JP2005234500A - Light receiving device of scanning type laser microscope and scanning type laser microscope using the same - Google Patents

Light receiving device of scanning type laser microscope and scanning type laser microscope using the same Download PDF

Info

Publication number
JP2005234500A
JP2005234500A JP2004046952A JP2004046952A JP2005234500A JP 2005234500 A JP2005234500 A JP 2005234500A JP 2004046952 A JP2004046952 A JP 2004046952A JP 2004046952 A JP2004046952 A JP 2004046952A JP 2005234500 A JP2005234500 A JP 2005234500A
Authority
JP
Japan
Prior art keywords
light receiving
black level
scanning
circuit
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004046952A
Other languages
Japanese (ja)
Other versions
JP4667754B2 (en
Inventor
Isao Ishibe
功 石部
Junichi Okada
純一 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2004046952A priority Critical patent/JP4667754B2/en
Publication of JP2005234500A publication Critical patent/JP2005234500A/en
Application granted granted Critical
Publication of JP4667754B2 publication Critical patent/JP4667754B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Microscoopes, Condenser (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve such a problem that it is difficult to perform the correction of black level of an image at every one frame, particularly one line scanning and it is made necessary to survey the position corresponding to the black level through image processing upon the high speed scanning because a mechanical operation for light shielding of a photoelectric conversion circuit 1 is necessary in order to fetch the data upon the light shielding in the conventional black level correction system and, moreover, the conventional black level correction system can not be applied to a sample having uniform brightness and is susceptible to the influence of fetching errors of images. <P>SOLUTION: The scanning type image input apparatus has a laser beam source which performs optically two-dimensional scanning of the sample and can be controlled so as not to apply laser on the position outside visual field such as retrace line interval, receives the obtained beam through the photoelectric conversion circuit and converts the same into a brightness signal and obtains the information of a sample image by subjecting the brightness signal to the image processing. Therein, by using the retrace line where the beam from the sample is not made incident into the photoelectric conversion circuit, a correction amount of the black level of the image is detected from the signal included in the output of the photoelectric conversion circuit in the state of optical amount 0 and the brightness signal is corrected based on the detected correction amount. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、標本上を光で2次元走査して標本画像を形成する走査型画像入力に係り、特に共焦点走査型光学顕微鏡に関する。   The present invention relates to scanning image input for forming a sample image by scanning a sample two-dimensionally with light, and more particularly to a confocal scanning optical microscope.

光学顕微鏡は、ステージ上に載置したプレパラート上の標本を対物レンズで拡大して観測する構造となっており、一般に標本に対する照明はランプ等の光源からの光をコンデンサレンズを用いて標本の観察領域全体に均等になるようにして照明する構造を採用していた。しかしながら、照明系としてこのような構造を採用した場合、フレア等の問題があり、また、低コントラストの標本を観察するにあたっては大変見ずらいものとなってしまうという問題がある。   An optical microscope has a structure in which a specimen on a preparation placed on a stage is observed by magnifying it with an objective lens. In general, illumination of a specimen uses light from a light source such as a lamp to observe the specimen using a condenser lens. A structure in which illumination is performed so that the entire area is uniform is employed. However, when such a structure is adopted as the illumination system, there are problems such as flare, and there is a problem that it is very difficult to observe when observing a low-contrast sample.

これらの問題を改善するものとして、点状光投射型(スポット光投射型)の光学顕微鏡である共焦点走査型光学顕微鏡が提案された。この共焦点走査型光学顕微鏡はレーザ光源等の点光源を対物レンズを介して観察標本に点状に照射し、これにより観察標本の透過光または反射光もしくは点状光を照射したことにより標本から発生した蛍光を、再び対物レンズ、光学系を介して点状に結像し、これを検出器で検出して像の濃淡情報を得るようにしたものである。   In order to improve these problems, a confocal scanning optical microscope, which is a point light projection type (spot light projection type) optical microscope, has been proposed. This confocal scanning optical microscope irradiates an observation specimen with a point light source such as a laser light source in a point shape via an objective lens, thereby irradiating the observation specimen with transmitted light, reflected light or spot light. The generated fluorescence is imaged in the form of a dot again through the objective lens and the optical system, and this is detected by a detector to obtain the density information of the image.

これだけでは点状光源が照射された点の濃淡情報しか得られないので、標本をx軸及びy軸の方向に移動して2次元面内で機械的に移動させるx−y走査方式や、光路をスキャン走査する走査光学系など、標本と照射点位置とを相対的に2次元走査し、このx−y走査に同期してCRTディスプレイ等の表示装置によりx−y走査位置に対応した各点位置に前記濃度情報の信号と対応する輝点を表示することで、画像として観察できるようにしている。   Since only the intensity information of the point irradiated with the point light source can be obtained by this alone, an xy scanning method in which the specimen is moved in the x-axis and y-axis directions and mechanically moved in the two-dimensional plane, or an optical path A scanning optical system that scans and scans the specimen and the irradiation point position relatively two-dimensionally, and each point corresponding to the xy scanning position is synchronized with the xy scanning by a display device such as a CRT display. By displaying a bright spot corresponding to the signal of the density information at the position, the image can be observed.

さらに近年、生物標本を観察する上で必要な場所のみ点光源をあて、無駄な測定を行わないよう、音響光学素子などを使用したレーザ光源やレーザダイオードを利用して2次元走査の帰線時間あるいは指定した任意の領域以外に励起光源を当てないように制御しているものがある。   In recent years, retrace time of two-dimensional scanning using laser light sources and laser diodes using acousto-optic elements, etc. so that point light sources are used only in places necessary for observing biological specimens and measurement is not wasted. Alternatively, there is a control in which an excitation light source is not applied to a region other than a specified region.

以上は共焦点走査型光学顕微鏡の原理構成である。具体的には、レーザ光で走査されている標本からの透過光、反射光あるいは蛍光を検出器である光電子増倍管やフォトダイオード等の光電変換器により電気信号に変換したものをA/D変換回路によって量子化してからメモリに記憶している。このように共焦点走査型光学顕微鏡は、標本像情報を光電変換器で電気信号に変換してからディジタル信号に変換してメモリに記憶する光電信号処理回路を備えている。   The above is the principle configuration of the confocal scanning optical microscope. Specifically, A / D is obtained by converting transmitted light, reflected light, or fluorescence from a specimen scanned with laser light into an electrical signal by a photoelectric converter such as a photomultiplier tube or a photodiode as a detector. After being quantized by the conversion circuit, it is stored in the memory. As described above, the confocal scanning optical microscope includes a photoelectric signal processing circuit that converts sample image information into an electric signal by a photoelectric converter, converts the sample image information into a digital signal, and stores the digital signal in a memory.

とくに光電変換回路は微小な光強度を電気信号に変換するため、光電子増倍管やフォトダイオードで発生した電荷をコンデンサなどの容量性を持つ素子に蓄積して測定する電圧を増幅する積算方式が採られている。   In particular, photoelectric conversion circuits convert minute light intensities into electrical signals, so there is an integration method that amplifies the voltage to be measured by accumulating charges generated in photomultiplier tubes and photodiodes in capacitive elements such as capacitors. It is taken.

図3に上記共焦点走査型光学顕微鏡において光電変換されたアナログ信号を量子化するまでの回路構成を示している。光電変換回路1に入射した光が光電変換回路1で電気信号に変換され、この電気信号がA/D変換回路2で量子化された後にディジタル値として制御ユニットにおくられる。さらに、このディジタル値はディジタル減算器4で減算処理された後に画像化される。   FIG. 3 shows a circuit configuration until the analog signal photoelectrically converted in the confocal scanning optical microscope is quantized. Light incident on the photoelectric conversion circuit 1 is converted into an electric signal by the photoelectric conversion circuit 1, and the electric signal is quantized by the A / D conversion circuit 2 and then sent to the control unit as a digital value. Further, this digital value is imaged after being subtracted by the digital subtractor 4.

例えば、図4に示される標本を走査する場合、共焦点走査型光学顕微鏡の光学系が図4の標本の一番高い表面に合焦しているとすれば、光電変換回路1からは図2(c)に示すような信号が発生する。すなわち、合焦面では光電変換回路1に入射する光量が増加するために信号レベルが高く、合焦面の前後の走査領域では光電変換回路1に入射する光量が無くなるために信号レベルが0になる。この信号レベルの低くなる部分が最終的な画像の黒レベルとなる。画像で黒レベルとは、光電変換回路へ光が入射しない状態における光電変換回路1の出力に相当するものであり、回路ではオフセット電圧となる。   For example, when scanning the specimen shown in FIG. 4, if the optical system of the confocal scanning optical microscope is focused on the highest surface of the specimen shown in FIG. A signal as shown in (c) is generated. That is, the signal level is high because the amount of light incident on the photoelectric conversion circuit 1 increases on the in-focus surface, and the signal level becomes 0 in the scanning region before and after the in-focus surface because there is no light amount incident on the photoelectric conversion circuit 1. Become. The portion where the signal level becomes low becomes the black level of the final image. The black level in the image corresponds to the output of the photoelectric conversion circuit 1 when no light is incident on the photoelectric conversion circuit, and is an offset voltage in the circuit.

一般に画像の黒レベルは光電変換回路に使用される光電変換素子やオペアンプの出力の温度依存性によって変動する。このため、ディジタル減算回路4の走査型画像入力装置及び走査型プローブ顕微鏡出力に着目すると、図5に示すように複数ラインの走査の間に、1ライン目からnライン目まで画像の黒レベルが変動している。そこで、nライン目のデータ取得が完了後に黒レベルの補正を実施している。なお、図5では縦軸をディジタル減算回路出力をアナログ値に換算して表示している。   In general, the black level of an image varies depending on the temperature dependence of the output of a photoelectric conversion element or an operational amplifier used in a photoelectric conversion circuit. Therefore, paying attention to the scanning image input device and scanning probe microscope output of the digital subtraction circuit 4, the black level of the image from the first line to the nth line is scanned during scanning of a plurality of lines as shown in FIG. It has fluctuated. Therefore, the black level is corrected after the data acquisition for the nth line is completed. In FIG. 5, the vertical axis represents the digital subtraction circuit output converted into an analog value.

上記の黒レベル補正は、シャッタを閉じるなどの方法によって光電変換回路1の入射光を遮断した状態でデータを取り込み、ディジタル減算器4において遮光時のデータを現在の入力データで減算することにより実現される。また、上記したような黒レベル補正方式では、遮光時のデータを取り込むため光電変換回路1を遮光する機械的動作を必要とするので、高速走査時に1フレーム毎、特に1ライン走査毎に画像の黒レベルの補正を実施することが困難である。このため、走査時間中に前記光電変換回路に標本からの光が入射しない部分を使用して前記光電変換回路の出力に含まれる信号から画像の黒レベルの補正量を検出し、この検出した補正量に基づいて前記輝度信号を補正するようにした構成も考えられている。
特開平9-243929 特開平9-297269
The above black level correction is realized by capturing the data with the incident light of the photoelectric conversion circuit 1 blocked by a method such as closing the shutter, and subtracting the data at the time of shading from the current input data in the digital subtractor 4. Is done. Further, since the black level correction method as described above requires a mechanical operation to shield the photoelectric conversion circuit 1 in order to capture data at the time of light shielding, an image is captured every frame, particularly every line scanning, during high-speed scanning. It is difficult to perform black level correction. For this reason, the amount of correction of the black level of the image is detected from the signal included in the output of the photoelectric conversion circuit using the portion where the light from the sample does not enter the photoelectric conversion circuit during the scanning time, and the detected correction A configuration in which the luminance signal is corrected based on the amount is also considered.
JP-A-9-243929 JP-A-9-297269

しかしながら、上記したような黒レベル補正方式では、遮光時のデータを取り込むため光電変換回路1を遮光する機械的動作を必要とするので、高速走査時に1フレーム毎、特に1ライン走査毎に画像の黒レベルの補正を実施することが困難であったり、画像処理で黒レベルに当たる位置を探すという処理が必要となり、その上、一様な明るさを持つ標本には適用できず、画像の取り込み誤差の影響も受けやすい。   However, since the black level correction method as described above requires a mechanical operation to shield the photoelectric conversion circuit 1 in order to capture the data at the time of light shielding, the image is captured every frame, particularly every line scanning, during high-speed scanning. It is difficult to correct the black level, or it is necessary to search for a position corresponding to the black level by image processing. In addition, it cannot be applied to a sample with uniform brightness, and image capture errors Also susceptible to.

本発明は、上記のような実情に鑑みてなされたもので、標本走査中に光電変換回路への入射光を高速で遮断することで画像の黒レベルを補正でき、走査速度の高速な共焦点走査型光学顕微鏡においてもリアルタイムの画像の黒レベル補正を実現し、黒レベルの安定した画像を得られる走査型顕微鏡を提供することを目的とする。   The present invention has been made in view of the above circumstances, and can block the incident light to the photoelectric conversion circuit at high speed during sample scanning, thereby correcting the black level of the image, and confocal with high scanning speed. An object of the present invention is to provide a scanning microscope that can realize black level correction of a real-time image even in a scanning optical microscope and obtain an image with a stable black level.

本発明は、上記目的を達成するために以下のような手段を講じた。本発明は、標本を光学的に2次元走査し、且つ、帰線区間など視野外の位置でレーザを当てないように制御することのできるレーザ光源を持ち、得られた該標本からの光を光電変換回路で受光して輝度信号に変換し、この輝度信号を画像処理して標本画像の情報を取得する走査型画像入力装置において、走査時間中に前記光電変換回路に標本からの光が入射しない(画像データの取得を行わない時間)帰線区間を使用して、光量0の状態で前記光電変換回路の出力に含まれる信号から画像の黒レベルの補正量を検出し、この検出した補正量に基づいて前記輝度信号を補正するようにした。   In order to achieve the above object, the present invention takes the following measures. The present invention has a laser light source that can optically two-dimensionally scan a sample and can be controlled so as not to irradiate the laser at a position outside the visual field such as a blanking interval. In a scanning type image input device that receives light by a photoelectric conversion circuit and converts it into a luminance signal, and performs image processing on the luminance signal to acquire information on the sample image, light from the sample enters the photoelectric conversion circuit during the scanning time. No (time when image data is not acquired) Using the blanking interval, the black level correction amount of the image is detected from the signal included in the output of the photoelectric conversion circuit in the state of light amount 0, and this detected correction The luminance signal is corrected based on the amount.

図1にレーザー顕微鏡の基本的な構成を示す。標本18に対して励起光を照射するレーザ光源11は少なくとも数μs単位での光源のON/OFF制御が可能な特徴を持ち、光源より照射された励起光は二次元走査装置14によって、対物レンズ17を介して標本にレーザを照射する。このときレーザ光は前記二次元走査装置14によって図6の様なラスタスキャンをおこなう。このラスタスキャンでは平面の一方向に動作した後、元の位置へ動く動作を行う。この時間が帰線時間となり、標本18へレーザを当てることは不要な変化を与えることになるのでレーザの照射はOFFされる。   Figure 1 shows the basic configuration of the laser microscope. The laser light source 11 that irradiates the specimen 18 with excitation light has a feature capable of ON / OFF control of the light source in units of at least several μs. The excitation light emitted from the light source is converted into an objective lens by the two-dimensional scanning device 14. The sample is irradiated with laser through 17. At this time, the laser beam performs a raster scan as shown in FIG. 6 by the two-dimensional scanning device 14. In this raster scan, after moving in one direction on the plane, the movement to the original position is performed. This time becomes a retrace time, and irradiating the sample 18 with a laser gives an unnecessary change, so the laser irradiation is turned off.

標本18に照射された励起光によって生じた蛍光(あるいは反射光)は対物レンズ17を通過して検出光路へと導入される。検出光路では波長選択のフィルタやピンホールと通過した後、必要な波長のみ、受光素子41に入射される。   Fluorescence (or reflected light) generated by the excitation light applied to the specimen 18 passes through the objective lens 17 and is introduced into the detection optical path. In the detection optical path, after passing through a wavelength selection filter or pinhole, only the necessary wavelength is incident on the light receiving element 41.

受光素子41は入射された光の強度に応じて光電変換を行い、電流(電荷)を発生する。この電流量(電荷の総量)は光の強度と相関性を持っている。標本面の情報を二次元情報として構築するには、前記の電流量を一定時間ごとに測定し、レーザの照射位置と対応づけて画像化を行う。   The light receiving element 41 performs photoelectric conversion according to the intensity of incident light, and generates a current (charge). This amount of current (total amount of charges) has a correlation with the intensity of light. In order to construct the sample surface information as two-dimensional information, the current amount is measured at regular intervals, and imaged in association with the laser irradiation position.

電流量を測定する回路(図9)は測定光を受光する受光素子41、受光素子41からの電流を受ける容量性素子42、容量性素子42に蓄積された電荷を放電する放電回路43、放電回路43を制御するアナログスイッチ45、容量性素子に蓄積された電荷を電位差として測定するA/Dコンバータ回路46、A/D コンバータ46からのディジタルデータを測定情報として画像表示装置へ送る回路から構成されている。   A circuit for measuring the amount of current (FIG. 9) includes a light receiving element 41 that receives measurement light, a capacitive element 42 that receives current from the light receiving element 41, a discharge circuit 43 that discharges charges accumulated in the capacitive element 42, a discharge Consists of an analog switch 45 that controls the circuit 43, an A / D converter circuit 46 that measures the charge accumulated in the capacitive element as a potential difference, and a circuit that sends digital data from the A / D converter 46 to the image display device as measurement information Has been.

電流量を測定する回路は測定対象となる電流が数百nA以下と微小であるのでノイズを除去する目的と増幅する目的からアナログの積算回路がもちいられる。アナログ積算回路では前記受光素子41からの電流は容量性を持つ素子に電荷を蓄積し、容量素子42の両端の電位差という形で測定される。この電位差は電荷の蓄積によるので長時間蓄積するほど電位差が大きくなり、電流に含まれるノイズ分も平均化される。電位差はA/Dコンバータなどで測定された後、次の位置での測定のため蓄積された電荷はアナログスイッチ45によって放電回路43へ接続され放電される。   Since the circuit for measuring the amount of current has a very small current to be measured of several hundred nA or less, an analog integrating circuit is used for the purpose of removing noise and the purpose of amplification. In the analog integrating circuit, the current from the light receiving element 41 accumulates electric charge in a capacitive element and is measured in the form of a potential difference between both ends of the capacitive element. Since this potential difference is due to the accumulation of electric charges, the potential difference increases as it accumulates for a long time, and the noise contained in the current is also averaged. After the potential difference is measured by an A / D converter or the like, the charge accumulated for measurement at the next position is connected to the discharge circuit 43 by the analog switch 45 and discharged.

ここで電荷の放電は十分な時間をかけなければ電荷量は0になり得ないため、十分な放電時間の設定が必要となる。また、放電回路44の工夫で積極的に電荷をはき出し、短時間で一定の電圧まで放電するような回路構成を持つことができるが回路要素は複雑となる。さらに一般的に電気回路の構成要素は温度特性を持っており、アナログ積算回路では放電回路内部に温度特性を持ってしまうため、放電量が温度特性を持ってしまうことになっている。このため周囲の温度が変化すると1画素ごとの放電量に変化が生じ、結果として表示画面上で黒レベルの変動が発生し、縞状の存在しない情報が標本の画像に紛れ込んでしまう。   Here, since the amount of charge cannot be zero unless a sufficient time is taken for discharging the charge, it is necessary to set a sufficient discharge time. Further, it is possible to have a circuit configuration in which charges are positively discharged by devising the discharge circuit 44 and discharged to a constant voltage in a short time, but the circuit elements are complicated. Furthermore, generally, the constituent elements of the electric circuit have temperature characteristics, and the analog integration circuit has temperature characteristics inside the discharge circuit, so the discharge amount has temperature characteristics. For this reason, when the ambient temperature changes, the discharge amount for each pixel changes, and as a result, the black level fluctuates on the display screen, and information that does not have stripes is mixed into the sample image.

このような現象を対策するために、回路的に温度補償を行うことは非常に困難なため、ある一点のデータを基準値として測定し、A/D変換後のディジタルデータに基準値分を減算する等の補正処理を行う。   In order to prevent such a phenomenon, it is very difficult to perform temperature compensation in a circuit, so measure a certain point of data as a reference value and subtract the reference value from the digital data after A / D conversion. Correction processing is performed.

黒レベルを補正するための基準値データは光量が0の状態で測定することが必要であり、短時間での変動にも対応するため、頻繁に測定,補正を行う必要がある。そこで、標本を二次元走査するときに発生する水平方向あるいは垂直方向の帰線時間を利用する。この時間は画像表示に必要なデータの測定は行われず、高速On/OFF制御可能なレーザ光源を使用している装置であれば、この時間のみレーザ光をOFFし、標本からの光量を0とすることができる。この時間に必要な黒レベルのデータを取得する。データ取得の方法は通常の受光素子からの輝度情報の測定と同じである。   The reference value data for correcting the black level needs to be measured in a state where the amount of light is 0, and it is necessary to frequently measure and correct in order to cope with fluctuations in a short time. Therefore, the blanking time in the horizontal direction or the vertical direction generated when the sample is scanned two-dimensionally is used. During this time, measurement of data necessary for image display is not performed, and if the device uses a laser light source capable of high-speed on / off control, the laser light is turned off only during this time and the amount of light from the sample is set to 0. can do. The black level data necessary for this time is acquired. The data acquisition method is the same as the measurement of luminance information from a normal light receiving element.

請求項2の場合では、微弱な蛍光を測定するため、1画素辺りの積算時間が非常に長い場合、黒レベルの測定を同じサンプリング時間の条件で測定すると帰線時間の内に完了できないことが起こる。黒レベルの測定自体は理論上いくら長時間積算しても蓄積される受光素子からの電荷は0であるので、測定周期を縮めても問題は生じない。このため、黒レベルの測定のみサンプリングの速度を変更することを行い、帰線時間内に確実にデータを測定、画像取り込みの時間に影響を与えないように動作をさせる。   In the case of claim 2, in order to measure faint fluorescence, if the integration time per pixel is very long, if the black level measurement is measured under the same sampling time conditions, it may not be completed within the retrace time. Occur. The black level measurement itself is theoretically accumulated no matter how long it is accumulated, and the accumulated charge from the light receiving element is 0. Therefore, no problem occurs even if the measurement cycle is shortened. For this reason, the sampling speed is changed only for the measurement of the black level, and the operation is performed so that the data is reliably measured within the blanking time and the image capturing time is not affected.

請求項3の場合、前項で理論上黒レベル測定で蓄積される電荷量は0であるが、実際の回路では回路素子に発生するオフセット電圧、それに伴うリーク電流の発生があるため、長時間の蓄積で黒レベルの基準が図7の様に変化してしまう事がおこる。このため、測定の基準を蓄積の影響が出ない放電終了直後、蓄積の開始時に測定する事を行う。   In the case of claim 3, the amount of charge accumulated in the black level measurement is theoretically 0 in the previous paragraph, but in an actual circuit, there is an offset voltage generated in the circuit element, and a leakage current associated therewith. The black level reference changes as shown in FIG. For this reason, the measurement standard is measured at the start of accumulation immediately after the end of discharge, which does not affect the accumulation.

請求項5の場合、黒レベルの変化には温度の係数が存在するのでサーミスタなど温度を測定することで補正量を計算していく事をおこなう。   In the case of claim 5, since the coefficient of temperature exists in the change of the black level, the correction amount is calculated by measuring the temperature of a thermistor or the like.

請求項6の場合、前記の黒レベル基準の変動で実際の画像データのサンプリング速度と剥離がある場合、黒レベルのオフセットが取りきれず、画像のサンプリング速度を変えるごとに画像の黒レベルの輝度が変化してしまう事が起こる。このため、あらかじめサンプリング速度と黒レベルの変化量を測定しておき、相関性を求めておくことで補正量を調整する事を行う。   In the case of claim 6, when there is an actual image data sampling speed and separation due to the fluctuation of the black level reference, the black level offset cannot be completely removed, and the black level brightness of the image is changed every time the image sampling speed is changed. Happens to change. Therefore, the correction amount is adjusted by measuring the sampling rate and the change amount of the black level in advance and obtaining the correlation.

請求項1の構成によればこの手法によればメカ的な動作など動作に時間を要するものを使用せずレーザ光源の制御で黒レベルを取得することができる。また短時間での補正値が取得できるため、ライン単位での補正が可能となり画面表示された標本像で黒レベルの変動による横縞は発生しなくなる。   According to the configuration of claim 1, according to this method, the black level can be obtained by controlling the laser light source without using a mechanical operation such as a mechanical operation. In addition, since correction values can be acquired in a short time, correction can be performed in units of lines, and horizontal stripes due to black level fluctuations do not occur in the sample image displayed on the screen.

請求項2,3,4の構成によれば通常の画像測定とは別条件でデータの取得が行えるため、補正値のデータ処理の手法が平均化などいろいろと取ることができる。   According to the second, third, third and fourth aspects of the present invention, data can be acquired under conditions other than normal image measurement, so that various correction data processing methods can be used, such as averaging.

請求項5の構成によれば、温度変化に対しても適切な黒レベル補正値を使用することができる。   According to the configuration of claim 5, it is possible to use an appropriate black level correction value even for a temperature change.

請求項6の構成によれば温度センサなどが無くとも補正値の推測で補正を行うことができる。 According to the configuration of claim 6, correction can be performed by estimating the correction value without a temperature sensor or the like.

実施例1を図面を参照して説明する。レーザ光源11とレーザ光の高速ON/OFF制御を行う音響光学素子とレーザ光を標本面へ二次元走査する2軸のガルバノミラーからなる走査装置と標本面からの蛍光あるいは反射光の光量を測定する受光回路と受光回路からの光強度信号を画像化し、且つレーザのON/OFF制御および2次元走査の制御を行う制御ユニットからなるレーザ走査顕微鏡において、前記受光回路は光電子増倍管あるいはフォトダイオード等の受光素子41と、光電変換された電流を蓄積するコンデンサ42と、コンデンサ両端の電位差を変換するADコンバータ46と、蓄積された電荷を放電する放電回路43、放電回路の切り替えを行うアナログスイッチ45からなる回路で構成されている。   Example 1 will be described with reference to the drawings. Laser light source 11 and acousto-optic device that performs high-speed laser ON / OFF control, a scanning device consisting of a two-axis galvanometer mirror that scans the sample surface in two dimensions, and the amount of fluorescence or reflected light from the sample surface In a laser scanning microscope comprising a light receiving circuit and a control unit for imaging a light intensity signal from the light receiving circuit and controlling ON / OFF of the laser and two-dimensional scanning, the light receiving circuit is a photomultiplier tube or a photodiode Light receiving element 41, capacitor 42 that stores photoelectrically converted current, AD converter 46 that converts the potential difference between both ends of the capacitor, discharge circuit 43 that discharges the accumulated charge, and analog switch that switches the discharge circuit It consists of 45 circuits.

レーザ光源11から照射されるレーザ光は制御ユニット54によって、照射されている所が帰線時間か否か判断され、帰線時間である場合レーザ光をOFFするように音響光学素子を制御する。音響光学素子を通過したレーザ光は2軸のガルバノミラーに照射され、標本面へ二次元走査をおこなう。標本面に照射されたレーザ光は蛍光あるいは反射光を起こし、再びガルバノミラーを通過して受光回路へと導かれる。制御ユニット54は二次元走査の位置を管理しながら、画像化する点にレーザが来たときに受光回路からの光量データを受け取る。受け取られたデータはライン、あるいは面のデータにまとめられてディスプレイ上に表示を行う。   The control unit 54 determines whether the laser light emitted from the laser light source 11 is irradiated at a retrace time, and controls the acoustooptic device to turn off the laser light when it is the retrace time. The laser beam that has passed through the acousto-optic device is irradiated onto a biaxial galvanometer mirror, and the sample surface is scanned two-dimensionally. The laser light applied to the sample surface generates fluorescence or reflected light, and again passes through the galvanometer mirror and is guided to the light receiving circuit. The control unit 54 receives the light amount data from the light receiving circuit when the laser comes to the point to be imaged while managing the position of the two-dimensional scanning. The received data is collected into line or surface data and displayed on the display.

前記受光回路は光電子増倍管あるいはフォトダイオード等の受光素子41で標本からの光を光電変換し、変換された電流はコンデンサによって蓄積(積分)され、コンデンサ両端の電位差となる。電位差はADコンバータ46によって検出、ディジタルデータに変換されて画像化を行う制御ユニットへ送られる。また、コンデンサ42に蓄積された電荷はA/Dコンバータ46の測定終了後、次の点での測定のためアナログスイッチ45によって放電回路43に接続され蓄積された電荷を放電する動作を行う。   The light receiving circuit photoelectrically converts light from the sample by a light receiving element 41 such as a photomultiplier tube or a photodiode, and the converted current is accumulated (integrated) by a capacitor to be a potential difference between both ends of the capacitor. The potential difference is detected by the AD converter 46, converted into digital data, and sent to the control unit for imaging. In addition, after the measurement of the A / D converter 46 is completed, the charge accumulated in the capacitor 42 is connected to the discharge circuit 43 by the analog switch 45 for measurement at the next point, and the accumulated charge is discharged.

上記のような標本面の測定を行う中で、黒レベルの測定は二次元走査中の水平あるいは垂直方向の帰線時間の間に測定を行う。レーザ光は帰線時間になったところで音響光学素子で遮断されるので、標本面からの光は0になる。このタイミングで黒レベルの測定を行う。   During the measurement of the specimen surface as described above, the black level is measured during the blanking time in the horizontal or vertical direction during two-dimensional scanning. Since the laser beam is blocked by the acoustooptic device when the retrace time is reached, the light from the sample surface becomes zero. The black level is measured at this timing.

他の光量データと同様の手法でに取られた黒レベルのデータは制御ユニットに取り込まれ、黒レベル補正のため、以降の標本からの光強度データと減算処理を行われる。なお黒レベルの補正値は次の黒レベル測定が行われるまで一定である。
この手法によればメカ的な動作など動作に時間を要するものを使用せずレーザ光源の制御で黒レベルを取得することができる。また短時間での補正値が取得できるため、ライン単位での補正が可能となり画面表示された標本像で黒レベルの変動による横縞は発生しなくなる。
The black level data taken in the same manner as the other light quantity data is taken into the control unit, and the light intensity data from the subsequent specimen is subtracted for black level correction. The black level correction value is constant until the next black level measurement is performed.
According to this method, the black level can be acquired by controlling the laser light source without using a mechanical operation such as a mechanical operation. In addition, since correction values can be acquired in a short time, correction can be performed in units of lines, and horizontal stripes due to black level fluctuations do not occur in the sample image displayed on the screen.

変形例として、レーザ光源は通常のCWレーザに音響光学素子を接続したもので高速On/Off制御を実現したが、音響光学素子以外にEOMや液晶シャッタなどμsオーダーの応答性を持つ素子を使用しても良い。また、単体で高速On/Off制御可能なレーザーダイオードを使用したレーザ光源を使用しても良い。制御ユニット54は画像表示に使用されるパーソナルコンピュータを中心とした専用回路で構成されるが、補正制御までを専用のディジタル回路内に納めても良い。
放電回路は最も簡単なCR放電回路としたが、一定の電位になるよう電荷を吸い出す(加える)チャージ回路としても良い。
As a modification, the laser light source is an ordinary CW laser connected with an acousto-optic device, which achieves high-speed on / off control. In addition to the acousto-optic device, a device with microsecond order response such as EOM or liquid crystal shutter You may do it. Alternatively, a laser light source using a laser diode capable of high-speed on / off control alone may be used. The control unit 54 is composed of a dedicated circuit centered on a personal computer used for image display, but the control up to correction control may be housed in a dedicated digital circuit.
Although the discharge circuit is the simplest CR discharge circuit, it may be a charge circuit that sucks out (adds) charges so as to have a constant potential.

実施例2を説明する。実施例1の構成で、黒レベルの補正値を取得するための条件を切り替える手法であって、実施例1の構成に加え、制御ユニットは受光回路内のA/Dコンバータ46およびアナログスイッチ45の動作周波数を測定中任意に変更できる。   Example 2 will be described. In the configuration of the first embodiment, a method for switching the conditions for obtaining the black level correction value is provided. In addition to the configuration of the first embodiment, the control unit includes the A / D converter 46 and the analog switch 45 in the light receiving circuit. The operating frequency can be changed arbitrarily during measurement.

通常の画素ごとの測定を終え、帰線時間になったら受光回路のサンプリング速度を黒レベル測定用のサンプリング速度に変更する。その後変更されたサンプリング速度で黒レベルの測定を行う。このため、画像データのサンプリング速度によらず、放電完了後から一定時間後の電位を測定する動作を行う。これによりサンプリング速度を変更して画像を取得しても同じ条件下で黒レベルの測定を行うことができる。   When the normal pixel-by-pixel measurement is finished and the retrace time is reached, the sampling speed of the light receiving circuit is changed to a sampling speed for black level measurement. The black level is then measured at the changed sampling rate. For this reason, the operation of measuring the potential after a predetermined time from the completion of discharge is performed regardless of the sampling rate of the image data. As a result, the black level can be measured under the same conditions even if the sampling rate is changed and an image is acquired.

実施例1の手法では通常の画素ごとのデータを取るのと同じサンプリング間隔で黒レベルのデータを取得するが、このサンプリング間隔が長くなった場合、黒レベル測定が基線時間内で終わらないことがおきる。このような場合黒レベル測定の時のみ速度を変更することで測定を基線時間内に完了することができる。   In the method of the first embodiment, black level data is acquired at the same sampling interval as that for normal pixel-by-pixel data. However, when this sampling interval becomes longer, the black level measurement may not end within the baseline time. It happens. In such a case, the measurement can be completed within the baseline time by changing the speed only during the black level measurement.

さらに放電完了から一定時間後のデータを必ず取ることができるので、外部からコンデンサ52に流入した電荷分によるチャージが特定できる。特に放電から蓄積に変わる瞬間の電位の過渡応答があるのでこのような部分をさけてデータの取得が可能となる。   Furthermore, since data after a certain time from the completion of the discharge can be taken without fail, the charge due to the charge flowing into the capacitor 52 from the outside can be specified. In particular, since there is a transient response of the potential at the moment of changing from discharge to accumulation, it is possible to obtain data by avoiding such a portion.

変形例として、サンプリング速度を変更できることから黒レベルの測定を1帰線時間内に複数回サンプリングして平均化等の演算処理をして補正値としても良い。   As a modification, since the sampling speed can be changed, the black level measurement may be sampled a plurality of times within one retrace time, and an arithmetic process such as averaging may be performed to obtain a correction value.

実施例3を説明する。実施例2の構成に加え、サーミスタなその温度測定手段を受光回路周辺にもち、制御ユニットは黒レベルの温度特性を保持しており、前記温度測定手段から温度情報を得ることで温度変化が生じた場合でも適切な補正値が求められることができる、受光回路である。   Example 3 will be described. In addition to the configuration of the second embodiment, the thermistor temperature measuring means is provided around the light receiving circuit, and the control unit retains the black level temperature characteristic, and temperature change occurs by obtaining temperature information from the temperature measuring means. This is a light receiving circuit in which an appropriate correction value can be obtained even in the case of an error.

黒レベル変動の原因である放電仕切れない電流あるいは界外部から漏れて来る電荷は温度依存性がある。このため、図8のように一定時間経過後の黒レベル(オフセット量)は変化する。ここで実施例2の手法では放電完了から一定時間後のデータを黒レベルとするため、実際の画像データ取得の時と取り込みのタイミングが異なる場合、黒レベル量に差が生じる。このため、このような場合温度変化量を考慮して補正値を決める必要がある。   The current that does not partition the discharge, which is the cause of black level fluctuations, or the charge that leaks from the outside of the field is temperature dependent. For this reason, as shown in FIG. 8, the black level (offset amount) after a predetermined time has changed. Here, in the method of the second embodiment, the data after a certain time from the completion of the discharge is set to the black level. Therefore, when the actual image data acquisition time and the capture timing are different, there is a difference in the black level amount. Therefore, in such a case, it is necessary to determine the correction value in consideration of the temperature change amount.

サーミスタは受光回路、特に温度係数に関わるコンデンサ42や放電回路43周辺に配置される。受光回路の温度を検出したサーミスタは変換回路を介して制御ユニットに取り込まれる。制御ユニットは事前に各サンプリング速度と温度変化による黒レベルの関係をテーブルデータあるいは関数として持っており、サーミスタからの温度情報と、現在の黒レベル測定値からサンプリング速度に対して最適な補正値を求め、画像処理に使用する。   The thermistor is arranged around the light receiving circuit, particularly the capacitor 42 and the discharge circuit 43 related to the temperature coefficient. The thermistor that detects the temperature of the light receiving circuit is taken into the control unit via the conversion circuit. The control unit has in advance the relationship between the sampling speed and the black level due to temperature changes as table data or a function, and the optimum correction value for the sampling speed is obtained from the temperature information from the thermistor and the current black level measurement value. Obtained and used for image processing.

変形例として温度測定手段はサーミスタ以外に感温抵抗などを使用してもいい。   As a modification, the temperature measuring means may use a temperature sensitive resistor in addition to the thermistor.

実施例4を説明する。実施例2の構成に加え、制御ユニットは任意の時間ごとの黒レベルの温度特性を保持しており、黒レベルを時間を変えて何点か測定することから温度情報を推測し、温度変化が生じた場合でも適切な補正値が求められることができる、受光回路である。   Example 4 will be described. In addition to the configuration of the second embodiment, the control unit holds the temperature characteristics of the black level for each arbitrary time, and the temperature information is estimated by measuring several points of the black level by changing the time. Even if it occurs, the light receiving circuit can obtain an appropriate correction value.

実施例3で述べたように温度はコンデンサ42に蓄積される電荷量に影響を及ぼす。しかし、温度変化の少ない微小時間内に何点か黒レベルを測定することで図8のように、一定時間経過後の黒レベルを推定することは数値解析を行うことで容易に行える。   As described in the third embodiment, the temperature affects the amount of charge accumulated in the capacitor 42. However, it is easy to estimate the black level after a lapse of a certain time as shown in FIG. 8 by measuring several black levels within a minute time with little temperature change, by performing numerical analysis.

制御ユニットは帰線時間でコンデンサ42に蓄積された電荷の放電完了からたとえば100ns,500ns,1000nsなど数点ある時間経過後の黒レベルを測定する。制御ユニットはさらに測定された各時間ごとの黒レベルデータから、直線補間あるいは最小二乗補間、スプライン補間など測定していない時間経過後の黒レベルを求めるのに必要な補正関数を求める。この補正関数から画像データ取得時のサンプリング周期での黒レベルをもとめて、画像の補整に使用する。   The control unit measures the black level after elapse of a certain number of points such as 100 ns, 500 ns, 1000 ns, etc. from the completion of the discharge of the charge accumulated in the capacitor 42 during the retrace time. The control unit further obtains a correction function necessary for obtaining the black level after the lapse of the time not measured, such as linear interpolation, least square interpolation, or spline interpolation, from the measured black level data for each time. From this correction function, the black level in the sampling period at the time of image data acquisition is obtained and used for image correction.

この方式は温度変化時の黒レベル変動の特性がわかっていれば、最適な補間関数を導くことで、温度センサなど無くともある程度正確に黒レベルの補正値を得ることができる。   In this method, if the characteristics of the black level fluctuation at the time of temperature change are known, an optimum interpolation function is derived, so that the black level correction value can be obtained with a certain degree of accuracy even without a temperature sensor.

レーザー顕微鏡の基本的な構成を示す図である。It is a figure which shows the basic composition of a laser microscope. 標本の一番高い表面に合焦している場合の画像信号を示す図である。It is a figure which shows the image signal in the case of being focused on the highest surface of a sample. 光電変換されたアナログ信号を量子化するまでの回路構成を示す図である。It is a figure which shows the circuit structure until it quantizes the analog signal photoelectrically converted. 共焦点走査型光学顕微鏡の標本の例を示す図である。It is a figure which shows the example of the sample of a confocal scanning optical microscope. 複数ラインの走査の間に画像の黒レベルが変動していることを示す図である。It is a figure which shows that the black level of an image is fluctuate | varied between the scanning of several lines. 二次元走査装置によるラスタスキャンをしめす図である。It is a figure which shows the raster scan by a two-dimensional scanner. リーク電流による長時間の蓄積で黒レベルの基準の変化を示す図である。It is a figure which shows the change of the reference | standard of a black level by long-time accumulation | storage by leak current. 一定時間経過後の黒レベル(オフセット量)の変化を示す図である。It is a figure which shows the change of the black level (offset amount) after progress for a fixed time. 電流量を測定する回路を示す図である。It is a figure which shows the circuit which measures an electric current amount.

符号の説明Explanation of symbols

1:光電変換回路
2:A/D変換回路

4:ディジタル減算回路

11: レーザ光源
12:コリメータレンズ
13:ダイクロイックミラー
14: 二次元走査装置
15:レンズ
16:ダイクロイックミラー
17:対物レンズ
18:標本
19:ステージ

21a:バリアフィルタ
22a:集光レンズ
23a:受光素子
24:コンデンサレンズ
25:ビームスプリッタ
26:リングスリット
27:受光素子
28:観察光学系
29:透過照明光学系
30:落射照明光学系

41:受光素子
42:容量性素子
43:放電回路

45:アナログスイッチ
46:A/Dコンバータ回路


54:制御ユニット

1: Photoelectric conversion circuit 2: A / D conversion circuit

4: Digital subtraction circuit

11: Laser light source 12: Collimator lens 13: Dichroic mirror 14: Two-dimensional scanning device 15: Lens 16: Dichroic mirror 17: Objective lens 18: Sample 19: Stage

21a: barrier filter 22a: condenser lens 23a: light receiving element 24: condenser lens 25: beam splitter 26: ring slit 27: light receiving element 28: observation optical system 29: transmission illumination optical system 30: incident illumination optical system

41: Light receiving element 42: Capacitive element 43: Discharge circuit

45: Analog switch 46: A / D converter circuit


54: Control unit

Claims (7)

ON/OFF制御可能なレーザ光源ユニットと、
レーザ光を標本面へ二次元走査する走査装置と、
標本からの蛍光あるいは反射光の光量を測定する受光回路と、
受光回路からの光強度信号を画像化し、且つレーザのON/OFF制御および2次元走査の制御を行う制御ユニットからなるレーザ走査顕微鏡において、
受光回路は受光素子と、
光電変換された電流を蓄積するコンデンサと、
コンデンサ両端の電位差を変換するADコンバータと、
蓄積された電荷を放電する放電回路と、
放電回路の切り替えを行うスイッチからなる回路で構成されている受光回路であって、
表示画像輝度の基準値を走査中のデータ取得時間外にレーザを遮断して輝度0の基準値を測定する事を特徴とした受光装置。
A laser light source unit capable of ON / OFF control,
A scanning device for two-dimensionally scanning laser light onto the sample surface;
A light receiving circuit for measuring the amount of fluorescence or reflected light from the specimen;
In the laser scanning microscope consisting of a control unit that images the light intensity signal from the light receiving circuit and controls the ON / OFF control of the laser and the two-dimensional scanning,
The light receiving circuit includes a light receiving element,
A capacitor for accumulating photoelectrically converted current;
An AD converter that converts the potential difference across the capacitor;
A discharge circuit for discharging the accumulated charge;
A light receiving circuit composed of a circuit comprising a switch for switching a discharge circuit,
A light receiving device characterized by measuring a reference value of luminance 0 by cutting off a laser outside a data acquisition time during scanning of a reference value of display image luminance.
請求項1の構成において、制御ユニットは画像データ取り込みの周期と基準値測定時の取り込み周期を独立して設定、切り替えることのできる受光装置。 2. The light receiving device according to claim 1, wherein the control unit can set and switch the image data capturing period and the capturing period when measuring the reference value independently. 請求項2の構成において、制御ユニットはコンデンサに蓄積された電荷を蓄積開始直後に基準値を測定することを特徴とした受光装置 3. The light receiving device according to claim 2, wherein the control unit measures the reference value immediately after the accumulation of the charge accumulated in the capacitor is started. 請求項1あるいは2の構成において、制御ユニットはデータ取得時間外に複数回測定し演算処理を行うことにより基準値をもとめることを特徴とした受光装置 3. The light receiving device according to claim 1, wherein the control unit obtains a reference value by performing measurement processing and performing arithmetic processing a plurality of times outside the data acquisition time. 請求項2の構成に加え、受光回路の温度測定手段を備え、制御ユニットは基準値の温度変化を補正する演算を行うことを特徴とした受光装置 3. A light receiving device comprising a temperature measuring means of a light receiving circuit in addition to the configuration of claim 2, wherein the control unit performs a calculation for correcting a temperature change of the reference value. 請求項3の構成において、制御ユニットは複数の測定から基準値を演算し求めることができることを特徴とした受光装置。 4. The light receiving device according to claim 3, wherein the control unit can calculate and obtain a reference value from a plurality of measurements. 請求項1ないし6のいずれか一つに記載の受光装置を用いるレーザ走査顕微鏡。











A laser scanning microscope using the light receiving device according to claim 1.











JP2004046952A 2004-02-23 2004-02-23 Light receiving device for scanning laser microscope and scanning laser microscope using the same Expired - Fee Related JP4667754B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004046952A JP4667754B2 (en) 2004-02-23 2004-02-23 Light receiving device for scanning laser microscope and scanning laser microscope using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004046952A JP4667754B2 (en) 2004-02-23 2004-02-23 Light receiving device for scanning laser microscope and scanning laser microscope using the same

Publications (2)

Publication Number Publication Date
JP2005234500A true JP2005234500A (en) 2005-09-02
JP4667754B2 JP4667754B2 (en) 2011-04-13

Family

ID=35017477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004046952A Expired - Fee Related JP4667754B2 (en) 2004-02-23 2004-02-23 Light receiving device for scanning laser microscope and scanning laser microscope using the same

Country Status (1)

Country Link
JP (1) JP4667754B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009058377A (en) * 2007-08-31 2009-03-19 Hitachi Kokusai Electric Inc Inspection apparatus
EP2664902A1 (en) 2012-05-18 2013-11-20 Olympus Corporation Photodetector for laser scanning microscope
JP2014137564A (en) * 2013-01-18 2014-07-28 Olympus Corp Scanning laser microscope device
JP2015136573A (en) * 2014-01-24 2015-07-30 オリンパス株式会社 Optical scanning observation device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09243929A (en) * 1996-03-04 1997-09-19 Olympus Optical Co Ltd Scanning type laser microscope
JPH09297269A (en) * 1996-05-01 1997-11-18 Olympus Optical Co Ltd Scanning image input device and scanning probe microscope
JP3098532B2 (en) * 1990-11-05 2000-10-16 キヤノン株式会社 Image reading device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61215553A (en) * 1985-03-20 1986-09-25 Toppan Printing Co Ltd Inspecting device for film plate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3098532B2 (en) * 1990-11-05 2000-10-16 キヤノン株式会社 Image reading device
JPH09243929A (en) * 1996-03-04 1997-09-19 Olympus Optical Co Ltd Scanning type laser microscope
JPH09297269A (en) * 1996-05-01 1997-11-18 Olympus Optical Co Ltd Scanning image input device and scanning probe microscope

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009058377A (en) * 2007-08-31 2009-03-19 Hitachi Kokusai Electric Inc Inspection apparatus
EP2664902A1 (en) 2012-05-18 2013-11-20 Olympus Corporation Photodetector for laser scanning microscope
JP2013242371A (en) * 2012-05-18 2013-12-05 Olympus Corp Light detection device
US9170151B2 (en) 2012-05-18 2015-10-27 Olympus Corporation Photodetector, for use in a laser microscope, with offset correction for uniform black levels
JP2014137564A (en) * 2013-01-18 2014-07-28 Olympus Corp Scanning laser microscope device
JP2015136573A (en) * 2014-01-24 2015-07-30 オリンパス株式会社 Optical scanning observation device
US10151916B2 (en) 2014-01-24 2018-12-11 Olympus Corporation Optical scanning observation apparatus

Also Published As

Publication number Publication date
JP4667754B2 (en) 2011-04-13

Similar Documents

Publication Publication Date Title
JP6086948B2 (en) Method for generating an image with an extended dynamic range, control unit (34) or computer program for implementing such a method, and optical system
KR100885927B1 (en) Apparatus and method for measuring fluorescence lifetime
US20110031418A1 (en) Optical sensor measurement and crosstalk evaluation
US7709773B2 (en) Scanning optical device which sets hardware in association with a depth of a focus position based on hardware set values stored in association with depths of focus positions
TWI595227B (en) Semiconductor element inspection apparatus and semiconductor element inspection method
JP2000275541A (en) Laser microscope
JP4667754B2 (en) Light receiving device for scanning laser microscope and scanning laser microscope using the same
JP4542302B2 (en) Confocal microscope system
JP6305115B2 (en) Scanning laser microscope
JP2013003386A (en) Image pickup apparatus and virtual slide device
JP3618481B2 (en) Laser scanning microscope
JP2012002732A (en) Light detection circuit
JP3453595B2 (en) Multi-wavelength fluorescence measurement device
JP6000671B2 (en) Photodetection system and microscope system
JPH09297269A (en) Scanning image input device and scanning probe microscope
JPH09236750A (en) Determining method measuring parameter of scanning microscope
JP2005221368A (en) Observation device and observation method
JP4812276B2 (en) Photodetection circuit and laser microscope provided with the photodetection circuit
JP2005291720A (en) Fluorescent detecting device, and contrasting density information correcting method and program
JP6898729B2 (en) Detection device, microscope system and detection method
JP2005321728A (en) Method for determining measurement parameter of scanning type microscope
JP2006017613A (en) Interference image measuring instrument
JP2525893B2 (en) Fluorescence characteristic inspection device
US11900574B2 (en) Image processing system and image processing method
US20230400674A1 (en) Laser scanning microscope, image processing apparatus, and method of operating laser scanning microscope

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100430

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4667754

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees