JP2005236350A - Ofdm demodulator - Google Patents

Ofdm demodulator Download PDF

Info

Publication number
JP2005236350A
JP2005236350A JP2004039437A JP2004039437A JP2005236350A JP 2005236350 A JP2005236350 A JP 2005236350A JP 2004039437 A JP2004039437 A JP 2004039437A JP 2004039437 A JP2004039437 A JP 2004039437A JP 2005236350 A JP2005236350 A JP 2005236350A
Authority
JP
Japan
Prior art keywords
value
circuit
upper limit
received power
maximum value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004039437A
Other languages
Japanese (ja)
Inventor
Hidetoshi Nagata
英稔 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2004039437A priority Critical patent/JP2005236350A/en
Publication of JP2005236350A publication Critical patent/JP2005236350A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an OFDM demodulator, applied to a digital radio communications system employing the OFDM modulation system such as terrestrial digital broadcast and a wireless LAN, capable of applying excellent weighting to a data signal by determining a proper threshold, even when a signal for estimating a transmission path is subjected to the effects of analog disturbance and noise or the like. <P>SOLUTION: A received power arithmetic circuit 9 calculates the received power of an SP signal by each prescribed number of symbols (e.g., one symbol, 4 symbols, or 12 symbols) from the SP signal stored in a RAM 8. An upper-limit generating circuit 10 generates upper limit for extracting a maximum value by each prescribed number of symbols. A maximum-value extracting circuit 19 receives the output value of the received power arithmetic circuit 9 via a delay circuit 18 for extracting the maximum value of the received power of the SP signal within a range of the upper limit received, form the upper-limit generating circuit 10 or smaller. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、地上ディジタル放送や無線LAN(Local Area Network)などのようにOFDM(Orthogonal Frequency Division Multiplexing)変調方式を用いるディジタル無線通信システムに使用して好適なOFDM復調装置に関する。   The present invention relates to an OFDM demodulator suitable for use in a digital radio communication system using an OFDM (Orthogonal Frequency Division Multiplexing) modulation method such as terrestrial digital broadcasting or a wireless local area network (LAN).

OFDM復調装置においては、エラー訂正処理能力向上のために、通常、ビタビ復号前のデータ信号、例えば、デマッピング回路から出力されるデータ信号に対して重み付け処理が行われる(例えば、特許文献1参照)。重み付け処理には閾値が必要となるが、閾値を決定するためには、伝送路推定用信号(伝送路により生じるサブキャリアの振幅及び位相の変動を推定するための信号)の受信電力を演算し、その最大値を抽出する必要がある。   In an OFDM demodulator, weighting processing is usually performed on a data signal before Viterbi decoding, for example, a data signal output from a demapping circuit, in order to improve error correction processing capability (see, for example, Patent Document 1). ). A threshold is required for the weighting process, but in order to determine the threshold, the received power of the transmission path estimation signal (a signal for estimating the fluctuation of the subcarrier amplitude and phase generated by the transmission path) is calculated. It is necessary to extract the maximum value.

図5はデマッピング回路から出力されるデータ信号に重み付け処理を行う従来のOFDM復調装置の一例の要部を示す回路図である。図5に示すOFDM復調装置は地上ディジタル放送受信機に使用するものであり、1は伝送路推定用信号であるSP(Scattered Pilot)信号を記憶させるためのRAM(Random Access Memory)、2は所定シンボル数(例えば、1シンボル、4シンボル又は12シンボル)毎にSP信号の受信電力を演算する受信電力演算回路である。   FIG. 5 is a circuit diagram showing a main part of an example of a conventional OFDM demodulator that performs weighting processing on a data signal output from the demapping circuit. The OFDM demodulator shown in FIG. 5 is used for a terrestrial digital broadcast receiver. 1 is a RAM (Random Access Memory) for storing an SP (Scattered Pilot) signal, which is a transmission path estimation signal, and 2 is a predetermined one. This is a received power calculation circuit that calculates the received power of the SP signal for each number of symbols (for example, 1 symbol, 4 symbols, or 12 symbols).

3は受信電力演算回路2の出力値から所定シンボル数毎に最大値を抽出する最大値抽出回路であり、4は比較回路、5は最大値格納回路である。比較回路4は、受信電力演算回路2の出力値と最大値格納回路5が格納する最大値を比較し、受信電力演算回路2の出力値の方が大きい場合には、受信電力演算回路2の出力値を最大値格納回路5に与えるものである。最大値格納回路5は、初期値を0とし、既に格納している値を比較回路4から与えられる値に更新するものである。   Reference numeral 3 denotes a maximum value extraction circuit that extracts a maximum value from the output value of the received power calculation circuit 2 for each predetermined number of symbols. Reference numeral 4 denotes a comparison circuit, and reference numeral 5 denotes a maximum value storage circuit. The comparison circuit 4 compares the output value of the received power calculation circuit 2 with the maximum value stored in the maximum value storage circuit 5, and if the output value of the received power calculation circuit 2 is larger, the comparison circuit 4 The output value is given to the maximum value storage circuit 5. The maximum value storage circuit 5 sets the initial value to 0 and updates the already stored value to a value given from the comparison circuit 4.

6は最大値抽出回路3が所定シンボル数毎にSP信号の受信電力の最大値を抽出すると、その最大値を基準にして閾値(例えば、所定の計算方法で、最大値>閾値1>閾値2>閾値3となる閾値1、閾値2、閾値3)を決定する閾値決定回路、7は閾値決定回路6で決定された閾値を使用して、デマッピング回路から出力されるデータ信号に対して重み付け処理を行う重み付け回路である。
特開2003−258762号公報
6, when the maximum value extraction circuit 3 extracts the maximum value of the received power of the SP signal for each predetermined number of symbols, a threshold value (for example, maximum value> threshold value 1> threshold value 2 is determined based on the maximum value). > Threshold value determining circuit for determining threshold value 1, threshold value 2 and threshold value 3) to be threshold value 3, and 7 is a weighting for the data signal output from the demapping circuit using the threshold value determined by the threshold value determining circuit 6. It is a weighting circuit that performs processing.
JP 2003-258762 A

図6及び図7は受信電力演算回路2における4シンボル分のSP信号の受信電力演算結果をアナログ的に示す図であり、縦軸方向に受信電力、横軸方向にキャリア番号を取っている。図6はSP信号がアナログ妨害やノイズ等の影響を受けていない場合の例であり、このような場合には、最大値抽出回路3において受信電力の最大値を抽出することに何ら問題はない。   6 and 7 are graphs showing the reception power calculation results of the SP signals for four symbols in the reception power calculation circuit 2 in an analog manner, with the reception power in the vertical axis direction and the carrier number in the horizontal axis direction. FIG. 6 shows an example in which the SP signal is not affected by analog interference or noise. In such a case, there is no problem in extracting the maximum value of received power in the maximum value extraction circuit 3. .

これに対して、図7はSP信号がアナログ妨害やノイズ等の影響を受けている場合の例であり、ピークP1、P2はアナログ妨害やノイズ等の影響を受けたものである。このような場合には、最大値抽出回路3はピークP1の値を最大値として抽出してしまうことになり、適切な閾値を決定することができず、デマッピング回路から出力されるデータ信号に対して良好な重み付けを行うことができないという問題が生じる。   On the other hand, FIG. 7 shows an example in which the SP signal is affected by analog interference or noise, and peaks P1 and P2 are affected by analog interference or noise. In such a case, the maximum value extraction circuit 3 will extract the value of the peak P1 as the maximum value, and an appropriate threshold value cannot be determined, and the data signal output from the demapping circuit will not be determined. However, there arises a problem that good weighting cannot be performed.

本発明は、かかる点に鑑み、伝送路推定用信号がアナログ妨害やノイズ等の影響を受けている場合であっても、適切な閾値を決定し、データ信号に対して良好な重み付けを行うことができるようにしたOFDM復調装置を提供することを目的とする。   In view of the above, the present invention determines an appropriate threshold value and performs good weighting on a data signal even when the transmission path estimation signal is affected by analog interference or noise. An object of the present invention is to provide an OFDM demodulator capable of performing the above.

本発明のOFDM復調装置は、伝送路推定用信号の受信電力を演算する受信電力演算手段と、受信電力演算手段の出力値から最大値を抽出する最大値抽出手段と、受信電力演算手段の出力値から最大値抽出手段における最大値抽出の上限値を生成する上限値生成手段を有し、最大値抽出手段は上限値以下の範囲で最大値を抽出するというものである。   An OFDM demodulator according to the present invention includes a received power calculation means for calculating received power of a transmission path estimation signal, a maximum value extraction means for extracting a maximum value from an output value of the received power calculation means, and an output of the received power calculation means It has an upper limit value generating means for generating an upper limit value of maximum value extraction in the maximum value extracting means from the value, and the maximum value extracting means extracts the maximum value within a range equal to or lower than the upper limit value.

本発明よれば、最大値抽出手段は、上限値生成手段が生成した上限値以下の範囲において最大値を抽出するので、アナログ妨害やノイズ等の影響を受けたSP信号の受信電力を除いて、最大値を抽出することができる。したがって、伝送路推定用信号がアナログ妨害やノイズ等の影響を受けている場合であっても、適切な閾値を決定し、データ信号に対して良好な重み付け処理を行うことができる。   According to the present invention, the maximum value extraction means extracts the maximum value in the range below the upper limit value generated by the upper limit value generation means, so except for the received power of the SP signal affected by analog interference, noise, etc. The maximum value can be extracted. Therefore, even when the transmission path estimation signal is affected by analog interference, noise, or the like, an appropriate threshold value can be determined and good weighting processing can be performed on the data signal.

以下、図1〜図3を参照して、本発明の第1実施形態及び第2実施形態について、本発明を地上ディジタル放送用受信機に使用するOFDM復調装置に適用した場合を例にして説明する。   The first and second embodiments of the present invention will be described below with reference to FIGS. 1 to 3 by taking as an example the case where the present invention is applied to an OFDM demodulator used in a terrestrial digital broadcast receiver. To do.

(第1実施形態・・図1、図2)
図1は本発明の第1実施形態の要部を示す回路図である。図1中、8は伝送路推定用信号であるSP信号を記憶させるRAM、9は所定シンボル数(例えば、1シンボル、4シンボル又は12シンボル)毎にSP信号の受信電力を演算する受信電力演算回路、10は受信電力演算回路9の出力値から後述する最大値抽出回路で使用する最大値抽出の上限値を生成する上限値生成回路である。
(First embodiment. FIG. 1 and FIG. 2)
FIG. 1 is a circuit diagram showing the main part of the first embodiment of the present invention. In FIG. 1, 8 is a RAM for storing an SP signal which is a transmission path estimation signal, and 9 is a received power calculation for calculating the received power of the SP signal for each predetermined number of symbols (for example, 1 symbol, 4 symbols or 12 symbols). Circuits 10 and 10 are upper limit value generation circuits for generating an upper limit value for maximum value extraction used in a maximum value extraction circuit described later from the output value of the received power calculation circuit 9.

上限値生成回路10において、11は受信電力演算回路9の出力値の所定シンボル数単位の平均値を演算する平均値演算回路、12は所定シンボル数毎に受信電力演算回路9の出力値から最小値を抽出する最小値抽出回路である。   In the upper limit value generation circuit 10, 11 is an average value calculation circuit that calculates an average value in units of a predetermined number of symbols of the output value of the received power calculation circuit 9, and 12 is a minimum value from the output value of the reception power calculation circuit 9 for each predetermined number of symbols. It is a minimum value extraction circuit for extracting values.

最小値抽出回路12において、13は比較回路、14は最小値格納回路である。比較回路13は、受信電力演算回路9の出力値と最小値格納回路14が格納する最小値を比較し、受信電力演算回路9の出力値の方が小さい場合には、受信電力演算回路9の出力値を最小値格納回路14に与えるものである。最小値格納回路14は、初期値を格納可能な最大値とし、既に格納している値を比較回路13から与えられる値に更新するものである。   In the minimum value extraction circuit 12, 13 is a comparison circuit, and 14 is a minimum value storage circuit. The comparison circuit 13 compares the output value of the reception power calculation circuit 9 with the minimum value stored in the minimum value storage circuit 14. If the output value of the reception power calculation circuit 9 is smaller, the comparison circuit 13 The output value is given to the minimum value storage circuit 14. The minimum value storage circuit 14 sets the initial value as the maximum storable value, and updates the already stored value to a value given from the comparison circuit 13.

15は平均値演算回路11が出力する平均値と最小値格納回路14が格納する最小値から所定シンボル数毎に上限値を演算する上限値演算回路であり、16は平均値演算回路11が出力する平均値から最小値格納回路14が格納する最小値を減算する減算器、17は減算器16から出力される値、即ち、(平均値−最小値)に平均値演算回路11が出力する平均値を加算する加算器である。即ち、上限値演算回路15においては、[(平均値−最小値)+平均値]なる演算式により上限値が演算される。   Reference numeral 15 denotes an upper limit calculation circuit for calculating an upper limit value for each predetermined number of symbols from the average value output by the average value calculation circuit 11 and the minimum value stored by the minimum value storage circuit 14, and 16 indicates the output from the average value calculation circuit 11. A subtracter for subtracting the minimum value stored in the minimum value storage circuit 14 from the average value to be performed, 17 is a value output from the subtractor 16, that is, an average output by the average value calculation circuit 11 to (average value−minimum value). An adder that adds values. That is, in the upper limit calculation circuit 15, the upper limit is calculated by an arithmetic expression [(average value−minimum value) + average value].

18は受信電力演算回路9の出力値を1シンボル分遅延する遅延回路、19は遅延回路18の出力値から1シンボル毎に最大値を抽出する最大値抽出回路であり、20は比較回路、21は最大値格納回路である。   Reference numeral 18 denotes a delay circuit that delays the output value of the received power arithmetic circuit 9 by one symbol, 19 denotes a maximum value extraction circuit that extracts a maximum value for each symbol from the output value of the delay circuit 18, 20 denotes a comparison circuit, 21 Is a maximum value storage circuit.

比較回路20は、遅延回路18の出力値と最大値格納回路21が格納する最大値を比較し、遅延回路18の出力値の方が大きい場合には、遅延回路18の出力値を最大値格納回路21に与えるものである。最大値格納回路21は、初期値を0とし、既に格納している値を比較回路20から与えられる値に更新するものである。   The comparison circuit 20 compares the output value of the delay circuit 18 with the maximum value stored in the maximum value storage circuit 21. If the output value of the delay circuit 18 is larger, the output value of the delay circuit 18 is stored in the maximum value. This is given to the circuit 21. The maximum value storage circuit 21 sets the initial value to 0 and updates the already stored value to a value given from the comparison circuit 20.

22は最大値抽出回路19が所定シンボル数毎にSP信号の受信電力の最大値を抽出すると、その最大値を基準にして閾値を決定する閾値決定回路、23は閾値決定回路22で決定された閾値を使用して、デマッピング回路から出力されるデータ信号に対して重み付け処理を行う重み付け回路である。   22 is a threshold value determination circuit that determines a threshold value based on the maximum value when the maximum value extraction circuit 19 extracts the maximum value of the received power of the SP signal for each predetermined number of symbols, and 23 is determined by the threshold value determination circuit 22. This is a weighting circuit that performs weighting processing on the data signal output from the demapping circuit using a threshold value.

本発明の第1実施形態においては、受信電力演算回路9において、RAM8に記憶されたSP信号から所定シンボル数毎にSP信号の受信電力が演算され、上限値生成回路10において所定シンボル数毎に上限値が生成される。最大値抽出回路19においては、受信電力演算回路9の出力値を遅延回路18を介して入力し、上限値生成回路10から与えられる上限値以下の範囲において、SP信号の受信電力の最大値が抽出される。   In the first embodiment of the present invention, the received power calculation circuit 9 calculates the received power of the SP signal for each predetermined number of symbols from the SP signal stored in the RAM 8, and the upper limit generation circuit 10 calculates the received power for each predetermined number of symbols. An upper limit is generated. In the maximum value extraction circuit 19, the output value of the reception power calculation circuit 9 is input via the delay circuit 18, and the maximum value of the reception power of the SP signal is within a range below the upper limit value given from the upper limit value generation circuit 10. Extracted.

図2は受信電力演算回路9における4シンボル分のSP信号の受信電力演算結果をアナログ的に示す図であり、図7に示すものと同一である。本発明の第1実施形態によれば、アナログ妨害やノイズ等の影響を受けたSP信号のピークP1、P2がある場合であっても、最大値として、アナログ妨害やノイズ等の影響を受けていないSP信号の受信電力の最大値ないし最大値に近い値を得ることができる。   FIG. 2 is a diagram showing the reception power calculation result of the SP signal for four symbols in the reception power calculation circuit 9 in an analog manner, which is the same as that shown in FIG. According to the first embodiment of the present invention, even if there are peaks P1 and P2 of the SP signal affected by analog interference or noise, the maximum value is affected by analog interference or noise. It is possible to obtain a maximum value or a value close to the maximum value of the received power of a non-SP signal.

以上のように、本発明の第1実施形態によれば、最大値抽出回路19は上限値生成回路10が[(平均値−最小値)+平均値]なる演算式により生成した上限値以下の範囲において最大値を抽出するので、アナログ妨害やノイズ等の影響を受けたSP信号の受信電力を除いて、最大値を抽出することができる。したがって、SP信号がアナログ妨害やノイズ等の影響を受けている場合であっても、適切な閾値を決定し、デマッピング回路から出力されるデータ信号に対して良好な重み付け処理を行うことができる。   As described above, according to the first embodiment of the present invention, the maximum value extraction circuit 19 is equal to or less than the upper limit value generated by the upper limit value generation circuit 10 using the arithmetic expression [(average value−minimum value) + average value]. Since the maximum value is extracted in the range, the maximum value can be extracted excluding the reception power of the SP signal affected by analog interference or noise. Therefore, even when the SP signal is affected by analog interference or noise, an appropriate threshold value can be determined and a good weighting process can be performed on the data signal output from the demapping circuit. .

(第2実施形態・・図3、図4)
図3は本発明の第2実施形態の要部を示す回路図である。本発明の第2実施形態は、本発明の第1実施形態が備える上限値生成回路10と回路構成の異なる上限値生成回路24を設け、その他については、本発明の第1実施形態と同様に構成したものである。
(Second embodiment: FIGS. 3 and 4)
FIG. 3 is a circuit diagram showing the main part of the second embodiment of the present invention. The second embodiment of the present invention is provided with an upper limit value generation circuit 24 having a circuit configuration different from that of the upper limit value generation circuit 10 provided in the first embodiment of the present invention, and the others are the same as in the first embodiment of the present invention. It is composed.

上限値生成回路24は、図1に示す上限値生成回路10が備える上限値演算回路15と回路構成の異なる上限値演算回路25を設け、その他については、図1に示す上限値演算回路15と同様に構成したものである。   The upper limit value generation circuit 24 includes an upper limit value calculation circuit 25 having a circuit configuration different from that of the upper limit value calculation circuit 15 included in the upper limit value generation circuit 10 shown in FIG. It is constituted similarly.

上限値演算回路25において、26は平均値演算回路11が出力する平均値から最小値格納回路14が格納する最小値を減算する減算器、27は減算器26が出力する(平均値−最小値)に所定範囲内の任意の値αを乗ずる乗算器、28は平均値演算回路11が出力する平均値に所定範囲内の任意の値βを乗ずる乗算器、29は乗算器27の出力値と乗算器28の出力値とを加算する加算器である。即ち、上限値演算回路25においては、[(平均値−最小値)×α+平均値×β]なる演算式により上限値が演算される。   In the upper limit calculation circuit 25, 26 is a subtracter that subtracts the minimum value stored in the minimum value storage circuit 14 from the average value output from the average value calculation circuit 11, and 27 is output from the subtractor 26 (average value−minimum value). ) Is multiplied by an arbitrary value α within a predetermined range, 28 is a multiplier that multiplies the average value output from the average value calculation circuit 11 by an arbitrary value β within the predetermined range, and 29 is an output value of the multiplier 27. This is an adder that adds the output value of the multiplier 28. That is, in the upper limit calculation circuit 25, the upper limit is calculated by an arithmetic expression [(average value−minimum value) × α + average value × β].

図4はα、βの活用例を説明するための図であり、(A)、(B)共に受信電力演算回路9でのSP信号の受信電力の演算結果例を示しており、ノイズやマルチパス等の要因がない理想的なOFDM信号を受信している場合を例にしている。ここで、受信電力演算回路9でのSP信号の受信電力の演算結果が(A)に示すようにフラットであるならば、平均値や最小値を演算する場合に何ら問題はない。   FIG. 4 is a diagram for explaining an example of using α and β. (A) and (B) both show an example of the calculation result of the received power of the SP signal in the received power calculation circuit 9, and noise and multi The case where an ideal OFDM signal without a factor such as a path is received is taken as an example. Here, if the calculation result of the received power of the SP signal in the received power calculation circuit 9 is flat as shown in (A), there is no problem in calculating the average value or the minimum value.

しかしながら、チューナやOFDM復調装置内のフィルタにより、(B)に示すように、両端の電力が落ちている場合には、平均値や最小値を本発明の第1実施形態の場合と同様に演算すると、平均値や最小値が低く算出されてしまう。これを調整するために、本発明の第2実施形態では、α、βを用いるとしている。なお、α、β共に、0〜2の間の値で十分であると考えられる。また、上限値生成回路を、[(平均値−最小値)+平均値+γ(所定範囲内の任意の値)]なる演算を行うように構成しても良い。   However, when the power at both ends is reduced as shown in (B) by the filter in the tuner or the OFDM demodulator, the average value and the minimum value are calculated in the same manner as in the first embodiment of the present invention. Then, the average value and the minimum value are calculated low. In order to adjust this, α and β are used in the second embodiment of the present invention. It should be noted that a value between 0 and 2 is considered sufficient for both α and β. Further, the upper limit value generation circuit may be configured to perform an operation of [(average value−minimum value) + average value + γ (any value within a predetermined range)].

本発明の第2実施形態においては、受信電力演算回路9において、RAM8に記憶されたSP信号から所定シンボル数毎にSP信号の受信電力が演算され、上限値生成回路24において所定シンボル数毎に上限値が生成される。最大値抽出回路19においては、受信電力演算回路9の出力値を遅延回路18を介して入力し、上限値生成回路24から与えられる上限値以下の範囲において、SP信号の受信電力の最大値が抽出される。   In the second embodiment of the present invention, the received power calculation circuit 9 calculates the received power of the SP signal for each predetermined number of symbols from the SP signal stored in the RAM 8, and the upper limit value generation circuit 24 for each predetermined number of symbols. An upper limit is generated. In the maximum value extraction circuit 19, the output value of the reception power calculation circuit 9 is input via the delay circuit 18, and the maximum value of the reception power of the SP signal is within a range below the upper limit value given from the upper limit value generation circuit 24. Extracted.

本発明の第2実施形態によれば、α、βとして適当な値を選ぶことにより、適切な上限値を生成することができ、最大値抽出回路19は上限値生成回路24が生成した上限値以下の範囲において最大値を抽出するので、アナログ妨害やノイズ等の影響を受けたSP信号の受信電力を除いて、最大値を抽出することができる。この結果、SP信号がアナログ妨害やノイズ等の影響を受けている場合であっても、適切な閾値を決定し、デマッピング回路から出力されるデータ信号に対して良好な重み付け処理を行うことができる。   According to the second embodiment of the present invention, an appropriate upper limit value can be generated by selecting appropriate values as α and β, and the maximum value extraction circuit 19 can generate an upper limit value generated by the upper limit value generation circuit 24. Since the maximum value is extracted in the following range, the maximum value can be extracted except for the received power of the SP signal affected by analog interference or noise. As a result, even when the SP signal is affected by analog interference or noise, an appropriate threshold value can be determined and a good weighting process can be performed on the data signal output from the demapping circuit. it can.

なお、本発明の第2実施形態においては、乗算器27、28を設けているが、いずれか1個を設けるようにしても良い。また、本発明の第1、第2実施形態においては、デマッピング回路から出力されるデータ信号に重み付け処理を行う場合を例にして説明したが、重み付け処理は、ビタビ復号前のデータ信号であれば、デマッチング回路から出力されるデータ信号でなくとも良い。   Although the multipliers 27 and 28 are provided in the second embodiment of the present invention, any one of them may be provided. In the first and second embodiments of the present invention, the case where the weighting process is performed on the data signal output from the demapping circuit has been described as an example. However, the weighting process may be a data signal before Viterbi decoding. For example, it may not be a data signal output from the dematching circuit.

また、本発明の第1、第2実施形態においては、本発明を地上ディジタル放送受信機用のOFDM復調装置に適用した場合を例にして説明したが、本発明は、その他、無線LAN用のOFDM復調装置など、OFDM無線通信システム用のOFDM復調装置に広く適用することができる。   Further, in the first and second embodiments of the present invention, the case where the present invention is applied to an OFDM demodulator for a terrestrial digital broadcast receiver has been described as an example. The present invention can be widely applied to an OFDM demodulator for an OFDM wireless communication system such as an OFDM demodulator.

本発明の第1実施形態の要部を示す回路図である。It is a circuit diagram which shows the principal part of 1st Embodiment of this invention. 本発明の第1実施形態が備える受信電力演算回路における4シンボル分のSP信号の受信電力演算結果をアナログ的に示す図である。It is a figure which shows the reception power calculation result of SP signal for 4 symbols in analog in the reception power calculation circuit with which 1st Embodiment of this invention is provided. 本発明の第2実施形態の要部を示す回路図である。It is a circuit diagram which shows the principal part of 2nd Embodiment of this invention. 本発明の第2実施形態で用いる任意の値α、βの活用例を説明するための図である。It is a figure for demonstrating the utilization example of arbitrary values (alpha) and (beta) used in 2nd Embodiment of this invention. 従来のOFDM復調装置の一例の要部を示す回路図である。It is a circuit diagram which shows the principal part of an example of the conventional OFDM demodulation apparatus. 図5に示す従来のOFDM復調装置が備える受信電力演算回路における4シンボル分のSP信号の受信電力演算結果をアナログ的に示す図である。It is a figure which shows the reception power calculation result of the SP signal for 4 symbols in an analog manner in the reception power calculation circuit with which the conventional OFDM demodulator shown in FIG. 5 is provided. 図5に示す従来のOFDM復調装置が備える受信電力演算回路における4シンボル分のSP信号の受信電力演算結果をアナログ的に示す図である。It is a figure which shows the reception power calculation result of the SP signal for 4 symbols in an analog manner in the reception power calculation circuit with which the conventional OFDM demodulator shown in FIG. 5 is provided.

符号の説明Explanation of symbols

1…RAM
2…受信電力演算回路
3…最大値抽出回路
4…比較回路
5…最大値格納回路
6…閾値決定回路
7…重み付け回路
8…RAM
9…受信電力演算回路
10…上限値生成回路
11…平均値演算回路
12…最小値抽出回路
13…比較回路
14…最小値格納回路
15…上限値演算回路
16…減算器
17…加算器
18…遅延回路
19…最大値抽出回路
20…比較回路
21…最大値格納回路
22…閾値決定回路
23…重み付け回路
24…上限値生成回路
25…上限値演算回路
26…減算器
27、28…乗算器
29…加算器
1 ... RAM
2 ... Received power calculation circuit 3 ... Maximum value extraction circuit 4 ... Comparison circuit 5 ... Maximum value storage circuit 6 ... Threshold determination circuit 7 ... Weighting circuit 8 ... RAM
DESCRIPTION OF SYMBOLS 9 ... Received power calculation circuit 10 ... Upper limit value generation circuit 11 ... Average value calculation circuit 12 ... Minimum value extraction circuit 13 ... Comparison circuit 14 ... Minimum value storage circuit 15 ... Upper limit value calculation circuit 16 ... Subtractor 17 ... Adder 18 ... Delay circuit 19 ... Maximum value extraction circuit 20 ... Comparison circuit 21 ... Maximum value storage circuit 22 ... Threshold determination circuit 23 ... Weighting circuit 24 ... Upper limit generation circuit 25 ... Upper limit calculation circuit 26 ... Subtractors 27, 28 ... Multiplier 29 ... Adder

Claims (3)

伝送路推定用信号の受信電力を演算する受信電力演算手段と、
前記受信電力演算手段の出力値から最大値を抽出する最大値抽出手段と、
前記受信電力演算手段の出力値から前記最大値抽出手段における最大値抽出の上限値を生成する上限値生成手段を有し、
前記最大値抽出手段は前記上限値以下の範囲で最大値を抽出することを特徴とするOFDM復調装置。
Received power calculation means for calculating the received power of the transmission path estimation signal;
Maximum value extracting means for extracting the maximum value from the output value of the received power calculating means;
An upper limit value generating means for generating an upper limit value of maximum value extraction in the maximum value extracting means from an output value of the received power calculating means;
The OFDM demodulator characterized in that the maximum value extraction means extracts a maximum value within a range equal to or less than the upper limit value.
前記上限値生成手段は、
前記受信電力演算手段の出力値から平均値を演算する平均値演算手段と、
前記受信電力演算手段の出力値から最小値を抽出する最小値抽出手段と、
[(前記平均値−前記最小値)×α+前記平均値×β]なる演算式(但し、α、βは所定範囲内の任意の値)により前記上限値を演算する上限値演算手段を有することを特徴とする請求項1記載のOFDM復調装置。
The upper limit generation means includes
Average value calculating means for calculating an average value from an output value of the received power calculating means;
Minimum value extracting means for extracting a minimum value from the output value of the received power calculating means;
It has an upper limit value calculating means for calculating the upper limit value by an arithmetic expression [(the average value−the minimum value) × α + the average value × β] (where α and β are arbitrary values within a predetermined range). The OFDM demodulator according to claim 1.
前記上限値演算手段は、
前記αが1の場合には、(前記平均値−前記最小値)に対するαの乗算を行わず、
前記βが1の場合には、前記平均値に対するβの乗算を行わないものであることを特徴とする請求項2記載のOFDM復調装置。
The upper limit calculating means includes
When α is 1, multiplication of α with respect to (the average value−the minimum value) is not performed.
The OFDM demodulator according to claim 2, wherein when β is 1, the average value is not multiplied by β.
JP2004039437A 2004-02-17 2004-02-17 Ofdm demodulator Pending JP2005236350A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004039437A JP2005236350A (en) 2004-02-17 2004-02-17 Ofdm demodulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004039437A JP2005236350A (en) 2004-02-17 2004-02-17 Ofdm demodulator

Publications (1)

Publication Number Publication Date
JP2005236350A true JP2005236350A (en) 2005-09-02

Family

ID=35018901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004039437A Pending JP2005236350A (en) 2004-02-17 2004-02-17 Ofdm demodulator

Country Status (1)

Country Link
JP (1) JP2005236350A (en)

Similar Documents

Publication Publication Date Title
JP4499515B2 (en) Digital video broadcast receiver channel state evaluation apparatus and method for detecting and mitigating co-channel interference
JP4938679B2 (en) Inter-carrier interference canceling apparatus and receiving apparatus using the same
JP2005033793A (en) Apparatus and method for direct measurement of channel state for coded orthogonal frequency division multiplexing receiver
JP4116623B2 (en) Orthogonal frequency multicarrier transmission apparatus and transmission method
JPH1117761A (en) Reception equipment, transmission/reception equipment and communication method
JP3859386B2 (en) Waveform equalizer, waveform equalizer, and receiver
US8798125B2 (en) Phase tracking in communications systems
JP4157159B1 (en) Receiving apparatus and receiving method
JP5337804B2 (en) Self-adaptive frequency interpolator for use with multi-carrier receivers.
JP2010062643A (en) Apparatus and method for receiving orthogonal frequency division multiplexed signal
JP4776311B2 (en) Likelihood corrector and likelihood correction method
JP2007097120A (en) Equalizer and equalizing method
KR101886525B1 (en) Method and appratus for removing inter carrier interference by frequency offset in noma system
JP2010050834A (en) Ofdm digital signal equalizer, equalization method, and repeater device
JPWO2009142027A1 (en) Carrier wave reproducing apparatus and method, and demodulating apparatus
JP2005236350A (en) Ofdm demodulator
JP2007104574A (en) Multicarrier wireless receiver and receiving method
JP2001308820A (en) Device for receiving orthogonal frequency division multiple signal
JP5454237B2 (en) Receiving apparatus and receiving method
JP4902889B2 (en) VSB demodulator and television receiver
JP6214454B2 (en) Differential demodulation apparatus and differential demodulation method
JP5518261B2 (en) Equalizer and equalization method
KR100275703B1 (en) Phase tracking circuit and phase detecting method
JP2010021669A (en) Ofdm signal receiver and relay device
JP5174740B2 (en) Semiconductor integrated circuit and received signal processing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090324

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090714