JP2005237047A - Bond magnet integrated rotor - Google Patents
Bond magnet integrated rotor Download PDFInfo
- Publication number
- JP2005237047A JP2005237047A JP2004039599A JP2004039599A JP2005237047A JP 2005237047 A JP2005237047 A JP 2005237047A JP 2004039599 A JP2004039599 A JP 2004039599A JP 2004039599 A JP2004039599 A JP 2004039599A JP 2005237047 A JP2005237047 A JP 2005237047A
- Authority
- JP
- Japan
- Prior art keywords
- shaft
- bonded magnet
- rotor
- integrated rotor
- magnet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Iron Core Of Rotating Electric Machines (AREA)
Abstract
Description
本発明は、産業用に用いられるサーボモータのボンド磁石一体成形ロータに関する。 The present invention relates to a bonded magnet-integrated rotor of a servomotor used for industrial use.
従来のボンド磁石一体成形ロータのシャフト断面は、円形の形状をしている(例えば、非特許文献1参照)。図3にその形状を示す。図において、1はボンド磁石、2はシャフト、3は磁束である。ボンド磁石1は、シャフト2をインサートモールドして、磁場中で射出成形や圧縮成形にて一体成形する。磁束3はN極からS極に向って分布している。シャフト2の断面形状が円形であると、その磁束3の設計・解析が容易になるので、設計通りの磁場配向や磁束を実現できる。
また、図4に示すようにシャフト2の表面にローレット加工にて微小な凹部面を形成しているものもある。
このように、従来のボンド磁石一体成形ロータは、円形断面のシャフトをインサートモールドして一体成形するものである。
Further, as shown in FIG. 4, there are some in which a minute concave surface is formed on the surface of the
As described above, the conventional bonded magnet-integrated rotor is integrally molded by insert molding a shaft having a circular cross section.
ところが、従来のボンド磁石一体成形ロータは、ロータの断面が円形となっていて、回転方向に機械的な嵌め合いによる締結をすることができないので、シャフト/磁石間の締結力が小さいという問題があった。また、シャフト表面にローレット加工を施したような場合は、ローレット溝にボイドが発生したり、ローレット山が応力集中部となるので、磁石にクラックが発生したりするというような問題もあった。
また、隣接する磁極の中間部に対応するシャフトの近傍では磁束の流れが幾分乱される問題もある。
本発明はこのような問題点に鑑みてなされたものであり、磁石の配向や磁束に影響を与えずに、ロータとシャフト間の締結力が高く、かつクラックの発生防止ができるボンド磁石一体成形ロータを提供することを目的とする。
However, the conventional bonded magnet-integrated rotor has a problem that the fastening force between the shaft and the magnet is small because the rotor has a circular cross section and cannot be fastened by mechanical fitting in the rotational direction. there were. In addition, when the shaft surface is knurled, there are problems that voids are generated in the knurled grooves and cracks are generated in the magnet because the knurled mountain becomes a stress concentration portion.
There is also a problem that the flow of magnetic flux is somewhat disturbed in the vicinity of the shaft corresponding to the intermediate part of the adjacent magnetic poles.
The present invention has been made in view of such problems, and is a bonded magnet integrated molding that has a high fastening force between the rotor and the shaft and can prevent cracks without affecting the orientation and magnetic flux of the magnet. The object is to provide a rotor.
上記問題を解決するため、本発明は、次のように構成したものである。
請求項1に記載の発明は、電動機のシャフトの周囲にボンド磁石を一体に成形し、かつ円周方向に磁極を有するボンド磁石一体成形ロータにおいて、前記隣接する磁極の中間部に対応する前記シャフトの表面部分に凹部を設けたものである。
請求項2に記載の発明は、前記凹部を湾曲形状としたものである。
請求項3に記載の発明は、前記凹部を平面形状としたものである。
In order to solve the above problems, the present invention is configured as follows.
The invention according to
According to a second aspect of the present invention, the concave portion has a curved shape.
According to a third aspect of the present invention, the concave portion has a planar shape.
本発明によると、隣接する磁極の中間部に対応するシャフトの表面部分に凹部を設けたので、磁束に影響を与えず回転時のトルクに対して機械的な嵌め合いによる締結をすることができ、締結力を高めるとともにクラック発生を防止することができる。 According to the present invention, since the concave portion is provided in the surface portion of the shaft corresponding to the intermediate portion of the adjacent magnetic poles, it is possible to perform fastening by mechanical fitting with respect to torque during rotation without affecting the magnetic flux. The fastening force can be increased and cracking can be prevented.
以下、本発明の実施の形態について図を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
本発明の第1実施例を図1に示す。図1は、ボンド磁石一体成形ロータの側断面図である。図において、1はサマリウム−鉄−窒素を磁石粉とし、ナイロン12をマトリックスとしたボンド磁石、2は鉄製のシャフト、3は磁束、4はシャフト2の表面に設けた凹部である。本実施例に用いたロータは、4極のもので、シャフト2の直径は20mmである。凹部4は円形断面のシャフトの45°離れた表面を、軸方向に長さ30mm、最大深さ 1mmをグラインダー研削して形成した。なお、図1の凹部4は説明のために、実際の寸法よりも誇張して描いている。
本発明が非特許文献1と異なる部分は、ボンド磁石中の磁束3とシャフト表面が近接する部分のシャフト表面に、凹部4を設けた点である。
A first embodiment of the present invention is shown in FIG. FIG. 1 is a side sectional view of a bonded magnet integrated rotor. In the figure, 1 is a bonded magnet using samarium-iron-nitrogen as magnet powder and nylon 12 as a matrix, 2 is an iron shaft, 3 is a magnetic flux, and 4 is a recess provided on the surface of the
The difference between the present invention and Non-Patent
なお、比較のために、図3に示す従来例1と図4に示す従来例2を加えた。従来例は、ボンド磁石1の材質、寸法、成形・磁場配向・着磁条件とシャフト2の直径は、本実施例と同じにした。従来例2は、シャフト2の表面にローレット加工6を施している。
For comparison, Conventional Example 1 shown in FIG. 3 and Conventional Example 2 shown in FIG. 4 were added. In the conventional example, the material, dimensions, molding / magnetic field orientation / magnetization conditions of the
つぎに、ロータの磁気特性、締結力およびクラックの有無について調べた。
最大表面磁束密度は、ボンド磁石1の表面から0.3mmのギャップをはさんでヨークを取り付けて測定した。締結力は最大表面磁束密度を測定後、トルクレンチを用いてボンド磁石1とシャフト2との間で回転し始めたときのトルクを測定した。なお、各特性は室温にて測定したものである。
その結果を表1に示す。本実施例は、最大表面磁束密度は従来例1,2よりも、磁路が大きくなった分若干高くなり、クラックは発生せず、締結力は従来例1の2倍以上と大きく、著しい効果のあることが分った。
Next, the magnetic characteristics of the rotor, the fastening force, and the presence or absence of cracks were examined.
The maximum surface magnetic flux density was measured by attaching a yoke with a gap of 0.3 mm from the surface of the
The results are shown in Table 1. In this example, the maximum surface magnetic flux density is slightly higher than the conventional examples 1 and 2 because the magnetic path is larger, no cracks are generated, and the fastening force is as large as twice or more that of the conventional example 1. I found out that
本発明の第2実施例を図2に示す。図2は、ボンド磁石一体成形ロータの側断面図である。本実施例は、凹部4を平面形状に仕上げたものである。効果については、第1実施例と同じである。ただし、凹部4の加工性は第1実施例よりもさらに良いものであった。
以上のべたように、本発明によれば、ボンド磁石の磁束流を妨げることなく、良好な締結力が得られる。
なお、本発明にて設けたシャフトの凹部の個数は、磁束の極数には関わらず、凹部の形状は、平面に切り落としたものでも良く、シャフト表面に設けた凹部は、本実施例に示した円弧状や平面形状に限らず、磁束に影響を与えない形状であれば、三角形や矩形などでも良い。また、本発明に用いられるボンド磁石の磁石粉の材質は、サマリウム−鉄−窒素系だけでなくネオジウム−鉄−ホウ素系、フェライト系、サマリウム−コバルト系などいかなる材質でも良く、マトリックス樹脂の材質は、ナイロン系だけでなくポリフェニレンスルフィド、アクリル、エポキシ、各種ゴムなどでも良く、シャフトの材質は鉄だけでなく、ケイ素鋼板やアルミニウム、ステンレス、各種プラスチック、各種セラミックならびにそれらを複合したものでも良い。
A second embodiment of the present invention is shown in FIG. FIG. 2 is a side sectional view of the bonded magnet-integrated rotor. In this embodiment, the concave portion 4 is finished in a planar shape. The effect is the same as in the first embodiment. However, the workability of the recess 4 was better than that of the first example.
As described above, according to the present invention, a good fastening force can be obtained without hindering the magnetic flux flow of the bonded magnet.
Note that the number of concave portions of the shaft provided in the present invention may be cut off into a flat shape regardless of the number of magnetic poles. The concave portion provided on the shaft surface is shown in this embodiment. As long as the shape does not affect the magnetic flux, the shape may be a triangle or a rectangle. The material of the magnet powder of the bond magnet used in the present invention may be any material such as neodymium-iron-boron, ferrite, samarium-cobalt as well as samarium-iron-nitrogen, and the matrix resin material In addition to nylon, polyphenylene sulfide, acrylic, epoxy, various rubbers, and the like may be used. The shaft material may be not only iron, but also silicon steel plate, aluminum, stainless steel, various plastics, various ceramics, and composites thereof.
このように、磁束部分に磁石を確保して、磁束に影響を与えずにシャフトの表面に凹部を設けた構成をしているので、回転方向に機械的な嵌め合いによる締結をすることができ、締結力を高めるとともにクラック発生を防止することができる。 In this way, a magnet is secured in the magnetic flux portion, and the concave portion is provided on the surface of the shaft without affecting the magnetic flux, so that it can be fastened by mechanical fitting in the rotational direction. The fastening force can be increased and cracking can be prevented.
磁束に影響を与えずにシャフトの表面に凹部を設けることによって、回転方向に機械的な嵌め合いによる締結をすることができ、締結力を高めることができるので、小型高出力のサーボモータという用途にも適用できる。 By providing a recess on the surface of the shaft without affecting the magnetic flux, it is possible to fasten by mechanical fitting in the rotational direction and increase the fastening force. It can also be applied to.
1 ボンド磁石
2 シャフト
3 磁束
4 凹部
5 ローレット
6 クラック
1
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004039599A JP2005237047A (en) | 2004-02-17 | 2004-02-17 | Bond magnet integrated rotor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004039599A JP2005237047A (en) | 2004-02-17 | 2004-02-17 | Bond magnet integrated rotor |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005237047A true JP2005237047A (en) | 2005-09-02 |
Family
ID=35019456
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004039599A Pending JP2005237047A (en) | 2004-02-17 | 2004-02-17 | Bond magnet integrated rotor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005237047A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008152957A1 (en) | 2007-06-12 | 2008-12-18 | Aisin Seiki Kabushiki Kaisha | Electric pump rotor and electric pump |
JP2020053589A (en) * | 2018-09-27 | 2020-04-02 | 日立金属株式会社 | Shaft-integrated bonded magnet and manufacturing method thereof |
JP2020524475A (en) * | 2017-06-20 | 2020-08-13 | ダイソン テクノロジー リミテッド | Rotor assembly and manufacturing method thereof |
JP2021010232A (en) * | 2019-07-01 | 2021-01-28 | 三菱電機株式会社 | Rotor for motor, shaft, and manufacturing method of rotor for motor |
US11056255B2 (en) | 2017-04-28 | 2021-07-06 | Nichia Corporation | Composite component comprising ring-shaped bonded magnet and method of manufacturing the same |
-
2004
- 2004-02-17 JP JP2004039599A patent/JP2005237047A/en active Pending
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008152957A1 (en) | 2007-06-12 | 2008-12-18 | Aisin Seiki Kabushiki Kaisha | Electric pump rotor and electric pump |
JP2008312284A (en) * | 2007-06-12 | 2008-12-25 | Aisin Seiki Co Ltd | Rotor for electric pump |
EP2124316A1 (en) * | 2007-06-12 | 2009-11-25 | Aisin Seiki Kabushiki Kaisha | Electric pump rotor and electric pump |
EP2124316A4 (en) * | 2007-06-12 | 2011-04-27 | Aisin Seiki | Electric pump rotor and electric pump |
US11056255B2 (en) | 2017-04-28 | 2021-07-06 | Nichia Corporation | Composite component comprising ring-shaped bonded magnet and method of manufacturing the same |
US11646154B2 (en) | 2017-04-28 | 2023-05-09 | Nichia Corporation | Composite component comprising ring-shaped bonded magnet and method of manufacturing the same |
JP2020524475A (en) * | 2017-06-20 | 2020-08-13 | ダイソン テクノロジー リミテッド | Rotor assembly and manufacturing method thereof |
JP2020053589A (en) * | 2018-09-27 | 2020-04-02 | 日立金属株式会社 | Shaft-integrated bonded magnet and manufacturing method thereof |
JP7200574B2 (en) | 2018-09-27 | 2023-01-10 | 日立金属株式会社 | Shaft-integrated bonded magnet and its manufacturing method |
JP2021010232A (en) * | 2019-07-01 | 2021-01-28 | 三菱電機株式会社 | Rotor for motor, shaft, and manufacturing method of rotor for motor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5429178B2 (en) | Field pole magnet body, method for producing the field magnet body, and permanent magnet type rotating electrical machine | |
US9362791B2 (en) | Motor | |
US9490670B2 (en) | Rotor and motor | |
JP2016052249A (en) | Permanent magnet for rotor of electric machine | |
EP1239569A2 (en) | Magnet rotor and high-output AC machine having the same | |
JP5207190B2 (en) | Method for assembling a rotor of a permanent magnet type rotating electric machine | |
US20130002081A1 (en) | Permanent magnet rotor | |
WO2013047295A1 (en) | Molded motor | |
US9762097B2 (en) | Rotor and motor | |
JP2006121807A (en) | Manufacturing method for rotor of motor, the rotor of motor, motor, air-conditioning apparatus, refrigerator, ventilation fan, and resin-molded metal mold of rotor of motor | |
JP6301856B2 (en) | Electric blower and vacuum cleaner using magnetic anisotropic magnet | |
JP2007306796A (en) | Rotor of electromotor, method of manufacturing rotor of electromotor, resin forming metal mold of rotor of electromotor, electromotor and air conditioner | |
KR100679804B1 (en) | Rotor of motor | |
JP2005237047A (en) | Bond magnet integrated rotor | |
US11973378B2 (en) | Rotor, motor, fan, air conditioner, and manufacturing method of rotor | |
JP2005102390A (en) | Rotor of motor, manufacturing method for rotor of motor, resin-molding metal mold for rotor of motor, motor and air conditioner | |
JP2011087393A (en) | Rotor of synchronous motor | |
RU2008144648A (en) | ROTOR FOR MAGNETIC MOTOR | |
JP2009254030A (en) | Motor | |
WO2011061806A1 (en) | Method of manufacturing rotor of electric motor | |
US20180219440A1 (en) | Outer rotor type motor | |
KR100776425B1 (en) | Magnetization structure of motor | |
US20090295248A1 (en) | Electric motor | |
JP2004364369A (en) | Embedded magnet motor | |
KR20080081541A (en) | Blec motor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070118 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090730 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090804 |
|
A02 | Decision of refusal |
Effective date: 20091216 Free format text: JAPANESE INTERMEDIATE CODE: A02 |