WO2012066678A1 - Self-directed movable body - Google Patents

Self-directed movable body Download PDF

Info

Publication number
WO2012066678A1
WO2012066678A1 PCT/JP2010/070704 JP2010070704W WO2012066678A1 WO 2012066678 A1 WO2012066678 A1 WO 2012066678A1 JP 2010070704 W JP2010070704 W JP 2010070704W WO 2012066678 A1 WO2012066678 A1 WO 2012066678A1
Authority
WO
WIPO (PCT)
Prior art keywords
body cover
inner frame
spring
autonomous mobile
mobile body
Prior art date
Application number
PCT/JP2010/070704
Other languages
French (fr)
Japanese (ja)
Inventor
梓 網野
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2010/070704 priority Critical patent/WO2012066678A1/en
Publication of WO2012066678A1 publication Critical patent/WO2012066678A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/0091Shock absorbers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J5/00Manipulators mounted on wheels or on carriages
    • B25J5/007Manipulators mounted on wheels or on carriages mounted on wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D57/00Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track
    • B62D57/02Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members
    • B62D57/028Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members having wheels and mechanical legs

Definitions

  • This invention relates to the autonomous mobile body provided with the impact mitigation apparatus.
  • Patent Document 1 and Patent Document 2 below are known as techniques for mitigating impact that are mounted on an autonomous mobile body and suppress an impact force peak at the time of contact with an object or a person.
  • a bumper crank having springs attached to four corners of a rectangle and a switch for detecting the displacement are provided to alleviate the impact from all directions.
  • the impact mitigation device disclosed in Patent Document 2 detects the position of the bumper by the position detection means, moves the bumper via an expansion / contraction mechanism driven by an actuator, and increases the stroke that the bumper can take. This makes it possible to improve the impact mitigation ability when a collision occurs.
  • the position of the bumper can be detected by a position detecting means, and the bumper can be moved by an expansion / contraction mechanism driven by an actuator to increase the stroke that can be taken by the bumper. Since it is a stroke and does not have a stroke of three degrees of freedom of front and rear, left and right, and rotation, safety is not sufficient in all directions.
  • An object of the present invention is to provide an autonomous mobile body that can prevent deformation of a body (hereinafter referred to as a trunk) by the action of an actuator and the repulsive force of a spring when a load is applied to an arm portion.
  • the object is to provide a head attached to the upper part of the inner frame, a leg attached to the lower part of the inner frame via a three-degree-of-freedom joint, and an arm attached to an intermediate part of the head and the leg.
  • the object is to provide positional relationship measuring means for measuring the positional relationship between the body cover and the inner frame, and to make the body cover variable with respect to the inner frame based on the positional relationship measuring means. Is preferred.
  • the impact mitigation device is provided with the rotary actuator at each of the positions obtained by dividing the horizontal plane of the inner frame into three equal parts.
  • the elastic member is preferably a coil spring.
  • the rotary actuator of the impact mitigation device is provided in two spaces, upper and lower, in a space between the body cover and the inner frame.
  • the rotary actuator of the impact mitigation device is provided between the three-degree-of-freedom joint and the body cover.
  • the above-mentioned purpose is such that the rotary actuator of the impact mitigation device rotates in a vertical plane direction.
  • an autonomous mobile body that can prevent deformation of the trunk by the operation of the actuator and the repulsive force of the spring when a load is applied to the arm portion.
  • FIG. 3 is a perspective view of a body part of the robot according to the first embodiment.
  • FIG. 3 is a schematic configuration diagram illustrating an operation of a trunk portion according to the first embodiment. It is a flowchart of the relationship between the control apparatus of Example 1, and an actuator.
  • FIG. 6 is a perspective view illustrating an operation of the body portion according to the first embodiment.
  • FIG. 6 is a perspective view illustrating an operation of the robot according to the first embodiment.
  • FIG. 3 is a schematic configuration diagram illustrating an operation of a trunk portion according to the first embodiment. It is a figure which shows the positional relationship of the robot which concerns on Example 1, and a person.
  • FIG. 3 is a perspective view of a body part of the robot according to the first embodiment.
  • FIG. 3 is a schematic configuration diagram illustrating an operation of a trunk portion according to the first embodiment. It is a figure which shows the positional relationship of the robot which concerns on Example 1, and a person.
  • FIG. 3 is a perspective view of a body
  • FIG. 6 is a diagram illustrating an operation of the robot according to the first embodiment.
  • FIG. 6 is a diagram illustrating an operation of the robot according to the first embodiment. It is a perspective view which shows the external appearance of the robot which concerns on Example 2 of this invention.
  • 6 is a perspective view of a body part of a robot according to Embodiment 2.
  • FIG. It is a perspective view which shows the external appearance of the robot which concerns on Example 3 of this invention.
  • FIG. 9 is a perspective view of a body part of a robot according to a third embodiment. It is a perspective view of the trunk
  • An autonomous mobile body (hereinafter referred to as a robot) is generally provided with a head and a shoulder at both arms on the central axis of the spine (hereinafter referred to as an internal frame), and both legs at the hip. Since such robots are premised on human coexistence, safety is the top priority, but robots with even higher safety are required.
  • the part that may collide first is the arm part protruding from the body cover.
  • the arm is fixed to the internal frame, it is not possible to absorb the shock to the person by the arm when the arm collides with a part of the person's body.
  • the inventors of the present invention reduce the shock to the human body by absorbing the shock to the arm by deformation of the body by fixing the arm to the resin body cover that also functions as a bumper. I examined that. However, for example, when a robot lifts a heavy object with its arms, or when a fallen robot tries to get up while supporting the ground with its arms, the body cover is attached to the inner frame as long as the arms are supported by the body. It will move. Therefore, supporting the arm portion on the body cover impairs the original function of the robot.
  • the inventors of the present invention considered to support the arm portion on the body cover supported by the actuator and the spring on the inner frame. That is, when a load is applied to the arm, the movement of the body cover is prevented by the operation of the actuator and the repulsive force of the spring.
  • FIG. 1 is a perspective view showing an appearance of a robot according to Embodiment 1 of the present invention.
  • the robot 1 includes a left leg 6 and a right leg 7 which are two legs, and a body 3 above the left leg 6.
  • a left arm 4 and a right arm 5 serving as two arm portions are provided on the left and right sides of the body 3.
  • a head 2 is provided on the upper portion of the body 3.
  • the two legs, the left leg 6 and the right leg 7, are used to move the robot 1 and are used when moving on a horizontal plane.
  • the left arm 4 and the right arm 5 are used for operations such as gripping an object.
  • the body 3 is provided with a control device (not shown) for controlling the operation of each part and a sensor (not shown) for detecting an inclination angle and an angular velocity of the body 3 with respect to the direction of gravity.
  • the body 3 or the head 2 is provided with a sensor (not shown) for recognizing the surrounding environment such as a distance sensor.
  • the traveling direction of the robot 1 is the X axis, the roll around the X axis, the Y axis perpendicular to the X axis and parallel to the horizontal plane in the traveling direction, the pitch around the Y axis, and the X axis.
  • An axis perpendicular to the Y axis is referred to as the Z axis, and the axis around the Z axis is referred to as the yaw direction.
  • FIG. 2 is a perspective view of the body of the robot according to the first embodiment.
  • the robot 1 includes a rod-like internal frame 10 that extends vertically (in the Z-axis direction).
  • a degree of freedom joint 11 is connected to the lower end of the inner frame 10 and the lower end of the body cover 3C.
  • the body cover 3 ⁇ / b> C is formed in a cylindrical shape having a gap over the entire circumference of the inner frame 10.
  • the left arm 4 and the right arm 5 are directly connected to the body cover 3C.
  • the rotary actuators 1A, 2A which can be rotated in the yaw direction to a position where the XY plane is equally divided into three and symmetric with respect to the center of the inner frame 10 3A is attached.
  • the output shafts of the rotary actuators 1A, 2A, 3A are connected to a spring 1SA, a spring 1SB, a spring 2SA, a spring 2SB, a spring 3SA, and a spring 3SB, respectively.
  • the rotary actuators 1A, 2A, and 3A have arms 1T, 2T, and 3T, respectively.
  • a spring 1 SA, a spring 1 SB, a spring 2 SA, a spring 2 SB, a spring 3 SA, and a spring 3 SB are connected to the distal ends of the arms 1 T, 2 T, and 3 T.
  • an impact mitigation device is formed by the rotary actuators that can rotate in the yaw direction, and the springs connected to the respective output shafts and arms of the rotary actuators.
  • the three-degree-of-freedom joint 11 has a degree of freedom in which the roll, pitch, and yaw can rotate, and further includes a sensor (rotary encoder or potentiometer) that detects the rotation angle.
  • Arms 1T, 2T, and 3T can be rotated in the yaw direction by rotary actuators 1A, 2A, and 3A.
  • the rotary actuators 1A, 2A, and 3A incorporate a power source such as a motor, a speed reducer, and an angle detector (rotary encoder or potentiometer) or position detector (linear encoder).
  • the three-degree-of-freedom joint 11 may be a connection method such as a ball joint, and is not limited as long as it is a connection method having three degrees of freedom.
  • the initial arrangement state of the arms 1T, 2T, and 3T is on a straight line connecting the axes in the longitudinal direction of the arms 1T, 2T, and 3T from the central axis of the internal frame 10 to the rotation axes of the rotary actuators 1A, 2A, and 3A. Arranged so that.
  • One end of each of the spring 1SA, spring 1SB, spring 2SA, spring 2SB, and spring 3SA is connected to the tip of the arm 1T, 2T, 3T, and one end thereof is connected to the connection position 1P, 2P, 3P on the upper edge of the body cover 3C. Connected.
  • connection positions 1P, 2P, and 3P are the upper edges of the body cover 3C, and the connection position 1P is opposite to the rotary actuator 3A with respect to an axis that passes through the center of the inner frame 10 and is parallel to the Z axis.
  • connection position 2P is opposite to the rotary actuator 1A, and the connection position 3P is opposite to the rotary actuator 2A.
  • the spring 1SA, the spring 1SB, the spring 2SA, the spring 2SB, the spring 3SA, and the spring 3SB are tension springs, and are connected with an initial load applied. Further, the respective spring constants are appropriately determined so that the inner frame 10 is arranged at the inner central portion of the body cover 3C in the initial arrangement of the arms 1T, 2T, and 3T.
  • a control device is mounted on the internal frame 10 and the angles of the arms 1T, 2T, and 3T connected to the output shafts of the rotary actuators 1A, 2A, and 3A based on signals from the three-degree-of-freedom joint 11. Control appropriately.
  • FIGS. 3A to 3D are schematic configuration diagrams showing the operation of the trunk portion according to the first embodiment.
  • FIG. 3 (a) shows a state in which no external force is applied, and the distances between the connection positions 1P, 2P, 3P with the body cover 3C and the internal frame 10 are maintained at almost equal intervals.
  • FIG. 3B is a view when an external force 100 passing through the inner frame 10 and parallel to the X axis is applied to the body cover 3C.
  • the spring 1SB and the spring 2SA are extended, and the spring 1SA and the spring 2SB are contracted, so that the body cover 3C is displaced in the negative X-axis direction.
  • the displacement is detected by a sensor mounted inside the three-degree-of-freedom joint 11 and transmitted to the control device.
  • the sensor here does not necessarily have to be mounted inside the three-degree-of-freedom joint 11 and only needs to be able to acquire the relative positional relationship between the inner frame 10 and the body cover 3C. It may be used.
  • FIG. 3 (c) shows a state in which the actuators 1A, 2A, and 3A are operated at appropriate target angles so that the inner frame 11 is positioned at the center of the body cover 3C in response to a command from the control device.
  • FIG. 3 (d) shows a state in which the force due to the spring tension generated by driving the actuators 1A, 2A, and 3A balances with the external force 100, and the inner frame 10 is positioned at the center of the body cover 3C.
  • step 110 the spring is displaced by the movement of the internal frame due to the external force.
  • step 111 detects the displacement of the spring with a sensor.
  • step 112 displacement information is transmitted from the sensor to the control device.
  • step 113 the control device instructs the actuator to set the target angle of the actuator.
  • Step 114 is an actuator that adjusts the spring tension so that the inner frame moves to the center of the body cover.
  • the positional relationship between the inner frame 10 and the body cover 3C is acquired by the three-degree-of-freedom joint 11, and the actuators 1A, 2A, and 3A are driven by the control device. By doing so, the positional relationship between the inner frame 11 and the body cover 3C can be properly maintained.
  • the body cover 3 ⁇ / b> C is variable in rigidity in all directions with respect to the external force 100.
  • the relative positions of the inner frame 10 and the body cover 3C can be displaced by appropriately controlling the actuators 1A, 2A, and 3A.
  • FIGS. 5A and 5B are perspective views showing the operation of the body part according to the first embodiment.
  • the body cover 3C and the inner frame 10 are connected via a spring 1SA, a spring 1SB, a spring 2SA, a spring 2SB, a spring 3SA, and a spring 3SB, and connected by a three-degree-of-freedom joint 11. Yes.
  • the body cover 3C when the body cover 3C is displaced in the Y direction with respect to the inner frame 10, the body cover 3C rotates about the three-degree-of-freedom joint 11 by a predetermined angle in the roll direction. Further, the angle at this time is acquired by an angle sensor mounted inside the three-degree-of-freedom joint 11, and the control device appropriately controls the actuators 1A, 2A, and 3A to a predetermined target angle.
  • 6A and 6B are perspective views illustrating the operation of the robot according to the first embodiment.
  • the target positional relationship between the body cover 3C and the internal frame 10 is changed as shown in FIG.
  • the body cover 3C can be driven in the pitch direction (arrow direction).
  • FIGS. 7A and 7B are schematic configuration diagrams illustrating the operation of the body portion according to the first embodiment.
  • FIG. 7 (a) shows a state in which no external force is applied, and the distances between the connection positions 1P, 2P and 3P with the body cover 3C and the internal frame 10 are maintained at almost equal intervals.
  • FIG. 7B is a view when an external force 100 that does not pass through the inner frame 10 is applied to the body cover 3C.
  • the spring 1SA, the spring 2SA, and the spring 3SA are extended, the spring 1SB, the spring 2SB, and the spring 3SB are contracted, and the body cover 3C is displaced in the yaw axis rotation direction as indicated by an arrow. Since the body cover 3C is also connected to the inner frame 10 via the three-degree-of-freedom joint 11, the displacement is detected by a sensor mounted inside the three-degree-of-freedom joint 10 and transmitted to the control device.
  • FIG. 3 (c) shows a state in which the actuators 1A, 2A, 3A are operated at appropriate target angles so that the positional relationship between the body cover 3C and the internal frame 10 is appropriate in response to a command from the control device.
  • the positional relationship between the inner frame 10 and the body cover 3C is acquired by the three-degree-of-freedom joint 11, and the actuator 1A, By driving 2A and 3A, the positional relationship between the inner frame 10 and the body cover 3C can be properly maintained.
  • the same operation is performed even if the external force 100 applied to the body cover 3C is an impact force, and the positional relationship between the internal frame 10 and the body cover 3C is properly maintained.
  • FIGS. 8A and 8B are diagrams showing the positional relationship between the robot and the person according to the first embodiment.
  • the robot 1 moves while measuring the distance from surrounding objects by a sensor that recognizes the surrounding environment mounted on the head 2 or the body cover 3C.
  • the surrounding object 502 does not enter the safety range 501 defined at an appropriate distance around the robot 1 (FIG. 8A)
  • the positional relationship between the body cover 3C of the robot 1 and the internal frame 10 is determined by the body cover.
  • the inner frame 10 is located at the center of 3C.
  • FIG. 8B shows a case where the surrounding object 502 has entered the safe range 501.
  • the positional relationship between the body cover 3 ⁇ / b> C and the inner frame 10 targets a position where the body cover 3 ⁇ / b> C is moved toward the surrounding object 502, and prepares for unexpected contact with the surrounding object 502.
  • the movement stroke of the body cover 3C at the time of contact is increased, and safety can be increased.
  • FIGS. 9A and 9B are diagrams illustrating the operation of the robot according to the first embodiment.
  • FIG. 9A shows a state where the robot does not move and is stopped on the spot, and the positional relationship between the body cover 3C and the inner frame 10 of the robot 1 is such that the inner frame 10 is located at the center of the body cover 3C. .
  • FIG. 9B shows a state where the robot 1 is moving at a predetermined speed.
  • the positional relationship between the body cover 3C and the internal frame 10 is targeted at a position where the body cover 3C is moved in the direction of the speed of the robot 1 and prepares for unexpected contact with surrounding obstacles.
  • the positional relationship between the body cover 3C and the inner frame 10 may be determined according to the moving speed of the robot 1, or the positional relationship between the body cover 3C and the inner frame 10 is determined only in the moving direction. Also good.
  • FIGS. 10A and 10B are diagrams illustrating the operation of the robot according to the first embodiment.
  • FIG. 10 (a) shows a state where the center of gravity of the robot 1 is moving or stationary in a posture that is substantially vertically above the ground contact point with respect to the ground.
  • FIG. 10B shows a case where the center of gravity of the robot 1 is separated from above the ground contact point with respect to the ground. This state is caused by situations such as tilting over a step on the road surface and contact with surrounding objects when moving.
  • a position where the body cover 3C is moved in the direction in which the inclination of the robot 1 relative to the ground, that is, the direction in which the risk of falling is the largest, is set as a target value of the positional relationship between the body cover 3C and the internal frame 10.
  • FIG. 11 is a perspective view showing the appearance of the robot according to the second embodiment of the present invention.
  • FIG. 12 is a perspective view of the body of the robot according to the second embodiment. 11 and 12, in Example 1, the impact mitigation device is provided on the body cover 3C and the arm connecting portion, and the three-degree-of-freedom joint 11 is connected to the lower end of the body cover 3C and the lower end portion of the inner frame 10. On the other hand, in the second embodiment, the impact relaxation device is also interposed in the three-degree-of-freedom joint 11 portion.
  • the rotary actuators 1A, 2A, and 3A described in the first embodiment the spring 1SA, the spring 1SB, the spring 2SA, the spring 2SB, the spring 3SA, and the spring 3SB, and the three-degree-of-freedom joint 11 through the arms 1T, 2T, and 3T.
  • torso cover 3C the spring 1SA, the spring 1SB, the spring 2SA, the spring 2SB, the spring 3SA, and the spring 3SB
  • FIG. 13 is a perspective view showing an appearance of a robot according to Embodiment 3 of the present invention.
  • FIG. 14 is a perspective view of the body of the robot according to the third embodiment. 13 and 14, in the first embodiment, the lower end of the body cover 3C and the lower end of the internal frame 10 are connected via a three-degree-of-freedom joint 11, and the upper end of the body cover 3C and the upper end of the internal frame 10 are connected to the rotary actuator 1A. 2A, 3A, spring 1SA, spring 1SB, spring 2SA, spring 2SB, spring 3SA, spring 3SB and arms 1T, 2T, 3T.
  • the lower end of the body cover 3C and the lower end of the inner frame 10 are connected to the rotary actuators 1A, 2A, 3A, the spring 1SA, the spring 1SB, the spring 2SA, the spring 2SB, the spring 3SA, the spring 3SB, and the arm.
  • the body cover 3C is connected at 1T, 2T, and 3T, and the center in the vertical direction is constricted with respect to the lower end and the upper end.
  • the constricted portion of the body cover 3C is connected to the inner frame 10 via a three-degree-of-freedom joint 11.
  • Example 1 when an external force is applied to the body cover 3C in the vicinity of the three-degree-of-freedom joint 11, it is impossible to take a large displacement, which may impair safety.
  • the body cover 3C in the vicinity of the three-degree-of-freedom joint 11 is constricted and the risk of contact is small.
  • rotation actuators 1A, 2A, 3A, and the components such as the spring 1SA, the spring 1SB, the spring 2SA, the spring 2SB, the spring 3SA, the spring 3SB, and the arms 1T, 2T, and 3T are mounted below the first embodiment. This lowers the center of gravity and improves the stability as a moving object.
  • FIG. 15 is a perspective view of the body part of the robot according to the fourth embodiment of the present invention.
  • the actuators 1A, 2A, and 3A are attached so as to be rotatable about the yaw direction at positions that are equally divided into three on the XY plane and point-symmetrical with respect to the center of the inner frame 10.
  • the rotation axis is attached to the position where the XY plane is divided into three equal parts and point-symmetric with respect to the center of the inner frame 10 in the direction of dividing the XY plane into three equal parts. That is, in the fourth embodiment, the arms 1T, 2T, and 3T rotate in the vertical plane direction.
  • the rotation stroke can be made longer than that of the arms 1T, 2T, and 3T of the first embodiment that rotate in the horizontal plane direction. improves.
  • the body of the mobile body since the body of the mobile body has two degrees of freedom of translation in the horizontal direction, which is active and passive with respect to the main body skeleton of the mobile body, Can reduce the impact force when touching. Further, since the stroke at the time of contact can be increased by the active body posture change, it is possible to provide a mechanism in which the impact force of the contact with the detected surrounding object is reduced.

Abstract

A self-directed movable body comprising a head part attached to an upper portion of an inner frame, a leg part attached to a lower portion of the inner frame with a joint having three degrees of freedom therebetween, an arm part attached to an intermediate part between the head part and the leg part, and a cylindrical trunk cover which covers an intermediate part of the inner frame, characterized by that the inner frame comprises arms respectively attached to a plurality of rotary actuators, the arms and the trunk cover are connected by elastic members to form an impact attenuator, and the arm part is attached to the trunk cover.

Description

自律移動体Autonomous mobile
 本発明は、衝撃緩和装置を備えた自律移動体に関する。 This invention relates to the autonomous mobile body provided with the impact mitigation apparatus.
 自律移動体に搭載され、物体や人との接触時の衝撃力ピークを抑える衝撃緩和の技術としては、例えば下記の特許文献1及び特許文献2に記載の技術が知られている。 For example, the techniques described in Patent Document 1 and Patent Document 2 below are known as techniques for mitigating impact that are mounted on an autonomous mobile body and suppress an impact force peak at the time of contact with an object or a person.
 特許文献1に開示されている方法によれば、長方形の4つの角部に取り付けたバネを有するバンパクランクと、その変位を検出するスイッチを設けて全方向からの衝撃を緩和している。 According to the method disclosed in Patent Document 1, a bumper crank having springs attached to four corners of a rectangle and a switch for detecting the displacement are provided to alleviate the impact from all directions.
 また、特許文献2に開示されている衝撃緩和装置は、位置検出手段によりバンパの位置を検出し、アクチュエータで駆動する伸縮機構を介してバンパを移動させ、バンパの取りうるストロークを増加させることで衝突する際の衝撃緩和能力の向上を可能にしたものである。 In addition, the impact mitigation device disclosed in Patent Document 2 detects the position of the bumper by the position detection means, moves the bumper via an expansion / contraction mechanism driven by an actuator, and increases the stroke that the bumper can take. This makes it possible to improve the impact mitigation ability when a collision occurs.
特開昭62-232009号公報Japanese Patent Laid-Open No. 62-232009 特開2006-168603号公報JP 2006-168603 A
 特許文献1の従来技術では、長方形の4つの角部に取り付けられたバネを有するバンパクランクで本体とバンパ部を接続しているため、全方向に対する衝撃緩和能力を備えているものの、バンパに一方向から連続して荷重がかかった場合、バンパが変位したままとなり、さらなる衝撃力に対してストロークが不足するため、衝撃力を緩和することができない。 In the prior art of Patent Document 1, since the main body and the bumper portion are connected by a bumper crank having springs attached to four corners of a rectangle, although it has an impact mitigation capability in all directions, When a load is continuously applied from the direction, the bumper remains displaced, and the stroke is insufficient with respect to the further impact force, so that the impact force cannot be reduced.
 また、特許文献2には、位置検出手段によりバンパの位置を検出し、アクチュエータで駆動する伸縮機構によりバンパを移動させバンパの取りうるストロークを増加させることができるが、構造的に一方向のみのストロークとなっており、前後、左右、回転の3自由度のストロークを備えていないため、全方向に対して安全性が十分ではない。 Further, in Patent Document 2, the position of the bumper can be detected by a position detecting means, and the bumper can be moved by an expansion / contraction mechanism driven by an actuator to increase the stroke that can be taken by the bumper. Since it is a stroke and does not have a stroke of three degrees of freedom of front and rear, left and right, and rotation, safety is not sufficient in all directions.
 本発明の目的は、腕部に負荷がかかった場合、アクチュエータの動作とバネの反発力でボディ(以下、胴体という)の変形を防止することができる自律移動体を提供することにある。 An object of the present invention is to provide an autonomous mobile body that can prevent deformation of a body (hereinafter referred to as a trunk) by the action of an actuator and the repulsive force of a spring when a load is applied to an arm portion.
 上記目的は、内部フレームの上部に取り付けられた頭部と、前記内部フレームの下部に3自由度ジョイントを介して取り付けられた脚部と、前記頭部と脚部の中間部分に取り付けられた腕部と、前記内部フレームの中間部分を覆う円筒状の胴体カバーとを備えた自律移動体において、前記内部フレームに取り付けられた複数の回転アクチュエータと、この回転アクチュエータのそれぞれに取り付けられたアームと、このアームと前記胴体カバーを弾性部材で接続して衝撃緩和装置を形成するとともに、前記胴体カバーに前記腕部を支持したことにより達成される。 The object is to provide a head attached to the upper part of the inner frame, a leg attached to the lower part of the inner frame via a three-degree-of-freedom joint, and an arm attached to an intermediate part of the head and the leg. A plurality of rotary actuators attached to the internal frame, and an arm attached to each of the rotary actuators, and an autonomous mobile body including a cylindrical body cover that covers an intermediate portion of the internal frame This is achieved by connecting the arm and the body cover with an elastic member to form an impact mitigation device and supporting the arm portion on the body cover.
 また上記目的は、前記胴体カバーと前記内部フレームとの位置関係を計測する位置関係計測手段を備え、この位置関係計測手段をもとに前記胴体カバーを前記内部フレームに対して可変可能にすることが好ましい。 Also, the object is to provide positional relationship measuring means for measuring the positional relationship between the body cover and the inner frame, and to make the body cover variable with respect to the inner frame based on the positional relationship measuring means. Is preferred.
 また上記目的は、前記衝撃緩和装置は前記内部フレームの水平面を3等分した位置のそれぞれに前記回転アクチュエータを取り付けることが好ましい。 Also, for the above purpose, it is preferable that the impact mitigation device is provided with the rotary actuator at each of the positions obtained by dividing the horizontal plane of the inner frame into three equal parts.
 また上記目的は、前記弾性部材をコイルスプリングとすることが好ましい。 For the above purpose, the elastic member is preferably a coil spring.
 また上記目的は、前記衝撃緩和装置の前記回転アクチュエータを前記胴体カバーと前記内部フレームとの間の空間に上下2箇所設けることが好ましい。 Also, for the above purpose, it is preferable that the rotary actuator of the impact mitigation device is provided in two spaces, upper and lower, in a space between the body cover and the inner frame.
 また上記目的は、前記衝撃緩和装置の前記回転アクチュエータを前記3自由度ジョイントと前記胴体カバーとの間に設けることが好ましい。 Also, for the above purpose, it is preferable that the rotary actuator of the impact mitigation device is provided between the three-degree-of-freedom joint and the body cover.
 また上記目的は、前記衝撃緩和装置の前記回転アクチュエータが垂直面方向に回転するようにすることが好ましい。 Further, it is preferable that the above-mentioned purpose is such that the rotary actuator of the impact mitigation device rotates in a vertical plane direction.
 本発明によれば、腕部に負荷がかかった場合、アクチュエータの動作とバネの反発力で胴体の変形を防止することができる自律移動体を提供できる。 According to the present invention, it is possible to provide an autonomous mobile body that can prevent deformation of the trunk by the operation of the actuator and the repulsive force of the spring when a load is applied to the arm portion.
本発明の実施例1に係るロボットの外観を示す斜視図である。It is a perspective view which shows the external appearance of the robot which concerns on Example 1 of this invention. 実施例1に係るロボットの胴体部の斜視図である。FIG. 3 is a perspective view of a body part of the robot according to the first embodiment. 実施例1に係る胴体部の動作を示す概略構成図である。FIG. 3 is a schematic configuration diagram illustrating an operation of a trunk portion according to the first embodiment. 実施例1の制御装置とアクチュエータとの関係のフロー図である。It is a flowchart of the relationship between the control apparatus of Example 1, and an actuator. 実施例1に係る胴体部の動作を示す斜視図である。FIG. 6 is a perspective view illustrating an operation of the body portion according to the first embodiment. 実施例1に係るロボットの動作を示す斜視図である。FIG. 6 is a perspective view illustrating an operation of the robot according to the first embodiment. 実施例1に係る胴体部の動作を示す概略構成図である。FIG. 3 is a schematic configuration diagram illustrating an operation of a trunk portion according to the first embodiment. 実施例1に係るロボットと人との位置関係を示す図である。It is a figure which shows the positional relationship of the robot which concerns on Example 1, and a person. 実施例1に係るロボットの動作を示す図である。FIG. 6 is a diagram illustrating an operation of the robot according to the first embodiment. 実施例1に係るロボットの動作を示す図である。FIG. 6 is a diagram illustrating an operation of the robot according to the first embodiment. 本発明の実施例2に係るロボットの外観を示す斜視図である。It is a perspective view which shows the external appearance of the robot which concerns on Example 2 of this invention. 実施例2に係るロボットの胴体部の斜視図である。6 is a perspective view of a body part of a robot according to Embodiment 2. FIG. 本発明の実施例3に係るロボットの外観を示す斜視図である。It is a perspective view which shows the external appearance of the robot which concerns on Example 3 of this invention. 実施例3に係るロボットの胴体部の斜視図である。FIG. 9 is a perspective view of a body part of a robot according to a third embodiment. 本発明の実施例4に係るロボットの胴体部の斜視図である。It is a perspective view of the trunk | drum part of the robot which concerns on Example 4 of this invention.
 自律移動体(以下、ロボットという)は一般的に背骨(以下、内部フレームという)となる中心軸に頭部と肩の部分に両腕部、腰骨部分に両脚部が取り付けられている。このようなロボットは人間共存を前提にしているため安全性を最優先に設計されているが、さらに高い安全性を備えたロボットが要求されている。 An autonomous mobile body (hereinafter referred to as a robot) is generally provided with a head and a shoulder at both arms on the central axis of the spine (hereinafter referred to as an internal frame), and both legs at the hip. Since such robots are premised on human coexistence, safety is the top priority, but robots with even higher safety are required.
 さて、このような構成のロボットと人が擦れ違った場合を想定すると、先に衝突する可能性がある部分は胴体カバーより張り出した腕部である。しかしながら上述したように腕部が内部フレームに固定されている以上、腕部が人の体の一部に衝突した時の腕部による人への衝撃吸収は望めない。 Now, assuming that the robot and the person having such a configuration rub against each other, the part that may collide first is the arm part protruding from the body cover. However, as described above, as long as the arm is fixed to the internal frame, it is not possible to absorb the shock to the person by the arm when the arm collides with a part of the person's body.
 そこで、本発明の発明者らはバンパとしての機能も兼ねた樹脂製の胴体カバーに腕部を固定することで、腕部への衝撃を胴体の変形で吸収させて人への衝撃を緩和させることを検討した。ところが、例えばロボットが腕部で重量物を持ち上げた場合や、転倒したロボットが地面を腕部で支えながら起き上がろうとした場合、腕部が胴体に支持されている以上内部フレームに対して胴体カバーが移動してしまうことになる。したがって、腕部を胴体カバーに支持することはロボットとしての本来の機能を損なってしまうことになる。 Therefore, the inventors of the present invention reduce the shock to the human body by absorbing the shock to the arm by deformation of the body by fixing the arm to the resin body cover that also functions as a bumper. I examined that. However, for example, when a robot lifts a heavy object with its arms, or when a fallen robot tries to get up while supporting the ground with its arms, the body cover is attached to the inner frame as long as the arms are supported by the body. It will move. Therefore, supporting the arm portion on the body cover impairs the original function of the robot.
 そこで本発明の発明者らは、内部フレームにアクチュエータとバネで支持された胴体カバーに腕部を支持することを考えたものである。つまり、腕部に負荷がかかった場合、アクチュエータの動作とバネの反発力で胴体カバーの移動を防止するものである。 Therefore, the inventors of the present invention considered to support the arm portion on the body cover supported by the actuator and the spring on the inner frame. That is, when a load is applied to the arm, the movement of the body cover is prevented by the operation of the actuator and the repulsive force of the spring.
 以下、本発明の一実施例を図にしたがって説明する。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
 図1は本発明の実施例1に係るロボットの外観を示す斜視図である。 FIG. 1 is a perspective view showing an appearance of a robot according to Embodiment 1 of the present invention.
 図1において、ロボット1は2本の脚部となる左脚6と右脚7とを備え、その上方には胴体3を備えている。胴体3の左右両側には2本の腕部となる左腕4と右腕5が備えられている。また、胴体3の上部には頭部2が備えられている。 1, the robot 1 includes a left leg 6 and a right leg 7 which are two legs, and a body 3 above the left leg 6. A left arm 4 and a right arm 5 serving as two arm portions are provided on the left and right sides of the body 3. A head 2 is provided on the upper portion of the body 3.
 2本の脚部である左脚6及び右脚7はロボット1の移動に用いられ、水平面を移動するときに使われる。左腕4と右腕5は物体の把持などの作業に用いられる。胴体3は各部の動作を制御する制御装置(図示せず)と胴体3の重力方向に対する傾斜角度、角速度を検出するセンサ(図示せず)が備えられている。また胴体3または頭部2は距離センサ等の周囲環境を認識するセンサ(図示せず)が備えられている。 The two legs, the left leg 6 and the right leg 7, are used to move the robot 1 and are used when moving on a horizontal plane. The left arm 4 and the right arm 5 are used for operations such as gripping an object. The body 3 is provided with a control device (not shown) for controlling the operation of each part and a sensor (not shown) for detecting an inclination angle and an angular velocity of the body 3 with respect to the direction of gravity. The body 3 or the head 2 is provided with a sensor (not shown) for recognizing the surrounding environment such as a distance sensor.
 ここで、ロボット1の進行方向をX軸とし、X軸の軸回りをロール方向、X軸と直角で進行方向の水平面と平行な軸をY軸、Y軸の軸回りをピッチ方向、X軸とY軸と直交する軸をZ軸、Z軸の軸回りをヨー方向と称し、以降特別な表記のない場合はこれを用いるものとする。 Here, the traveling direction of the robot 1 is the X axis, the roll around the X axis, the Y axis perpendicular to the X axis and parallel to the horizontal plane in the traveling direction, the pitch around the Y axis, and the X axis. An axis perpendicular to the Y axis is referred to as the Z axis, and the axis around the Z axis is referred to as the yaw direction.
 図2は実施例1に係るロボットの胴体部の斜視図である。 FIG. 2 is a perspective view of the body of the robot according to the first embodiment.
 図2おいて、ロボット1は、上下に伸びる(Z軸方向)棒状の内部フレーム10を備えている。この内部フレーム10の下端で胴体カバー3Cの下端には自由度ジョイント11が接続されている。胴体カバー3Cは内部フレーム10の全周に渡って空隙を有して筒状に形成されている。この胴体カバー3Cには左腕4と右腕5が直接接続される。 2, the robot 1 includes a rod-like internal frame 10 that extends vertically (in the Z-axis direction). A degree of freedom joint 11 is connected to the lower end of the inner frame 10 and the lower end of the body cover 3C. The body cover 3 </ b> C is formed in a cylindrical shape having a gap over the entire circumference of the inner frame 10. The left arm 4 and the right arm 5 are directly connected to the body cover 3C.
 3自由度ジョイント11とは逆側の内部フレーム10の長手方向には、XY平面を3等分かつ内部フレーム10中央に対し点対称となる位置にヨー方向に回動可能な回転アクチュエータ1A、2A、3Aが取り付けられている。この回転アクチュエータ1A、2A、3Aのそれぞれの出力軸にはバネ1SA、バネ1SB、バネ2SA、バネ2SB、バネ3SA、バネ3SBに接続されている。回転アクチュエータ1A、2A、3Aにはそれぞれアーム1T、2T、3Tを有する。このアーム1T、2T、3Tの先端部にバネ1SA、バネ1SB、バネ2SA、バネ2SB、バネ3SA、バネ3SBが連結される。 In the longitudinal direction of the inner frame 10 opposite to the three-degree-of-freedom joint 11, the rotary actuators 1A, 2A, which can be rotated in the yaw direction to a position where the XY plane is equally divided into three and symmetric with respect to the center of the inner frame 10 3A is attached. The output shafts of the rotary actuators 1A, 2A, 3A are connected to a spring 1SA, a spring 1SB, a spring 2SA, a spring 2SB, a spring 3SA, and a spring 3SB, respectively. The rotary actuators 1A, 2A, and 3A have arms 1T, 2T, and 3T, respectively. A spring 1 SA, a spring 1 SB, a spring 2 SA, a spring 2 SB, a spring 3 SA, and a spring 3 SB are connected to the distal ends of the arms 1 T, 2 T, and 3 T.
 このようにヨー方向に回動可能な回転アクチュエータと、この回転アクチュエータのそれぞれの出力軸とアームに連結されたバネによって衝撃緩和装置が形成されている。 Thus, an impact mitigation device is formed by the rotary actuators that can rotate in the yaw direction, and the springs connected to the respective output shafts and arms of the rotary actuators.
 3自由度ジョイント11はロール、ピッチ、ヨーの回転可能な自由度を有し、さらにその回転角度を検知するセンサ(ロータリエンコーダ、或いはポテンショメータ)を内蔵している。 The three-degree-of-freedom joint 11 has a degree of freedom in which the roll, pitch, and yaw can rotate, and further includes a sensor (rotary encoder or potentiometer) that detects the rotation angle.
 アーム1T、2T、3Tは回転アクチュエータ1A、2A、3Aによってヨー方向に回動可能である。この回転アクチュエータ1A、2A、3Aはモータ等の動力源と減速機と角度検出器(ロータリエンコーダあるいはポテンショメータ)もしくは位置検出器(リニアエンコーダ)とを内蔵している。また、3自由度ジョイント11は、ボールジョイントのような接続方法でもよいし、3自由度を備える接続方法であれば限定されるものではない。 Arms 1T, 2T, and 3T can be rotated in the yaw direction by rotary actuators 1A, 2A, and 3A. The rotary actuators 1A, 2A, and 3A incorporate a power source such as a motor, a speed reducer, and an angle detector (rotary encoder or potentiometer) or position detector (linear encoder). Further, the three-degree-of-freedom joint 11 may be a connection method such as a ball joint, and is not limited as long as it is a connection method having three degrees of freedom.
 アーム1T、2T、3Tの初期の配置状態は、内部フレーム10の中心軸からアーム1T、2T、3Tそれぞれの長手方向にある軸が回転アクチュエータ1A、2A、3Aの回転軸を結ぶ直線上にあるよう配置される。バネ1SA、バネ1SB、バネ2SA、バネ2SB、バネ3SAの一端はアーム1T、2T、3Tの先端にそれぞれ接続され、その一方端は、胴体カバー3Cの上縁の接続位置1P、2P、3Pに接続される。 The initial arrangement state of the arms 1T, 2T, and 3T is on a straight line connecting the axes in the longitudinal direction of the arms 1T, 2T, and 3T from the central axis of the internal frame 10 to the rotation axes of the rotary actuators 1A, 2A, and 3A. Arranged so that. One end of each of the spring 1SA, spring 1SB, spring 2SA, spring 2SB, and spring 3SA is connected to the tip of the arm 1T, 2T, 3T, and one end thereof is connected to the connection position 1P, 2P, 3P on the upper edge of the body cover 3C. Connected.
 接続位置1Pにはバネ1SBとバネ2SAが、接続位置2Pにはバネ2SBとバネ3SAが、接続位置3Pにはバネ3SBとバネ1SAが、それぞれ接続されている。接続位置1P、2P、3Pは胴体カバー3Cの上縁であり、内部フレーム10の中心を通り、Z軸と平行な軸に対して、接続位置1Pは回転アクチュエータ3Aの反対の位置となる。接続位置2Pは回転アクチュエータ1Aの反対の位置となり、接続位置3Pは回転アクチュエータ2Aの反対の位置である。 The spring 1SB and the spring 2SA are connected to the connection position 1P, the spring 2SB and the spring 3SA are connected to the connection position 2P, and the spring 3SB and the spring 1SA are connected to the connection position 3P, respectively. The connection positions 1P, 2P, and 3P are the upper edges of the body cover 3C, and the connection position 1P is opposite to the rotary actuator 3A with respect to an axis that passes through the center of the inner frame 10 and is parallel to the Z axis. The connection position 2P is opposite to the rotary actuator 1A, and the connection position 3P is opposite to the rotary actuator 2A.
 また、バネ1SA、バネ1SB、バネ2SA、バネ2SB、バネ3SA、バネ3SBは引張バネであり、初期荷重を掛けた状態で接続する。また、それぞれのバネ定数はアーム1T、2T、3Tの初期の配置において、胴体カバー3Cの内部中央部に内部フレーム10が配置されるよう適切に決定する。 Also, the spring 1SA, the spring 1SB, the spring 2SA, the spring 2SB, the spring 3SA, and the spring 3SB are tension springs, and are connected with an initial load applied. Further, the respective spring constants are appropriately determined so that the inner frame 10 is arranged at the inner central portion of the body cover 3C in the initial arrangement of the arms 1T, 2T, and 3T.
 また、図示しないが内部フレーム10には制御装置を搭載し、3自由度ジョイント11からの信号をもとに回転アクチュエータ1A、2A、3Aの出力軸に接続されたアーム1T、2T、3Tの角度を適切に制御する。 Although not shown, a control device is mounted on the internal frame 10 and the angles of the arms 1T, 2T, and 3T connected to the output shafts of the rotary actuators 1A, 2A, and 3A based on signals from the three-degree-of-freedom joint 11. Control appropriately.
 胴体カバー3Cには、移動により生じる慣性力または周囲物体との接触による外力、ロボット1の腕による作業等により高頻度高で外力が作用する。衝撃力を緩和するため、胴体カバー3Cと内部フレーム10の接続を担うバネ1SA、バネ1SB、バネ2SA、バネ2SB、バネ3SA、バネ3SBはバネ定数が低く設定されているため、胴体カバー3Cと内部フレーム10の位置関係は変化しやすい状態となっている。 External force acts on the body cover 3C with high frequency and high frequency due to inertial force generated by movement, external force due to contact with surrounding objects, work by the arm of the robot 1, or the like. In order to reduce the impact force, the spring 1 SA, spring 1 SB, spring 2 SA, spring 2 SB, spring 3 SA, and spring 3 SB for connecting the body cover 3 C and the inner frame 10 have a low spring constant. The positional relationship of the internal frame 10 is easily changed.
 図3(a)~(d)は実施例1に係る胴体部の動作を示す概略構成図である。 FIGS. 3A to 3D are schematic configuration diagrams showing the operation of the trunk portion according to the first embodiment.
 図3(a)は、外力が加わっていないときの状態であり、胴体カバー3Cとの接続位置1P、2P、3Pと内部フレーム10との距離はほぼ等間隔に保たれている。 FIG. 3 (a) shows a state in which no external force is applied, and the distances between the connection positions 1P, 2P, 3P with the body cover 3C and the internal frame 10 are maintained at almost equal intervals.
 図3(b)は内部フレーム10を通り、X軸に平行な方向の外力100が胴体カバー3Cに加わったときの図である。外力100を受けるとバネ1SBとバネ2SAが伸び、バネ1SAとバネ2SBが縮んで胴体カバー3CはX軸負方向に変位する。胴体カバー3Cは内部フレーム10と3自由度ジョイント11を介しても接続されているため、変位は3自由度ジョイント11の内部に搭載されているセンサにより検出されて制御装置に伝えられる。なお、ここでのセンサは必ずしも3自由度ジョイント11の内部に搭載されている必要はなく、内部フレーム10と胴体カバー3Cの相対位置関係が取得できればよいので、距離センサと傾斜角度センサを組み合わせて用いてもよい。 FIG. 3B is a view when an external force 100 passing through the inner frame 10 and parallel to the X axis is applied to the body cover 3C. When the external force 100 is received, the spring 1SB and the spring 2SA are extended, and the spring 1SA and the spring 2SB are contracted, so that the body cover 3C is displaced in the negative X-axis direction. Since the body cover 3C is also connected to the inner frame 10 via the three-degree-of-freedom joint 11, the displacement is detected by a sensor mounted inside the three-degree-of-freedom joint 11 and transmitted to the control device. Note that the sensor here does not necessarily have to be mounted inside the three-degree-of-freedom joint 11 and only needs to be able to acquire the relative positional relationship between the inner frame 10 and the body cover 3C. It may be used.
 図3(c)は制御装置からの指令を受け、胴体カバー3Cの中央に内部フレーム11が位置するようアクチュエータ1A、2A、3Aが適切な目標角度に動作した状態である。 FIG. 3 (c) shows a state in which the actuators 1A, 2A, and 3A are operated at appropriate target angles so that the inner frame 11 is positioned at the center of the body cover 3C in response to a command from the control device.
 図3(d)は、アクチュエータ1A、2A、3Aの駆動により発生したバネの張力による力と外力100とがつりあい、胴体カバー3Cの中央に内部フレーム10が位置した状態である。 FIG. 3 (d) shows a state in which the force due to the spring tension generated by driving the actuators 1A, 2A, and 3A balances with the external force 100, and the inner frame 10 is positioned at the center of the body cover 3C.
 この動作を図4に纏めると、ステップ110は外力による内部フレームの移動でバネの変位発生。ステップ111はセンサでバネの変位を検出。ステップ112は変位情報をセンサから制御装置に送信。ステップ113は制御装置でアクチュエータの目標角度をアクチュエータに指示。ステップ114はアクチュエータで内部フレームが胴体カバーの中央に移動するようにバネの張力を調整。 * This operation is summarized in FIG. 4. In step 110, the spring is displaced by the movement of the internal frame due to the external force. Step 111 detects the displacement of the spring with a sensor. In step 112, displacement information is transmitted from the sensor to the control device. In step 113, the control device instructs the actuator to set the target angle of the actuator. Step 114 is an actuator that adjusts the spring tension so that the inner frame moves to the center of the body cover.
 このように、外力100が胴体カバー3Cに加わり続ける状態であっても、3自由度ジョイント11により内部フレーム10と胴体カバー3Cの位置関係を取得し、制御装置によりアクチュエータ1A、2A、3Aを駆動することで内部フレーム11と胴体カバー3Cの位置関係を適正に保持することができる。 Thus, even in a state where the external force 100 continues to be applied to the body cover 3C, the positional relationship between the inner frame 10 and the body cover 3C is acquired by the three-degree-of-freedom joint 11, and the actuators 1A, 2A, and 3A are driven by the control device. By doing so, the positional relationship between the inner frame 11 and the body cover 3C can be properly maintained.
 胴体カバー3Cにかかる外力100が衝撃力であっても同様の動作を行い、内部フレーム10と胴体カバー3Cの位置関係を適正に保持することができる。また、外力100の大きさに対し、制御装置は任意にアクチュエータ1A、2A、3Aの作動量を決定できるため、外力100の大きさに関わらず内部フレーム10と胴体カバー3Cの位置関係を決定できるため、胴体カバー3Cは外力100に対して全方向にわたって剛性を可変としている。 Even if the external force 100 applied to the body cover 3C is an impact force, the same operation is performed, and the positional relationship between the internal frame 10 and the body cover 3C can be appropriately maintained. Further, since the control device can arbitrarily determine the operation amounts of the actuators 1A, 2A, and 3A with respect to the magnitude of the external force 100, the positional relationship between the internal frame 10 and the body cover 3C can be determined regardless of the magnitude of the external force 100. Therefore, the body cover 3 </ b> C is variable in rigidity in all directions with respect to the external force 100.
 一方、外力が加わっていない場合でもアクチュエータ1A、2A、3Aを適切に制御することにより、内部フレーム10と胴体カバー3Cの相対位置を変位させることができる。 On the other hand, even when no external force is applied, the relative positions of the inner frame 10 and the body cover 3C can be displaced by appropriately controlling the actuators 1A, 2A, and 3A.
 図5(a)(b)は実施例1に係る胴体部の動作を示す斜視図である。 FIGS. 5A and 5B are perspective views showing the operation of the body part according to the first embodiment.
 図5(a)において、胴体カバー3Cと内部フレーム10は、バネ1SA、バネ1SB、バネ2SA、バネ2SB、バネ3SA、バネ3SBを介して接続されるとともに、3自由度ジョイント11により接続されている。 In FIG. 5A, the body cover 3C and the inner frame 10 are connected via a spring 1SA, a spring 1SB, a spring 2SA, a spring 2SB, a spring 3SA, and a spring 3SB, and connected by a three-degree-of-freedom joint 11. Yes.
 図5(b)において、内部フレーム10に対して胴体カバー3CがY方向に変位すると、胴体カバー3Cは3自由度ジョイント11を中心としてロール方向に所定の角度だけ回転する。また、この時の角度は3自由度ジョイント11の内部に搭載されている角度センサによって取得されており、制御装置は所定の目的角度までアクチュエータ1A、2A、3Aを適切に制御する。 5 (b), when the body cover 3C is displaced in the Y direction with respect to the inner frame 10, the body cover 3C rotates about the three-degree-of-freedom joint 11 by a predetermined angle in the roll direction. Further, the angle at this time is acquired by an angle sensor mounted inside the three-degree-of-freedom joint 11, and the control device appropriately controls the actuators 1A, 2A, and 3A to a predetermined target angle.
 図6(a)(b)は実施例1に係るロボットの動作を示す斜視図である。 6A and 6B are perspective views illustrating the operation of the robot according to the first embodiment.
 図6(a)において、転倒したロボット1が立位状態に復帰するために左腕4と右腕5で地面を押下したときに重心は適切な位置に移行する。このとき、左右腕4,5で地面を押下することにより胴体カバー3Cに力が加わり胴体カバー3Cと内部フレーム10との位置関係が変化するが、上記の制御により所定の位置関係まで復帰する。 In FIG. 6 (a), the center of gravity shifts to an appropriate position when the fallen robot 1 presses the ground with the left arm 4 and the right arm 5 in order to return to the standing position. At this time, by pressing the ground with the left and right arms 4 and 5, force is applied to the body cover 3C and the positional relationship between the body cover 3C and the inner frame 10 changes, but the above control returns to a predetermined positional relationship.
 また、ロボット1の腕の長さが短いなどの理由でロボット1が所定の重心位置に移行できない場合は、図6(b)の様に胴体カバー3Cと内部フレーム10の目標位置関係を変更して胴体カバー3Cをピッチ方向(矢印方向)に駆動することもできる。 If the robot 1 cannot move to the predetermined center of gravity because the arm length of the robot 1 is short, the target positional relationship between the body cover 3C and the internal frame 10 is changed as shown in FIG. The body cover 3C can be driven in the pitch direction (arrow direction).
 図7(a)(b)は実施例1に係る胴体部の動作を示す概略構成図である。 FIGS. 7A and 7B are schematic configuration diagrams illustrating the operation of the body portion according to the first embodiment.
 図7(a)は、外力が加わっていないときの状態であり、胴体カバー3Cとの接続位置1P、2P、3Pと内部フレーム10との距離はほぼ等間隔に保たれている。 FIG. 7 (a) shows a state in which no external force is applied, and the distances between the connection positions 1P, 2P and 3P with the body cover 3C and the internal frame 10 are maintained at almost equal intervals.
 図7(b)は内部フレーム10を通らない外力100が胴体カバー3Cに加わったときの図である。外力100を受け、バネ1SA、バネ2SA、バネ3SAが伸び、バネ1SB、バネ2SB、バネ3SBが縮み、胴体カバー3Cは矢印で示すようにヨー軸回転方向に変位している。胴体カバー3Cは内部フレーム10と3自由度ジョイント11を介しても接続されているため、変位は3自由度ジョイント10の内部に搭載されているセンサにより検出し制御装置に伝えられる。 FIG. 7B is a view when an external force 100 that does not pass through the inner frame 10 is applied to the body cover 3C. Upon receiving the external force 100, the spring 1SA, the spring 2SA, and the spring 3SA are extended, the spring 1SB, the spring 2SB, and the spring 3SB are contracted, and the body cover 3C is displaced in the yaw axis rotation direction as indicated by an arrow. Since the body cover 3C is also connected to the inner frame 10 via the three-degree-of-freedom joint 11, the displacement is detected by a sensor mounted inside the three-degree-of-freedom joint 10 and transmitted to the control device.
 図3(c)は制御装置からの指令を受け、胴体カバー3Cと内部フレーム10の位置関係が適正となるようアクチュエータ1A、2A、3Aが適切な目標角度に動作した状態である。 FIG. 3 (c) shows a state in which the actuators 1A, 2A, 3A are operated at appropriate target angles so that the positional relationship between the body cover 3C and the internal frame 10 is appropriate in response to a command from the control device.
 図7(d)は、アクチュエータ1A、2A、3Aの駆動により発生したバネの張力による力と外力100とがつりあい、胴体カバー3Cの中央に内部フレーム10が位置している。 In FIG. 7D, the force due to the spring tension generated by driving the actuators 1A, 2A, and 3A balances with the external force 100, and the inner frame 10 is located at the center of the body cover 3C.
 以上のように、外力100が胴体カバー3Cを回転させるように加わり続ける状態であっても、3自由度ジョイント11により内部フレーム10と胴体カバー3Cの位置関係を取得し、制御装置によりアクチュエータ1A、2A、3Aを駆動することで内部フレーム10と胴体カバー3Cの位置関係を適正に保持することができる。胴体カバー3Cにかかる外力100が衝撃力であっても同様の動作を行い、内部フレーム10と胴体カバー3Cの位置関係を適正に保持する。 As described above, even when the external force 100 continues to be applied so as to rotate the body cover 3C, the positional relationship between the inner frame 10 and the body cover 3C is acquired by the three-degree-of-freedom joint 11, and the actuator 1A, By driving 2A and 3A, the positional relationship between the inner frame 10 and the body cover 3C can be properly maintained. The same operation is performed even if the external force 100 applied to the body cover 3C is an impact force, and the positional relationship between the internal frame 10 and the body cover 3C is properly maintained.
 図8(a)(b)実施例1に係るロボットと人との位置関係を示す図である。 FIGS. 8A and 8B are diagrams showing the positional relationship between the robot and the person according to the first embodiment.
 図8において、ロボット1は、頭部2または胴体カバー3Cに搭載された周囲環境を認識するセンサにより、周囲の物体との距離を測定しながら移動する。ロボット1の周囲に適切な距離で定義された安全範囲501に周囲物体502が侵入していない場合(図8(a))、ロボット1の胴体カバー3Cと内部フレーム10の位置関係は、胴体カバー3Cの中央に内部フレーム10が位置している。 In FIG. 8, the robot 1 moves while measuring the distance from surrounding objects by a sensor that recognizes the surrounding environment mounted on the head 2 or the body cover 3C. When the surrounding object 502 does not enter the safety range 501 defined at an appropriate distance around the robot 1 (FIG. 8A), the positional relationship between the body cover 3C of the robot 1 and the internal frame 10 is determined by the body cover. The inner frame 10 is located at the center of 3C.
 図8(b)は安全範囲501に周囲物体502が侵入した場合を示している。このとき、胴体カバー3Cと内部フレーム10の位置関係は、周囲物体502の方向に胴体カバー3Cを寄せる位置を目標とし、周囲物体502との予期しない接触に備える。周囲物体502の方向に胴体カバー3Cを寄せることにより、接触の際の胴体カバー3Cの移動ストロークが大きくなり、安全性を高くすることができる。 FIG. 8B shows a case where the surrounding object 502 has entered the safe range 501. At this time, the positional relationship between the body cover 3 </ b> C and the inner frame 10 targets a position where the body cover 3 </ b> C is moved toward the surrounding object 502, and prepares for unexpected contact with the surrounding object 502. By moving the body cover 3C in the direction of the surrounding object 502, the movement stroke of the body cover 3C at the time of contact is increased, and safety can be increased.
 図9(a)(b)は実施例1に係るロボットの動作を示す図である。 FIGS. 9A and 9B are diagrams illustrating the operation of the robot according to the first embodiment.
 図9(a)はロボットが移動せずその場で止まっている状態であり、ロボット1の胴体カバー3Cと内部フレーム10の位置関係は、胴体カバー3Cの中央に内部フレーム10が位置している。 FIG. 9A shows a state where the robot does not move and is stopped on the spot, and the positional relationship between the body cover 3C and the inner frame 10 of the robot 1 is such that the inner frame 10 is located at the center of the body cover 3C. .
 図9(b)は、ロボット1が所定の速度を持って移動している状態である。このとき、胴体カバー3Cと内部フレーム10の位置関係は、ロボット1が持っている速度の方向に胴体カバー3Cを寄せる位置を目標とし、周囲の障害物との予期しない接触に備える。移動の方向(矢印方向)に胴体カバー3Cを寄せることにより、予期しない接触に対する胴体カバー3Cの移動ストロークが大きくなり、安全性が高まる。この場合、ロボット1の移動速度に応じて胴体カバー3Cと内部フレーム10の位置関係を決定しても良いし、移動方向のみに限定して胴体カバー3Cと内部フレーム10の位置関係を決定してもよい。 FIG. 9B shows a state where the robot 1 is moving at a predetermined speed. At this time, the positional relationship between the body cover 3C and the internal frame 10 is targeted at a position where the body cover 3C is moved in the direction of the speed of the robot 1 and prepares for unexpected contact with surrounding obstacles. By moving the body cover 3C in the direction of movement (in the direction of the arrow), the movement stroke of the body cover 3C with respect to unexpected contact is increased, and safety is improved. In this case, the positional relationship between the body cover 3C and the inner frame 10 may be determined according to the moving speed of the robot 1, or the positional relationship between the body cover 3C and the inner frame 10 is determined only in the moving direction. Also good.
 図10(a)(b)は実施例1に係るロボットの動作を示す図である。 FIGS. 10A and 10B are diagrams illustrating the operation of the robot according to the first embodiment.
 図10(a)はロボット1の重心が地面に対し接地箇所のほぼ垂直上方にある姿勢で移動、または静止している状態である。 FIG. 10 (a) shows a state where the center of gravity of the robot 1 is moving or stationary in a posture that is substantially vertically above the ground contact point with respect to the ground.
 図10(b)はロボット1の重心が地面に対し接地箇所の上方から離れた場合である。この状態は、移動時に路面の段差を乗り越えて傾き、周囲物体と接触する等の状況により引き起こされる。この時、ロボット1の地面との傾きが最も大きい方向、すなわち転倒のリスクが最も大きい方向に胴体カバー3Cを寄せる位置を胴体カバー3Cと内部フレーム10の位置関係の目標値とする。このように、転倒の際の衝撃に対して胴体カバー3Cのストロークを大きくし予め備えることにより、衝撃力のピークを低く抑えロボット1の損傷を小さくすることが可能である。 FIG. 10B shows a case where the center of gravity of the robot 1 is separated from above the ground contact point with respect to the ground. This state is caused by situations such as tilting over a step on the road surface and contact with surrounding objects when moving. At this time, a position where the body cover 3C is moved in the direction in which the inclination of the robot 1 relative to the ground, that is, the direction in which the risk of falling is the largest, is set as a target value of the positional relationship between the body cover 3C and the internal frame 10. Thus, by increasing the stroke of the body cover 3C in advance against the impact at the time of falling, the peak of the impact force can be kept low and the damage to the robot 1 can be reduced.
 次に、実施例2の衝撃緩和装置について説明する。 
 図11は本発明の実施例2に係るロボットの外観を示す斜視図である。 
 図12は実施例2に係るロボットの胴体部の斜視図である。 
 図11,図12において、実施例1では衝撃緩和装置を胴体カバー3Cと腕部接続部分に設け、3自由度ジョイント11は胴体カバー3Cの下端と内部フレーム10の下端部分に接続された。これに対して実施例2では衝撃緩和装置を3自由度ジョイント11部分にも介在させたものである。
Next, the impact mitigation device of Example 2 will be described.
FIG. 11 is a perspective view showing the appearance of the robot according to the second embodiment of the present invention.
FIG. 12 is a perspective view of the body of the robot according to the second embodiment.
11 and 12, in Example 1, the impact mitigation device is provided on the body cover 3C and the arm connecting portion, and the three-degree-of-freedom joint 11 is connected to the lower end of the body cover 3C and the lower end portion of the inner frame 10. On the other hand, in the second embodiment, the impact relaxation device is also interposed in the three-degree-of-freedom joint 11 portion.
 すなわち、実施例1で説明した回転アクチュエータ1A、2A、3Aと、バネ1SA、バネ1SB、バネ2SA、バネ2SB、バネ3SA、バネ3SBと、アーム1T、2T、3Tを介して3自由度ジョイント11と胴体カバー3Cを接続したものである。 That is, the rotary actuators 1A, 2A, and 3A described in the first embodiment, the spring 1SA, the spring 1SB, the spring 2SA, the spring 2SB, the spring 3SA, and the spring 3SB, and the three-degree-of-freedom joint 11 through the arms 1T, 2T, and 3T. And torso cover 3C.
 実施例1では、3自由度ジョイント近傍の胴体カバー3Cに外力が加わった場合、大きな変位をとることが不可能であるが、胴体カバー3Cの上端と下端に同じ接続を用いることにより、胴体カバー3Cのどの部分においても同じストロークを備えることができ、安全性を高くすることができる。 In the first embodiment, when an external force is applied to the body cover 3C in the vicinity of the three-degree-of-freedom joint, it is impossible to take a large displacement, but by using the same connection for the upper end and the lower end of the body cover 3C, The same stroke can be provided in any part of 3C, and safety can be increased.
 次に、実施例3の衝撃緩和装置について説明する。 
 図13は本発明の実施例3に係るロボットの外観を示す斜視図である。 
 図14は実施例3に係るロボットの胴体部の斜視図である。 
 図13,図14において、実施例1では、胴体カバー3Cの下端と内部フレーム10の下端が3自由度ジョイント11を介して接続され、胴体カバー3Cの上端と内部フレーム10の上端が回転アクチュエータ1A、2A、3Aと、バネ1SA、バネ1SB、バネ2SA、バネ2SB、バネ3SA、バネ3SBと、アーム1T、2T、3Tとから接続されていた。
Next, an impact mitigation device of Example 3 will be described.
FIG. 13 is a perspective view showing an appearance of a robot according to Embodiment 3 of the present invention.
FIG. 14 is a perspective view of the body of the robot according to the third embodiment.
13 and 14, in the first embodiment, the lower end of the body cover 3C and the lower end of the internal frame 10 are connected via a three-degree-of-freedom joint 11, and the upper end of the body cover 3C and the upper end of the internal frame 10 are connected to the rotary actuator 1A. 2A, 3A, spring 1SA, spring 1SB, spring 2SA, spring 2SB, spring 3SA, spring 3SB and arms 1T, 2T, 3T.
 これに対して実施例3では、胴体カバー3Cの下端と内部フレーム10の下端を回転アクチュエータ1A、2A、3Aと、バネ1SA、バネ1SB、バネ2SA、バネ2SB、バネ3SA、バネ3SBと、アーム1T、2T、3Tで接続し、胴体カバー3Cの形状は、下端と上端に対して上下方向中央がくびれた形状となっている。胴体カバー3Cのくびれた部分で3自由度ジョイント11を介して内部フレーム10と接続される。 In contrast, in the third embodiment, the lower end of the body cover 3C and the lower end of the inner frame 10 are connected to the rotary actuators 1A, 2A, 3A, the spring 1SA, the spring 1SB, the spring 2SA, the spring 2SB, the spring 3SA, the spring 3SB, and the arm. The body cover 3C is connected at 1T, 2T, and 3T, and the center in the vertical direction is constricted with respect to the lower end and the upper end. The constricted portion of the body cover 3C is connected to the inner frame 10 via a three-degree-of-freedom joint 11.
 実施例1では3自由度ジョイント11近傍の胴体カバー3Cに外力が加わった場合、大きな変位をとることが不可能であり安全性が損なわれる可能性がある。しかし、実施例3では3自由度ジョイント11の近傍の胴体カバー3Cはくびれており接触の危険性が少ない。 In Example 1, when an external force is applied to the body cover 3C in the vicinity of the three-degree-of-freedom joint 11, it is impossible to take a large displacement, which may impair safety. However, in the third embodiment, the body cover 3C in the vicinity of the three-degree-of-freedom joint 11 is constricted and the risk of contact is small.
 さらに、回転アクチュエータ1A、2A、3Aと、バネ1SA、バネ1SB、バネ2SA、バネ2SB、バネ3SA、バネ3SBと、アーム1T、2T、3Tといった構成部品を実施例1に比べて下方に搭載することにより重心を下がり、移動体としての安定性が向上する。 Further, the rotation actuators 1A, 2A, 3A, and the components such as the spring 1SA, the spring 1SB, the spring 2SA, the spring 2SB, the spring 3SA, the spring 3SB, and the arms 1T, 2T, and 3T are mounted below the first embodiment. This lowers the center of gravity and improves the stability as a moving object.
 次に、実施例4の衝撃緩和装置について説明する。 
 図15は本発明の実施例4に係るロボットの胴体部の斜視図である。
Next, an impact mitigation device of Example 4 will be described.
FIG. 15 is a perspective view of the body part of the robot according to the fourth embodiment of the present invention.
 図15において、実施例1では、アクチュエータ1A、2A、3AはXY平面を3等分かつ内部フレーム10中央に対し点対称となる位置にヨー方向まわりに回動可能に取り付けられていた。しかし実施例4ではXY平面を3等分かつ内部フレーム10中央に対し点対称となる位置に、それぞれの回転軸線がXY平面を3等分する向きで取り付けたものである。つまり、実施例4ではアーム1T、2T、3Tが垂直面方向に回転するようになっている。 15, in Example 1, the actuators 1A, 2A, and 3A are attached so as to be rotatable about the yaw direction at positions that are equally divided into three on the XY plane and point-symmetrical with respect to the center of the inner frame 10. However, in the fourth embodiment, the rotation axis is attached to the position where the XY plane is divided into three equal parts and point-symmetric with respect to the center of the inner frame 10 in the direction of dividing the XY plane into three equal parts. That is, in the fourth embodiment, the arms 1T, 2T, and 3T rotate in the vertical plane direction.
 したがって、実施例4の実装構造では水平面方向に回転する実施例1のアーム1T、2T、3Tと比較して回転ストロークを長くすることができるので、胴体カバー3Cの大きな変位が可能となり安全性が向上する。 Therefore, in the mounting structure of the fourth embodiment, the rotation stroke can be made longer than that of the arms 1T, 2T, and 3T of the first embodiment that rotate in the horizontal plane direction. improves.
 以上のごとく、本発明によれば、移動体のボディが移動体の本体骨格に対して能動的かつ受動的な水平方向の並進2自由度、回転1自由度を備えるため、予期しない周囲物体との接触時の衝撃力を緩和できる。さらに、能動的なボディの姿勢変化により接触時のストロークを大きくとることができるため、検知した周囲物体との接触の衝撃力を緩和した機構を提供することができる。 As described above, according to the present invention, since the body of the mobile body has two degrees of freedom of translation in the horizontal direction, which is active and passive with respect to the main body skeleton of the mobile body, Can reduce the impact force when touching. Further, since the stroke at the time of contact can be increased by the active body posture change, it is possible to provide a mechanism in which the impact force of the contact with the detected surrounding object is reduced.
 1・・・ロボット、2・・・頭部、3・・・胴体、3C・・・胴体カバー、4・・・左腕、5・・・右腕、6・・・左脚、7・・・右脚、10・・・内部フレーム、11・・・3自由度ジョイント、1A、2A、3A・・・回転アクチュエータ、1T、2T、3T・・・アーム、1SA、1SB、2SA、2SB、3SA、3SB・・・バネ、100・・・外力、501・・・安全範囲、502・・・周囲物体。 DESCRIPTION OF SYMBOLS 1 ... Robot, 2 ... Head, 3 ... Body, 3C ... Body cover, 4 ... Left arm, 5 ... Right arm, 6 ... Left leg, 7 ... Right Leg, 10 ... Inner frame, 11 ... 3 degrees of freedom joint, 1A, 2A, 3A ... Rotary actuator, 1T, 2T, 3T ... Arm, 1SA, 1SB, 2SA, 2SB, 3SA, 3SB ... Spring, 100 ... External force, 501 ... Safe range, 502 ... Ambient object.

Claims (7)

  1.  内部フレームの上部に取り付けられた頭部と、前記内部フレームの下部に3自由度ジョイントを介して取り付けられた脚部と、前記頭部と脚部の中間部分に取り付けられた腕部と、前記内部フレームの中間部分を覆う円筒状の胴体カバーとを備えた自律移動体において、
     前記内部フレームに取り付けられた複数の回転アクチュエータと、この回転アクチュエータのそれぞれに取り付けられたアームと、このアームと前記胴体カバーを弾性部材で接続して衝撃緩和装置を形成するとともに、
     前記胴体カバーに前記腕部を支持したことを特徴とする自律移動体。
    A head portion attached to an upper portion of the inner frame, a leg portion attached to a lower portion of the inner frame via a three-degree-of-freedom joint, an arm portion attached to an intermediate portion of the head portion and the leg portion, In an autonomous mobile body having a cylindrical body cover that covers an intermediate portion of the inner frame,
    A plurality of rotary actuators attached to the inner frame, arms attached to the rotary actuators, and connecting the arms and the body cover with elastic members to form an impact mitigation device,
    An autonomous mobile body, wherein the arm portion is supported by the body cover.
  2.  請求項1記載の自律移動体において、
     前記胴体カバーと前記内部フレームとの位置関係を計測する位置関係計測手段を備え、この位置関係計測手段をもとに前記胴体カバーを前記内部フレームに対して可変可能としたことを特徴とする自律移動体。
    The autonomous mobile body according to claim 1,
    An autonomous system comprising a positional relationship measuring means for measuring a positional relationship between the body cover and the inner frame, wherein the body cover is variable with respect to the inner frame based on the positional relationship measuring means. Moving body.
  3.  請求項1記載の自律移動体において、
     前記衝撃緩和装置は前記内部フレームの水平面を3等分した位置のそれぞれに前記回転アクチュエータを取り付けたことを特徴とする自律移動体。
    The autonomous mobile body according to claim 1,
    The said impact mitigation apparatus attached the said rotation actuator to each of the position which divided the horizontal surface of the said internal frame into 3 equal parts, The autonomous mobile body characterized by the above-mentioned.
  4.  請求項1記載の自律移動体において、
     前記弾性部材をコイルスプリングとしたことを特徴とした自律移動体。
    The autonomous mobile body according to claim 1,
    An autonomous moving body characterized in that the elastic member is a coil spring.
  5.  請求項1記載の自律移動体において、
     前記衝撃緩和装置の前記回転アクチュエータを前記胴体カバーと前記内部フレームとの間の空間に上下2箇所設けたことを特徴とした自律移動体。
    The autonomous mobile body according to claim 1,
    An autonomous moving body characterized in that the rotary actuator of the impact mitigation device is provided in two spaces, upper and lower, in a space between the body cover and the inner frame.
  6.  請求項1記載の自律移動体において、
     前記衝撃緩和装置の前記回転アクチュエータを前記3自由度ジョイントと前記胴体カバーとの間に設けたことを特徴とした自律移動体。
    The autonomous mobile body according to claim 1,
    An autonomous mobile body characterized in that the rotary actuator of the impact mitigation device is provided between the three-degree-of-freedom joint and the body cover.
  7.  請求項1記載の自律移動体において、
     前記衝撃緩和装置の前記回転アクチュエータが垂直面方向に回転するようにしたことを特徴とした自律移動体。
    The autonomous mobile body according to claim 1,
    An autonomous mobile body characterized in that the rotary actuator of the impact mitigation device rotates in a vertical plane direction.
PCT/JP2010/070704 2010-11-19 2010-11-19 Self-directed movable body WO2012066678A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/070704 WO2012066678A1 (en) 2010-11-19 2010-11-19 Self-directed movable body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/070704 WO2012066678A1 (en) 2010-11-19 2010-11-19 Self-directed movable body

Publications (1)

Publication Number Publication Date
WO2012066678A1 true WO2012066678A1 (en) 2012-05-24

Family

ID=46083635

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/070704 WO2012066678A1 (en) 2010-11-19 2010-11-19 Self-directed movable body

Country Status (1)

Country Link
WO (1) WO2012066678A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104369192A (en) * 2014-11-05 2015-02-25 深圳市普乐方文化科技有限公司 Recreation simulation robot
CN108545119A (en) * 2018-03-29 2018-09-18 上海大学 The biped hopping robot that pneumatic muscles drive the arm of force variable
WO2019164601A1 (en) * 2018-02-22 2019-08-29 Boston Dynamics, Inc. Mobile robot sitting and standing
WO2019164600A1 (en) * 2018-02-22 2019-08-29 Boston Dynamics, Inc. Mobile robot
WO2022085305A1 (en) * 2020-10-19 2022-04-28 ソニーグループ株式会社 Mobile object
WO2022195841A1 (en) * 2021-03-19 2022-09-22 本田技研工業株式会社 Robot
WO2022195839A1 (en) * 2021-03-19 2022-09-22 本田技研工業株式会社 Robot
WO2022195840A1 (en) * 2021-03-19 2022-09-22 本田技研工業株式会社 Robot
WO2023161463A3 (en) * 2022-02-28 2023-10-19 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Devices and method for and comprising mobile platforms for transporting loading goods

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001239479A (en) * 1999-12-24 2001-09-04 Sony Corp Leg type mobile robot and exterior module for robot
JP2002361575A (en) * 2001-06-07 2002-12-18 Japan Science & Technology Corp Human form robot of two-leg walking type
JP2005161437A (en) * 2003-12-01 2005-06-23 Kawada Kogyo Kk Hip structure of anthropomorphic robot
JP2006150537A (en) * 2004-11-30 2006-06-15 Toshiba Corp Mobile robot

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001239479A (en) * 1999-12-24 2001-09-04 Sony Corp Leg type mobile robot and exterior module for robot
JP2002361575A (en) * 2001-06-07 2002-12-18 Japan Science & Technology Corp Human form robot of two-leg walking type
JP2005161437A (en) * 2003-12-01 2005-06-23 Kawada Kogyo Kk Hip structure of anthropomorphic robot
JP2006150537A (en) * 2004-11-30 2006-06-15 Toshiba Corp Mobile robot

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104369192A (en) * 2014-11-05 2015-02-25 深圳市普乐方文化科技有限公司 Recreation simulation robot
WO2019164601A1 (en) * 2018-02-22 2019-08-29 Boston Dynamics, Inc. Mobile robot sitting and standing
WO2019164600A1 (en) * 2018-02-22 2019-08-29 Boston Dynamics, Inc. Mobile robot
US10719085B2 (en) 2018-02-22 2020-07-21 Boston Dynamics, Inc. Mobile robot sitting and standing
US10802508B2 (en) 2018-02-22 2020-10-13 Boston Dynamics, Inc. Mobile robot
CN108545119A (en) * 2018-03-29 2018-09-18 上海大学 The biped hopping robot that pneumatic muscles drive the arm of force variable
WO2022085305A1 (en) * 2020-10-19 2022-04-28 ソニーグループ株式会社 Mobile object
WO2022195841A1 (en) * 2021-03-19 2022-09-22 本田技研工業株式会社 Robot
WO2022195839A1 (en) * 2021-03-19 2022-09-22 本田技研工業株式会社 Robot
WO2022195840A1 (en) * 2021-03-19 2022-09-22 本田技研工業株式会社 Robot
WO2023161463A3 (en) * 2022-02-28 2023-10-19 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Devices and method for and comprising mobile platforms for transporting loading goods

Similar Documents

Publication Publication Date Title
WO2012066678A1 (en) Self-directed movable body
KR101264248B1 (en) legged mobile robot
US5673595A (en) Four degree-of-freedom manipulator
JP5510081B2 (en) Obstacle avoidance support device, obstacle avoidance support method, and moving object
JP4129452B2 (en) Mobile robot
KR100661330B1 (en) Legged mobile robot
KR100797001B1 (en) Wheel-based humanoid robot
US20160082870A1 (en) Seat suspension
US20060111814A1 (en) Mobile robot
JP6228097B2 (en) Mobile robot
JP2008302496A (en) Device and method for controlling robot arm, robot, and control program of the robot arm
JP2014161991A (en) Robot movement mechanism and robot comprising the same
WO2017168000A1 (en) Obstacle crossing robot
JP5322562B2 (en) Moving trolley
JP2019516565A (en) Mobile robot
US10000188B2 (en) Robotic vehicle with integrated mobility enhancement and mast deployment
JP2017013214A (en) Baggage loading/unloading system and method by plurality of robots
JP2007011857A (en) Autonomous mobile robot and control method of autonomous mobile robot
JP4899165B2 (en) Control device for legged mobile robot
Kim et al. Safe joint module for safe robot arm based on passive and active compliance method
KR102154065B1 (en) Motion plaform configuration
Li et al. Analysis of the constraint relation between ground and self-adaptive mobile mechanism of a transformable wheel-track robot
JP2009050940A (en) Link mechanism and leg wheel type robot
JP4113948B2 (en) Operating force generator
JP2004001138A (en) Walking robot

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10859738

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10859738

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP