり、図7に示す521はモータ520の出力を減速して増力する減速機を収納した部分、図7に示す522は足関節のピッチ関節18L/Rを収納するカバーである。   7 is a motor for driving the ankle roll joint 20L / R shown in FIG. 1, and 521 shown in FIG. 7 is a portion that houses a reduction gear that decelerates and increases the output of the motor 520. 522 shown in FIG. 7 is a cover for accommodating the pitch joint 18L / R of the ankle joint.

このように構成される脚先部540及び関節500を有する歩行ロボット1においては、図6に示すように関節500を除く歩行ロボット1の脚の関節を駆動することで回転軸503を中心とした回転力を付与することができる。そして該回転力が付与されると、クリック機構510における球510cが窪み501cから押し出された後は、第一部材501と第二部材502との間で相対的な回転が行われて、歩行ロボット1の向きが変更される。このとき、第一部材501と歩行路面との摩擦力にかかわらず、換言すると歩行路面の路面状況にかかわらず、第一部材501と第二部材502との間の略一定の摩擦力に抗することで、歩行ロボット1の向き変更動作が行われることになる。より正確には、該摩擦力に加えて巻きバネ506の弾性力が、歩行ロボット1の向き変更動作時の抵抗となる。従って、歩行路面の路面状況にかかわらず、向き変更動作時における消費エネルギーが略一定となり、その増加を抑制することが可能となる。   In the walking robot 1 having the leg tip portion 540 and the joint 500 configured as described above, the joint of the leg of the walking robot 1 excluding the joint 500 is driven as shown in FIG. A rotational force can be applied. And when this rotational force is given, after the ball | bowl 510c in the click mechanism 510 is extruded from the hollow 501c, relative rotation is performed between the 1st member 501 and the 2nd member 502, and a walking robot The direction of 1 is changed. At this time, regardless of the frictional force between the first member 501 and the walking road surface, in other words, against the substantially constant frictional force between the first member 501 and the second member 502 regardless of the road surface condition of the walking road surface. Thus, the direction changing operation of the walking robot 1 is performed. More precisely, the elastic force of the winding spring 506 in addition to the frictional force becomes a resistance during the direction changing operation of the walking robot 1. Therefore, regardless of the road surface condition of the walking road surface, the energy consumption during the direction changing operation becomes substantially constant, and the increase can be suppressed.

また、歩行ロボット1の向き変更動作が終了後、脚先部540が歩行路面から離れると、巻きバネ503により、第一部材501を相対的な回転が生じる以前の位置に復帰させる方向に、第一部材501に回転力が付与される。更に、クリック機構510において球510bが窪み510cに嵌り込もうとする作用により、第一部材501は第二部材50
2に対して常に所定の位置に復帰する。
In addition, when the leg tip portion 540 is separated from the walking road surface after the direction changing operation of the walking robot 1 is finished, the first member 501 is returned to the position before the relative rotation is caused by the winding spring 503 in the direction in which the first rotation is performed. A rotational force is applied to one member 501. Further, the first member 501 is moved into the second member 50 by the action of the ball 510b trying to fit into the recess 510c in the click mechanism 510.
2 always returns to a predetermined position.

また本実施例においては、クリック機構510はバネ510aの弾性力を付勢力として利用したが、バネ510aの弾性力に代わり、空気圧で駆動されるピストンを用いてもよい。ピストンに供給される空気圧を制御することで、第一部材501と第二部材502との相対的な回転を阻止する方向に第一部材501へ付勢する付勢力を制御することが可能である。   In this embodiment, the click mechanism 510 uses the elastic force of the spring 510a as an urging force, but a piston driven by air pressure may be used instead of the elastic force of the spring 510a. By controlling the air pressure supplied to the piston, it is possible to control the urging force that urges the first member 501 in a direction that prevents relative rotation between the first member 501 and the second member 502. .

本発明の実施の形態に係る歩行ロボットであって2本の脚を有する歩行ロボットの下半身の概略的な骨格図を示す図である。It is a figure which shows the schematic skeleton figure of the lower half body of the walking robot which is a walking robot which concerns on embodiment of this invention, and has two legs. 本発明の実施の形態に係る歩行ロボットにおいて、脚先部に設けられる向き変更動作に関与する関節の詳細な構造を示す図である。In the walking robot which concerns on embodiment of this invention, it is a figure which shows the detailed structure of the joint in connection with direction change operation | movement provided in a leg tip part. 本発明の実施の形態に係る歩行ロボットにおいて、向き変更動作に関与する関節における空気圧制御を行う空気圧制御回路を示す図である。In the walking robot which concerns on embodiment of this invention, it is a figure which shows the air pressure control circuit which performs the air pressure control in the joint in connection with direction change operation | movement. 本発明の実施の形態に係る歩行ロボットにおいて、電磁弁や歩行ロボットの関節のアクチュエータであるモータ等から構成される制御装置の概略構成を示す図である。In the walking robot which concerns on embodiment of this invention, it is a figure which shows schematic structure of the control apparatus comprised from the motor etc. which are an actuator of the joint of a solenoid valve or a walking robot. 本発明の実施の形態に係る歩行ロボットにおいて、向き変更動作時の第一部材、第三部材、第一樹脂板及び第二樹脂板の接触関係を概略的に示す図である。In the walking robot which concerns on embodiment of this invention, it is a figure which shows schematically the contact relationship of the 1st member at the time of direction change operation | movement, a 3rd member, a 1st resin board, and a 2nd resin board. 本発明の実施の形態に係る歩行ロボットにおいて、向き変更動作の基本原理を示す図である。In the walking robot which concerns on embodiment of this invention, it is a figure which shows the basic principle of direction change operation | movement. 本発明の実施の形態に係る歩行ロボットにおいて、脚先部に設けられる向き変更動作に関与する関節の詳細な構造を示す第二の図である。In the walking robot which concerns on embodiment of this invention, it is a 2nd figure which shows the detailed structure of the joint in connection with direction change operation | movement provided in a leg tip part.

符号の説明Explanation of symbols

1・・・・歩行ロボット
10・・・・関節
12・・・・関節
14・・・・関節
16・・・・関節
18・・・・関節
20・・・・関節
24・・・・脚先部
30・・・・大腿リンク
32・・・・スネリンク
52・・・・ピストン、第二部材
54・・・・シリンダー
56・・・・圧力室
62・・・・回転軸
64・・・・第三部材
66・・・・第一部材
70・・・・第一樹脂板
72・・・・第二樹脂板
80・・・・リターンスプリング
90・・・・蓄圧タンク
94・・・・電磁弁
100・・・・CPU
500・・・・関節
501・・・・第一部材
502・・・・第二部材
503・・・・回転軸
504・・・・樹脂板
506・・・・巻きバネ
510・・・・クリック機構
510a・・・・バネ
510b・・・・窪み
510c・・・・球
1 ... Walking robot 10 ... Joint 12 ... Joint 14 ... Joint 16 ... Joint 18 ... Joint 20 ... Joint 24 ... Leg tip 30 ... Thigh link 32 ... Sne link 52 ... Piston, second member 54 ... Cylinder 56 ... Pressure chamber 62 ... Rotary shaft 64 ... Three members 66 ... First member 70 ... First resin plate 72 ... Second resin plate 80 ... Return spring 90 ... Accumulation tank 94 ... Solenoid valve 100 .... CPU
500 ... Joint 501 ... First member 502 ... Second member 503 ... Rotating shaft 504 ... Resin plate 506 ... Winding spring 510 ... Click mechanism 510a ... Spring 510b ... Recess 510c ... Ball

Claims (8)

複数のリンク部材と該リンク部材の各々を連結する関節部とで構成される脚を少なくとも二本有し、該脚の駆動により歩行を行う歩行ロボットにおいて、
前記脚の先端に脚先部が設けられ、
前記脚先部は、歩行路面と接地する第一部材と、該歩行路面と接地しない第二部材とを有し、前記歩行ロボットの高さ方向において該第一部材は該第二部材より歩行路面側に設けられ、且つ該第一部材は該第二部材に対して該歩行ロボットの高さ方向を回転軸として相対的に回転自在であることを特徴とする歩行ロボット。
In a walking robot having at least two legs composed of a plurality of link members and joint portions connecting the link members, and walking by driving the legs,
A leg tip is provided at the tip of the leg,
The leg tip portion includes a first member that contacts the walking road surface and a second member that does not contact the walking road surface, and the first member is higher than the second member in the height direction of the walking robot. The walking robot is provided on a side, and the first member is rotatable relative to the second member with the height direction of the walking robot as a rotation axis.
前記第一部材と前記第二部材との間に、該第一部材と該第二部材間の摩擦力を所定摩擦力とする摩擦制御部材が設けられ、該第一部材と該第二部材との相対的な回転は該摩擦制御部材を介して行われることを特徴とする請求項1に記載の歩行ロボット。 Between the first member and the second member, there is provided a friction control member having a predetermined frictional force between the first member and the second member, and the first member and the second member The walking robot according to claim 1, wherein the relative rotation is performed through the friction control member. 前記第一部材を前記歩行路面に接地した状態で、該第一部材と前記第二部材との相対的な回転を実行して前記歩行ロボットの向きを回転変更する歩行ロボット向き変更手段を、更に備えることを特徴とする請求項1又は請求項2に記載の歩行ロボット。 A walking robot direction changing means for rotating and changing the direction of the walking robot by executing relative rotation between the first member and the second member while the first member is in contact with the walking road surface. The walking robot according to claim 1, further comprising a walking robot. 前記歩行ロボット向き変更手段は、前記脚先部を有する少なくとも二本の脚において、前記各第一部材が前記歩行路面に接地した状態での該各第一部材における荷重中心によって決定される一の仮想円に沿った同一の回転方向に、該脚に駆動力を与えることで、該各第一部材と前記各第二部材との相対的な回転を行い、前記歩行ロボットの向きを変更することを特徴とする請求項3に記載の歩行ロボット。 The walking robot orientation changing means is determined by a load center in each first member in a state where each first member is in contact with the walking road surface in at least two legs having the leg tip portion. By applying a driving force to the legs in the same rotational direction along the virtual circle, the first member and the second member are rotated relative to each other, and the direction of the walking robot is changed. The walking robot according to claim 3. 前記第一部材と前記第二部材との相対的な回転を阻止する方向に、該第一部材に付勢する付勢手段を、更に備え、
前記第一部材と前記第二部材との相対的な回転が行われるときは、前記付勢手段による該第一部材への付勢力が低下し、若しくは該付勢手段による該第一部材への付勢を解除することを特徴とする請求項1から請求項4の何れかに記載の歩行ロボット。
Biasing means for biasing the first member in a direction to prevent relative rotation between the first member and the second member;
When relative rotation between the first member and the second member is performed, the urging force applied to the first member by the urging means is reduced, or the urging means is applied to the first member. The walking robot according to any one of claims 1 to 4, wherein the bias is released.
前記第一部材と前記第二部材との相対的な回転の禁止または該禁止の解除を制御する制動手段を、更に備えることを特徴とする請求項1から請求項4の何れかに記載の歩行ロボット。 The walking according to any one of claims 1 to 4, further comprising braking means for controlling prohibition of relative rotation between the first member and the second member or releasing the prohibition. robot. 前記歩行ロボットの歩行時に、前記制動手段によって前記第一部材と前記第二部材との相対的な回転を禁止することを特徴とする請求項6に記載の歩行ロボット。 The walking robot according to claim 6, wherein relative rotation between the first member and the second member is prohibited by the braking unit when the walking robot is walking. 前記脚先部において、前記第一部材とは別の第三部材によっても前記歩行路面と接地し、且つ該第三部材は前記第二部材に対して前記回転軸を中心とした相対的な回転を行わない場合、
前記制動手段は、前記第一部材と前記第二部材との間における相対的な回転力を伝達させ、且つ前記第三部材の前記歩行路面との接地状態を解消させることで、該第一部材と該第二部材との相対的な回転を実行可能とし、
前記第一部材と前記第二部材との間における相対的な回転力の伝達を遮断し、且つ前記第一部材と第三部材とを前記歩行路面に接地させることで、該第一部材と該第二部材との相対的な回転を禁止することを特徴とする請求項6又は請求項7に記載の歩行ロボット。
In the leg tip portion, a third member different from the first member also contacts the walking road surface, and the third member rotates relative to the second member around the rotation axis. If you do not
The braking means transmits the relative rotational force between the first member and the second member, and cancels the ground contact state of the third member with the walking road surface. And relative rotation between the second member and the second member
By blocking transmission of relative rotational force between the first member and the second member, and grounding the first member and the third member to the walking road surface, the first member and the second member The walking robot according to claim 6 or 7, wherein relative rotation with the second member is prohibited.
JP2004053466A 2004-02-27 2004-02-27 Walking robot Expired - Fee Related JP4508681B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004053466A JP4508681B2 (en) 2004-02-27 2004-02-27 Walking robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004053466A JP4508681B2 (en) 2004-02-27 2004-02-27 Walking robot

Publications (2)

Publication Number Publication Date
JP2005238407A true JP2005238407A (en) 2005-09-08
JP4508681B2 JP4508681B2 (en) 2010-07-21

Family

ID=35020680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004053466A Expired - Fee Related JP4508681B2 (en) 2004-02-27 2004-02-27 Walking robot

Country Status (1)

Country Link
JP (1) JP4508681B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05318336A (en) * 1992-05-20 1993-12-03 Honda Motor Co Ltd Flat leg structure of leg type walking robot
JPH05318335A (en) * 1992-05-20 1993-12-03 Honda Motor Co Ltd Flat leg structure of leg type walking robot
JP2002210682A (en) * 2000-11-17 2002-07-30 Honda Motor Co Ltd Leg structure of leg-type moving robot
JP2002307339A (en) * 2001-04-11 2002-10-23 Sony Corp Leg type mobile robot and control method thereof, and ankle structure for the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05318336A (en) * 1992-05-20 1993-12-03 Honda Motor Co Ltd Flat leg structure of leg type walking robot
JPH05318335A (en) * 1992-05-20 1993-12-03 Honda Motor Co Ltd Flat leg structure of leg type walking robot
JP2002210682A (en) * 2000-11-17 2002-07-30 Honda Motor Co Ltd Leg structure of leg-type moving robot
JP2002307339A (en) * 2001-04-11 2002-10-23 Sony Corp Leg type mobile robot and control method thereof, and ankle structure for the same

Also Published As

Publication number Publication date
JP4508681B2 (en) 2010-07-21

Similar Documents

Publication Publication Date Title
EP1340478B1 (en) Parallel linkage and artificial joint device using the same
US8508172B2 (en) Statically stable biped robotic mechanism and method of actuating
KR100917352B1 (en) Device for absorbing floor-landing shock for legged mobile robot
US20070040312A1 (en) Adjustable stiffness leaf spring actuators
JP5083463B2 (en) Walking assist device
US11844734B2 (en) Mobile body
JP2020512206A (en) Robot arm
WO2012066678A1 (en) Self-directed movable body
JP3864370B2 (en) Joint braking device for walking robot
KR20150112599A (en) Humanoid robot having compact series elastic actuator
JP6431932B2 (en) Fixed electric joint and humanoid robot
JP2007000957A (en) Legged robot
JP4508681B2 (en) Walking robot
JP2006055972A (en) Foot traveling mechanism and bipedal walking robot with the same
JP2008044066A (en) Legged robot
JP7487604B2 (en) Assist Device
JP2008093822A (en) Multi-point ground-contact type leg part support mechanism, two-foot walking robot provided with it and its control structure
JP2009035157A (en) Inverted wheel type mobile body, and method of controlling the same
JP2005177918A (en) Robot device and compliance device for robot device
WO2020240950A1 (en) Robot device and control method for robot device, and load compensation device
JP2008087142A (en) Sole structure of leg type mobile robot, leg type mobile robot and walking control method of leg type mobile robot
JP4814592B2 (en) Foot safety mechanism, biped walking robot equipped with the same, and control structure thereof
JP4359423B2 (en) Legged mobile robot and leg mechanism of legged mobile robot
JP4376660B2 (en) Joint actuator
JP2005224921A (en) Joint braking device of mobile robot

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20070130

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A521 Written amendment

Effective date: 20100325

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20100427

Free format text: JAPANESE INTERMEDIATE CODE: A61

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees