JP2005233700A - Scanning probe microscope equipped with scanning electron microscope - Google Patents

Scanning probe microscope equipped with scanning electron microscope Download PDF

Info

Publication number
JP2005233700A
JP2005233700A JP2004040756A JP2004040756A JP2005233700A JP 2005233700 A JP2005233700 A JP 2005233700A JP 2004040756 A JP2004040756 A JP 2004040756A JP 2004040756 A JP2004040756 A JP 2004040756A JP 2005233700 A JP2005233700 A JP 2005233700A
Authority
JP
Japan
Prior art keywords
sample
base
microscope
sem
scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004040756A
Other languages
Japanese (ja)
Other versions
JP4223971B2 (en
Inventor
Susumu Aoki
進 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP2004040756A priority Critical patent/JP4223971B2/en
Publication of JP2005233700A publication Critical patent/JP2005233700A/en
Application granted granted Critical
Publication of JP4223971B2 publication Critical patent/JP4223971B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem wherein a noise is shown on an SEM image and an SPM image owing to vibration of the SEM. <P>SOLUTION: A sample observation device is equipped with a sample observation chamber storing a sample inside and kept in the vacuum state, a scanning probe microscope for detecting a physical quantity acting between a probe and the sample, a charged particle microscope for observing the sample, and the first base having a vibration isolation means installed in the sample observation chamber. The sample observation device is characterized by installing a sample stage for holding the sample, the scanning probe microscope and the charged particle microscope on the first base. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は走査電子顕微鏡を備えた、走査形トンネル顕微鏡、原子間力顕微鏡、磁気力顕微鏡、摩擦力顕微鏡、マイクロ粘弾性顕微鏡、表面電位差顕微鏡、走査形近接場顕微鏡及びその類似装置の総称である走査形プローブ顕微鏡に関するものである。   The present invention is a generic term for a scanning tunnel microscope, an atomic force microscope, a magnetic force microscope, a friction force microscope, a micro-viscoelastic microscope, a surface potential difference microscope, a scanning near-field microscope, and similar devices equipped with a scanning electron microscope. The present invention relates to a scanning probe microscope.

走査形プローブ顕微鏡(以下、SPMという)は原子レベルの表面形状及び物性を測定することができるが、測定領域が小さい。また、余り凹凸の大きいものの測定は不得意であるが、表面の凹凸が一様でない試料も多い。従って、SPMにより試料を観察する場合は、あらかじめ試料上の観察したい領域を選定し、SPMの探針をその領域に正確に位置させることが必要となる。   A scanning probe microscope (hereinafter referred to as SPM) can measure the surface shape and physical properties at the atomic level, but has a small measurement area. In addition, although it is not good at measuring even those with very large irregularities, many samples have uneven surface irregularities. Therefore, when observing a sample by SPM, it is necessary to select a region to be observed on the sample in advance and to accurately position the SPM probe in that region.

そこで、試料上の観察したい領域を選定する際、解像度ではSPMに及ばないが測定領域が広く、試料表面の凹凸の影響を受け難い走査電子顕微鏡(以下、SEMという)を使用することが有効である。   Therefore, when selecting the region to be observed on the sample, it is effective to use a scanning electron microscope (hereinafter referred to as SEM) that does not reach the SPM in the resolution but has a wide measurement region and is not easily affected by the unevenness of the sample surface. is there.

従来、図5のように、真空を保持した試料観察室に真空フランジを介して走査電子顕微鏡を設置し、別の真空フランジの蓋に固定された第2の基台18を介して走査形プローブ顕微鏡を設置していた。また、SEMの視野中心と探針先端との位置合わせを行うためSEMを移動させる必要があるが、SEMは試料観察室に全体が収納されていないので、真空を保持するためにベローズ6を使用している。ベローズ6は強度的に強くなく、SEM像の振動ノイズの原因となっていた。   Conventionally, as shown in FIG. 5, a scanning electron microscope is installed through a vacuum flange in a sample observation chamber holding a vacuum, and a scanning probe is installed through a second base 18 fixed to a lid of another vacuum flange. A microscope was installed. In addition, it is necessary to move the SEM in order to align the center of the field of view of the SEM and the tip of the probe. However, since the entire SEM is not stored in the sample observation chamber, the bellows 6 is used to maintain the vacuum. doing. The bellows 6 is not strong in strength and causes vibration noise of the SEM image.

なお、従来技術としては、真空容器に走査形電子顕微鏡を備えた走査形トンネル顕微鏡(例えば、特許文献1)及び超小型走査電子顕微鏡(例えば、特許文献2)がある。   In addition, as a prior art, there exist a scanning tunnel microscope (for example, patent document 1) provided with the scanning electron microscope in the vacuum vessel, and a microminiature scanning electron microscope (for example, patent document 2).

特開平10−275585JP-A-10-275585 特開平8−222161JP-A-8-222161

しかし、SEMは直接試料観察室に固定されているが、SPM及び試料は除振機構を介して試料観察室に固定されている。このため、SEMとSPMは別々に振動し、結果としてSEM像に振動ノイズが載ってしまう。さらに、重量の大きいSEMの振動が試料観察室を介してSPMに悪影響を及ぼすことがあった。   However, although the SEM is directly fixed in the sample observation chamber, the SPM and the sample are fixed in the sample observation chamber via a vibration isolation mechanism. For this reason, SEM and SPM vibrate separately, and as a result, vibration noise appears on the SEM image. Furthermore, the heavy SEM vibration may adversely affect the SPM through the sample observation chamber.

本発明が解決しようとする問題点は、SEMの振動のためSEM像及びSPM像にノイズが載ることがあるという点である。   The problem to be solved by the present invention is that noise may appear on the SEM image and the SPM image due to the vibration of the SEM.

請求項1の発明は、内部に試料を収容し真空に保持された試料観察室と、探針と前記試料との間に作用する物理量を検出する走査形プローブ顕微鏡と、前記試料を観察する荷電粒子顕微鏡と、前記試料観察室内に設置された除振手段を有する第1の基台と、を備えた試料観察装置において、前記試料を保持する試料ステージ、前記走査形プローブ顕微鏡及び前記荷電粒子顕微鏡が第1の前記基台に設置されたことを特徴とした試料観察装置である。   According to the first aspect of the present invention, there is provided a sample observation chamber in which a sample is housed and held in a vacuum, a scanning probe microscope for detecting a physical quantity acting between a probe and the sample, and a charge for observing the sample. In a sample observation apparatus comprising a particle microscope and a first base having a vibration isolation unit installed in the sample observation chamber, a sample stage for holding the sample, the scanning probe microscope, and the charged particle microscope Is a sample observation apparatus characterized in that it is installed on the first base.

請求項2の発明は、前記試料観察室に設置された真空継手と、前記真空継手の蓋と、前記真空継手の蓋に設置された第2の基台と、を備えた請求項1に記載された試料観察装置であって、前記第1の基台が前記第2の基台に設置された試料観察装置である。   The invention of claim 2 comprises the vacuum joint installed in the sample observation chamber, the lid of the vacuum joint, and a second base installed on the lid of the vacuum joint. In the sample observation device, the first base is a sample observation device installed on the second base.

請求項3の発明は、前記走査形プローブ顕微鏡は走査形トンネル顕微鏡又は原子間力顕微鏡である請求項1又は2に記載された試料観察装置である。   A third aspect of the present invention is the sample observation apparatus according to the first or second aspect, wherein the scanning probe microscope is a scanning tunnel microscope or an atomic force microscope.

本発明により、SEMとSPMを同一の除振機構を備えた基台に載せることができ、ノイズの少ない高分解能のSEM像及びSPM像を得ることができた。   According to the present invention, the SEM and SPM can be mounted on a base having the same vibration isolation mechanism, and a high-resolution SEM image and SPM image with less noise can be obtained.

以下、発明を実施するための最良の形態により、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail according to the best mode for carrying out the invention.

本発明の構成を図を用いて説明する。図1は試料観察室である超高真空チャンバの断面図である。超高真空チャンバ20は図示しない真空ポンプが接続され、超高真空が保持されている。超高真空チャンバ20には真空フランジ19が設置されており、図示しないパッキングを有した蓋で気密が保持されている。蓋には第2の基台18が設置されており、第2の基台18上面にはゴムスタック除振機構等の除振機構17を介して第1の基台16が設置されている。第1の基台16上面にはXYテーブルから構成される試料ステージ13が設置されており、試料ステージ13には試料11が交換自在に置載されている。   The configuration of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view of an ultra-high vacuum chamber which is a sample observation room. The ultra-high vacuum chamber 20 is connected to a vacuum pump (not shown) and maintains an ultra-high vacuum. A vacuum flange 19 is installed in the ultra-high vacuum chamber 20, and airtightness is maintained by a lid having a packing (not shown). A second base 18 is installed on the lid, and a first base 16 is installed on the upper surface of the second base 18 via a vibration isolation mechanism 17 such as a rubber stack vibration isolation mechanism. A sample stage 13 composed of an XY table is installed on the upper surface of the first base 16, and the sample 11 is placed on the sample stage 13 in a replaceable manner.

また、第1の基台16上面にはZ粗動機構15が設置されている。Z粗動機構15にはスキャナ14が設置されている。スキャナ14はピエゾ素子から構成され、表面には図示しない電極がメタライズされている。スキャナ14の自由端には探針12が設置されている。   A Z coarse movement mechanism 15 is installed on the upper surface of the first base 16. A scanner 14 is installed in the Z coarse movement mechanism 15. The scanner 14 is composed of a piezoelectric element, and an electrode (not shown) is metallized on the surface. A probe 12 is installed at the free end of the scanner 14.

さらに、第1の基台16の上面にはSEMベース21が設置されており、SEMベース21にはSEM17が設置されている。SEM17内部にはエミッタ1、ガンレンズ4、アライメント電極3、対物絞り5、スキャン電極8、非点補正電極10、対物レンズ9等が設置されている。   Further, the SEM base 21 is installed on the upper surface of the first base 16, and the SEM 17 is installed on the SEM base 21. Inside the SEM 17, an emitter 1, a gun lens 4, an alignment electrode 3, an objective aperture 5, a scan electrode 8, an astigmatism correction electrode 10, an objective lens 9, and the like are installed.

以上、図1における各部の構成について説明したが、次に動作について説明する。第1の基台16は除振機構17を介して第2の基台18の上に設置されているため、超高真空チャンバ20及び超高真空チャンバ20が設置されている図示しない床からの振動が減衰されている。第1の基台16にはSTM27、SEM7及び試料11が設置されているため振動の影響を受け難いうえ、同一の第1の基台16上に設置されているためSTM27、SEM7及び試料11が別々に振動することがない。   The configuration of each unit in FIG. 1 has been described above. Next, the operation will be described. Since the first base 16 is installed on the second base 18 via the vibration isolation mechanism 17, the ultrahigh vacuum chamber 20 and the floor (not shown) on which the ultrahigh vacuum chamber 20 is installed are installed. Vibration is damped. Since the STM 27, SEM 7 and the sample 11 are installed on the first base 16, they are not easily affected by vibrations, and the STM 27, the SEM 7 and the sample 11 are installed on the same first base 16. It does not vibrate separately.

SEM7は以下のように動作する。エミッタ1から放出した電子線はガンレンズ4により収束され、アライメント電極3により軸調整され、対物絞り5を通り、対物レンズ9により、試料11にフォーカスされる。非点補正電極10は非点収差を補正して、試料表面ビーム径をより小さくするためのものである。   The SEM 7 operates as follows. The electron beam emitted from the emitter 1 is converged by the gun lens 4, adjusted in axis by the alignment electrode 3, passed through the objective aperture 5, and focused on the sample 11 by the objective lens 9. The astigmatism correction electrode 10 is for correcting astigmatism and making the sample surface beam diameter smaller.

つまり、SEM7は、試料11の表面を微小電子プローブで走査し、表面から放出される二次電子や反射電子を図示しない検出器で受け、その強度をプローブ走査に同期させた図示しないTVモニタ上に輝点列の像として表示する電子顕微鏡である。試料表面の微細な構造や形態が観察でき、凹凸のある試料の広範囲を観察できる。このため、SEM7により試料11の広い範囲を観察し、STM観察を行う領域を選定することができる。選定された試料の領域に、XYテーブルを備えた試料ステージにより、試料を探針位置に移動させる。   That is, the SEM 7 scans the surface of the sample 11 with a micro electron probe, receives secondary electrons and reflected electrons emitted from the surface with a detector (not shown), and synchronizes the intensity with the probe scan on a TV monitor (not shown). FIG. 3 is an electron microscope that displays an image of a bright spot array. The fine structure and form of the sample surface can be observed, and a wide range of the uneven sample can be observed. For this reason, a wide range of the sample 11 can be observed with the SEM 7 and a region for STM observation can be selected. The sample is moved to the probe position on the selected sample area by the sample stage having the XY table.

SEM7の視野中心とSTM27の探針12のずれは、鏡筒をあらかじめ精度良くSEMベース21に固定することを前提に、SEM7のスキャン電極8にシフト分の電圧を重畳し、電気的に補正することができる。   The deviation between the center of the field of view of the SEM 7 and the probe 12 of the STM 27 is electrically corrected by superimposing the shift voltage on the scan electrode 8 of the SEM 7 on the assumption that the lens barrel is fixed to the SEM base 21 with high accuracy in advance. be able to.

一方、STM観察では、Z粗動機構15をZ方向にスライドさせ、探針12を試料11に数nm程度近づける。微動機構であるスキャナ14により、試料11と金属製探針12との距離をlnm以下に保ち、これらの間に数V程度のバイアス電圧をかけると、探針12と試料11間の真空間隙を通って電子が移動しトンネル電流が流れるという、いわゆるトンネル効果の原理を利用する。トンネル電流は試料11と探針12との距離に敏感であり、距離に対して指数関数的に変化する。そこで、スキャナ14によりこのトンネル電流が一定となるように探針12をZ方向に制御して、試料11表面上を二次元的に走査する。この時Z方向を制御するために印加した電圧を距離換算したデータに基づいて凹凸情報として画像化することにより、試料11表面の凹凸を原子レベルで観察することができる。   On the other hand, in STM observation, the Z coarse movement mechanism 15 is slid in the Z direction, and the probe 12 is brought closer to the sample 11 by about several nm. When the distance between the sample 11 and the metal probe 12 is kept at 1 nm or less by the scanner 14 which is a fine movement mechanism and a bias voltage of about several volts is applied between them, the vacuum gap between the probe 12 and the sample 11 is set. The so-called tunnel effect principle is used, in which electrons move through and a tunnel current flows. The tunnel current is sensitive to the distance between the sample 11 and the probe 12, and varies exponentially with respect to the distance. Therefore, the surface of the sample 11 is two-dimensionally scanned by controlling the probe 12 in the Z direction so that the tunnel current becomes constant by the scanner 14. At this time, the unevenness on the surface of the sample 11 can be observed at the atomic level by imaging the unevenness information based on the data obtained by converting the voltage applied to control the Z direction.

以上のように、SEM7、STM27及び試料11は同じ第1の基台16の上に載っているので、超高真空チャンバ20からの振動の影響を受けてSEM7、STM27及び試料11が独立して振動することなく、両方において同時に高分解能の像を得ることができる。   As described above, since the SEM 7, the STM 27, and the sample 11 are mounted on the same first base 16, the SEM 7, the STM 27, and the sample 11 are independently affected by the influence of vibration from the ultrahigh vacuum chamber 20. A high-resolution image can be obtained simultaneously in both without vibration.

また、SEM7の分解能は対物レンズ9と試料11間距離に依存するが、SEM7を小型化することにより試料11に近づけることができるので、より高分解能のSEM像を得ることができる。   Further, although the resolution of the SEM 7 depends on the distance between the objective lens 9 and the sample 11, since the SEM 7 can be made closer to the sample 11 by downsizing the SEM 7, a higher-resolution SEM image can be obtained.

なお、本発明は、上記実施の形態に限定されるものではなく、種々の変形が可能である。例えば、図2のようにSTM27の探針12先端位置とSEM7の視野中心を合わせるのに、電気的にではなく、垂直方向移動機構22及び水平方向移動機構23を使用して機械的に合わせてもよい。つまり、図2は図1における上面図に相当する図であり、図1のSEMベース21の替わりに垂直方向移動機構22及び水平方向移動機構23を構成し、垂直方向移動機構22にSEM7鏡筒を固定している。   In addition, this invention is not limited to the said embodiment, A various deformation | transformation is possible. For example, as shown in FIG. 2, the tip position of the probe 12 of the STM 27 and the visual field center of the SEM 7 are not mechanically aligned but mechanically aligned using the vertical direction moving mechanism 22 and the horizontal direction moving mechanism 23. Also good. That is, FIG. 2 is a view corresponding to the top view in FIG. 1, and the vertical direction moving mechanism 22 and the horizontal direction moving mechanism 23 are configured instead of the SEM base 21 of FIG. Is fixed.

また、SEM7は図3のようにガンレンズ4と対物レンズ9に、コンデンサレンズの代わりに磁界型レンズを用いてもよい。   Further, the SEM 7 may use a magnetic lens instead of the condenser lens for the gun lens 4 and the objective lens 9 as shown in FIG.

本発明の構成を図を用いて説明する。図4は第1の基台の上面図である。実施例1との相違点は、STMの換わりに原子間力顕微鏡(以下、AFMという)を用いた点であり、他は同様である。   The configuration of the present invention will be described with reference to the drawings. FIG. 4 is a top view of the first base. The difference from Example 1 is that an atomic force microscope (hereinafter referred to as AFM) is used instead of STM, and the others are the same.

図示しない第2の基台上面にはゴムスタック除振機構等の除振機構を介して第1の基台16が設置されている。第1の基台16にはAFM用XYステージ13aが設置されており、AFM用XYステージ13aには試料スキャナ14aが設置されている。試料スキャナ14aはピエゾ素子から構成されており、表面には図示しない電極がコーティングされている。試料スキャナ14a上面には試料11が着脱自在に載置されている。また、第1の基台16にはZ粗動機構15が設置されており、Z粗動機構15には先端に探針を有するカンチレバ24、半導体レーザ25、フォトディテクタ26が設置されている。   A first base 16 is installed on the upper surface of a second base (not shown) via a vibration isolation mechanism such as a rubber stack vibration isolation mechanism. An AFM XY stage 13a is installed on the first base 16, and a sample scanner 14a is installed on the AFM XY stage 13a. The sample scanner 14a is composed of a piezoelectric element, and an electrode (not shown) is coated on the surface. The sample 11 is detachably mounted on the upper surface of the sample scanner 14a. A Z coarse movement mechanism 15 is installed on the first base 16, and a cantilever 24 having a probe at the tip, a semiconductor laser 25, and a photodetector 26 are installed in the Z coarse movement mechanism 15.

さらに、第1の基台16にはSEM7が設置されているが、構成は実施例1と同様である。   Further, the SEM 7 is installed on the first base 16, but the configuration is the same as that of the first embodiment.

以上、図における各部の構成について説明したが、次に動作について説明する。第1の基台16は除振機構17を介して図示しない第2の基台の上に設置されているため、図示しない超高真空チャンバ及び超高真空チャンバが設置されている床からの振動が減衰されている。第1の基台16にはAFM、SEM7及び試料11が設置されているため振動の影響を受け難いうえ、同一の第1の基台16上に設置されているためAFM、SEM及び試料11が別々に振動することがない。   The configuration of each unit in the figure has been described above. Next, the operation will be described. Since the first base 16 is installed on the second base (not shown) via the vibration isolation mechanism 17, vibrations from the ultra high vacuum chamber (not shown) and the floor on which the ultra high vacuum chamber is installed are shown. Is attenuated. Since the AFM, SEM 7 and the sample 11 are installed on the first base 16, the AFM, SEM and the sample 11 are not easily affected by vibrations and are installed on the same first base 16. It does not vibrate separately.

SEM7の動作は、実施例1と同様である。   The operation of the SEM 7 is the same as that in the first embodiment.

一方、AFM観察では、第1の基台16に設置されたZ粗動機構15がスライドして、カンチレバ24の先端に設置された探針を試料11に数nm以下に近づける。微動機構である試料スキャナ14aにより試料11と探針との距離をlnm以下に保ち、試料11を試料スキャナ14aで走査させながら、カンチレバ24のたわみ量を半導体レーザ25とフォトディテクタ26により検出して画像化することにより、試料11表面を原子レベルで観察することが可能である。   On the other hand, in the AFM observation, the Z coarse movement mechanism 15 installed on the first base 16 slides to bring the probe installed at the tip of the cantilever 24 closer to the sample 11 to several nm or less. The distance between the sample 11 and the probe is kept at 1 nm or less by the sample scanner 14a which is a fine movement mechanism, and the amount of deflection of the cantilever 24 is detected by the semiconductor laser 25 and the photodetector 26 while the sample 11 is scanned by the sample scanner 14a. Therefore, the surface of the sample 11 can be observed at the atomic level.

カンチレバ24の先端位置とSEM7の視野中心のずれは、垂直方向移動機構22及び水平方向移動機構23を使用して機械的に合わせる。垂直方向移動機構22及び水平方向移動機構23の方式としては小型化し易い慣性駆動方式等を利用する。   The deviation between the tip position of the cantilever 24 and the center of the visual field of the SEM 7 is mechanically adjusted using the vertical direction moving mechanism 22 and the horizontal direction moving mechanism 23. As a method of the vertical direction moving mechanism 22 and the horizontal direction moving mechanism 23, an inertial drive method or the like that is easy to miniaturize is used.

以上により、SEM7、AFM及び試料は同じ第1の基台16の上に載っているので、超高真空チャンバ20の振動の影響を受けることなく両方とも高分解能を得ることができる。   As described above, since the SEM 7, the AFM, and the sample are mounted on the same first base 16, both can obtain high resolution without being affected by the vibration of the ultra-high vacuum chamber 20.

本発明の実施例1における走査形トンネル顕微鏡を備えた超高真空チャンバの側面断面図である。It is side surface sectional drawing of the ultrahigh vacuum chamber provided with the scanning tunnel microscope in Example 1 of this invention. 本発明の実施例1における他実施例の第1の基台の平面図である。It is a top view of the 1st base of other examples in Example 1 of the present invention. 本発明の実施例1における他実施例の第1の基台の平面図である。It is a top view of the 1st base of other examples in Example 1 of the present invention. 本発明の実施例2における原子間力顕微鏡を備えた第1の基台の平面図である。It is a top view of the 1st base provided with the atomic force microscope in Example 2 of the present invention. 従来技術における走査形トンネル顕微鏡を備えた超高真空チャンバの側面断面図である。It is side surface sectional drawing of the ultrahigh vacuum chamber provided with the scanning tunnel microscope in a prior art.

符号の説明Explanation of symbols

1 エミッタ
2 引出電極
3 アライメント電極
3a ガンアライメントコイル
4 ガンレンズ
5 対物絞り
6 ベローズ
7 SEM
8 スキャン電極
9 対物レンズ
10 非点補正電極
11 試料
12 探針
13 試料ステージ
13a AFM用XYステージ
14 スキャナ
14a 試料スキャナ
15 Z粗動機構
16 第1の基台
17 ゴムスタック除振機構
18 第2の基台
19 真空フランジ
20 超高真空チャンバ
21 SEMベース
22 垂直方向移動機構
23 水平方向移動機構
24 カンチレバ
25 半導体レーザ
26 フォトディテクタ
27 STM
DESCRIPTION OF SYMBOLS 1 Emitter 2 Extraction electrode 3 Alignment electrode 3a Gun alignment coil 4 Gun lens 5 Objective aperture 6 Bellows 7 SEM
8 Scan electrode 9 Objective lens 10 Astigmatism correction electrode 11 Sample 12 Probe 13 Sample stage 13a XY stage for AFM 14 Scanner 14a Sample scanner 15 Z coarse motion mechanism 16 First base 17 Rubber stack vibration isolation mechanism 18 Second Base 19 Vacuum flange 20 Ultra high vacuum chamber 21 SEM base 22 Vertical movement mechanism 23 Horizontal movement mechanism 24 Cantilever 25 Semiconductor laser 26 Photo detector 27 STM

Claims (3)

内部に試料を収容し真空に保持された試料観察室と、
探針と前記試料との間に作用する物理量を検出する走査形プローブ顕微鏡と、
前記試料を観察する荷電粒子顕微鏡と、
前記試料観察室内に設置された除振手段を有する第1の基台と、を備えた試料観察装置において、
前記試料を保持する試料ステージ、前記走査形プローブ顕微鏡及び前記荷電粒子顕微鏡が第1の前記基台に設置されたことを特徴とした試料観察装置。
A sample observation chamber in which a sample is stored and held in a vacuum,
A scanning probe microscope for detecting a physical quantity acting between the probe and the sample;
A charged particle microscope for observing the sample;
A sample observation apparatus comprising: a first base having vibration isolation means installed in the sample observation chamber;
A sample observation apparatus, wherein a sample stage for holding the sample, the scanning probe microscope, and the charged particle microscope are installed on the first base.
前記試料観察室に設置された真空継手と、
前記真空継手の蓋と、
前記真空継手の蓋に設置された第2の基台と、を備えた請求項1に記載された試料観察装置であって、
前記第1の基台が前記第2の基台に設置された試料観察装置。
A vacuum joint installed in the sample observation chamber;
A lid of the vacuum joint;
A sample observation device according to claim 1, comprising a second base installed on the lid of the vacuum joint,
A sample observation apparatus in which the first base is installed on the second base.
前記走査形プローブ顕微鏡は走査形トンネル顕微鏡又は原子間力顕微鏡である請求項1又は2に記載された試料観察装置。   The sample observation apparatus according to claim 1, wherein the scanning probe microscope is a scanning tunnel microscope or an atomic force microscope.
JP2004040756A 2004-02-18 2004-02-18 Scanning probe microscope with scanning electron microscope Expired - Fee Related JP4223971B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004040756A JP4223971B2 (en) 2004-02-18 2004-02-18 Scanning probe microscope with scanning electron microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004040756A JP4223971B2 (en) 2004-02-18 2004-02-18 Scanning probe microscope with scanning electron microscope

Publications (2)

Publication Number Publication Date
JP2005233700A true JP2005233700A (en) 2005-09-02
JP4223971B2 JP4223971B2 (en) 2009-02-12

Family

ID=35016830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004040756A Expired - Fee Related JP4223971B2 (en) 2004-02-18 2004-02-18 Scanning probe microscope with scanning electron microscope

Country Status (1)

Country Link
JP (1) JP4223971B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007232387A (en) * 2006-02-27 2007-09-13 Hitachi High-Technologies Corp Inspection device and method
KR20080060000A (en) * 2006-12-26 2008-07-01 삼성전자주식회사 Apparatus for inspecting sample using a scanning electronic microscope
JP2011228311A (en) * 2011-06-21 2011-11-10 Hitachi High-Technologies Corp Inspection device and inspection method
CN105911311A (en) * 2016-07-05 2016-08-31 北京工业大学 In-situ test system and method for mechanical properties of nano material
CN105928812A (en) * 2016-07-05 2016-09-07 北京工业大学 In-situ high-temperature indentation test system based on scanning electron microscope
JP2016530499A (en) * 2013-06-24 2016-09-29 ディーシージー システムズ、 インコーポレイテッドDcg Systems Inc. Probing-based data acquisition system with an adaptive mode of probing controlled by local sample characteristics
US10539589B2 (en) 2014-06-25 2020-01-21 Fei Efa, Inc. Through process flow intra-chip and inter-chip electrical analysis and process control using in-line nanoprobing

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4054359B2 (en) * 2004-07-02 2008-02-27 シャープ株式会社 Film peeling method and apparatus
WO2017186198A1 (en) 2016-04-27 2017-11-02 Nenovision S.R.O. Method for characterization of a sample surface by using scanning electron microscope and scanning probe microscope

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007232387A (en) * 2006-02-27 2007-09-13 Hitachi High-Technologies Corp Inspection device and method
KR20080060000A (en) * 2006-12-26 2008-07-01 삼성전자주식회사 Apparatus for inspecting sample using a scanning electronic microscope
JP2011228311A (en) * 2011-06-21 2011-11-10 Hitachi High-Technologies Corp Inspection device and inspection method
JP2016530499A (en) * 2013-06-24 2016-09-29 ディーシージー システムズ、 インコーポレイテッドDcg Systems Inc. Probing-based data acquisition system with an adaptive mode of probing controlled by local sample characteristics
US9891280B2 (en) 2013-06-24 2018-02-13 Fei Efa, Inc. Probe-based data collection system with adaptive mode of probing controlled by local sample properties
US10539589B2 (en) 2014-06-25 2020-01-21 Fei Efa, Inc. Through process flow intra-chip and inter-chip electrical analysis and process control using in-line nanoprobing
CN105911311A (en) * 2016-07-05 2016-08-31 北京工业大学 In-situ test system and method for mechanical properties of nano material
CN105928812A (en) * 2016-07-05 2016-09-07 北京工业大学 In-situ high-temperature indentation test system based on scanning electron microscope

Also Published As

Publication number Publication date
JP4223971B2 (en) 2009-02-12

Similar Documents

Publication Publication Date Title
JP4553889B2 (en) Determination method of aberration coefficient in aberration function of particle optical lens
JP3776887B2 (en) Electron beam equipment
US5598002A (en) Electron beam apparatus
US4874945A (en) Electron microscope equipped with scanning tunneling microscope
US10337890B2 (en) Integrated micro actuator and LVDT for high precision position measurements
JP4223971B2 (en) Scanning probe microscope with scanning electron microscope
JP3133307B2 (en) electronic microscope
TW202001975A (en) Apparatus and method for examining and/or processing a sample
JP2010123354A (en) Charged particle beam device
JP2002042713A (en) Scanning electron microscope provided with detection part in objective lens
JP2020017415A (en) Charged particle beam device
US20190212361A1 (en) Sample vessel retention structure for scanning probe microscope
JP4928971B2 (en) Scanning electron microscope
JP3571561B2 (en) Scanning microscope
JP2001006591A (en) Charged particle beam device
JP4221817B2 (en) Projection type ion beam processing equipment
JPH08255589A (en) Scanning electron microscope
JP2000156192A (en) Scanning electron microscope
JP6438759B2 (en) Image vibration reduction device
JP6450153B2 (en) X-ray image capturing unit, electron microscope, and sample image acquiring method
WO2023243063A1 (en) Transmission charged particle beam device and ronchigram imaging method
US20010011707A1 (en) Object carrier for a particle-optical apparatus
JP3039562B2 (en) Composite device with built-in scanning electron microscope
JPH0636726A (en) Scanning microscope
JPS6314374Y2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081028

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081120

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131128

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees