JP2005233649A - 微小溶液採取方法及びその装置 - Google Patents
微小溶液採取方法及びその装置 Download PDFInfo
- Publication number
- JP2005233649A JP2005233649A JP2004039598A JP2004039598A JP2005233649A JP 2005233649 A JP2005233649 A JP 2005233649A JP 2004039598 A JP2004039598 A JP 2004039598A JP 2004039598 A JP2004039598 A JP 2004039598A JP 2005233649 A JP2005233649 A JP 2005233649A
- Authority
- JP
- Japan
- Prior art keywords
- liquid
- nozzle
- suction
- solution
- sample
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
- Sampling And Sample Adjustment (AREA)
- Automatic Analysis And Handling Materials Therefor (AREA)
Abstract
【課題】 外乱による影響がなく、高精度の吸引/吐出液量を得る。
【解決手段】本発明の微小溶液採取方法は、吸引/吐出方法として、ノズル16を分布定数線路となる電極対構造とし、電極間にパルス電圧を印加することにより電磁力を発生させて液体の吸引または吐出を行い、液面/液量検出方法として、ノズルを構成する電極間に放射波を印加し、ノズルが試料界面に接液する時に発生するインピーダンス値の変化とノズルへの試料吸引によって発生するインピーダンス値の変化によって発生する入力信号の反射波を検出し、放射信号と反射信号の振幅値及び時間遅れを演算することによって試料の界面および液量を検出するものである。
【選択図】 図2
【解決手段】本発明の微小溶液採取方法は、吸引/吐出方法として、ノズル16を分布定数線路となる電極対構造とし、電極間にパルス電圧を印加することにより電磁力を発生させて液体の吸引または吐出を行い、液面/液量検出方法として、ノズルを構成する電極間に放射波を印加し、ノズルが試料界面に接液する時に発生するインピーダンス値の変化とノズルへの試料吸引によって発生するインピーダンス値の変化によって発生する入力信号の反射波を検出し、放射信号と反射信号の振幅値及び時間遅れを演算することによって試料の界面および液量を検出するものである。
【選択図】 図2
Description
本発明は、所定の液量を高精度に採取する微小溶液採取方法及び装置に関する。
従来の微小溶液採取方法及び装置は、試料を吸引するためのノズルと、前記ノズルの基端側からノズル内部空間に放射するための超音波発生器と、前記超音波の反射波を受波する超音波センサと、前記超音波センサからの受信信号に基づいてノズル内液面検を検出する手段とを有し、ノズル内の液面にて反射した反射波が超音波センサにて受波することでエコーとして液面を判別し、送信時から液面エコー発生までの時間をノズル内における試料の液面の高さとして認識することでノズル内に吸引された試料の液面を検出して微小溶液を採取している(例えば、特許文献1参照)。
特開平9−264772号公報(第1図)
図9は従来の微小溶液採取装置を示す構成図である。図9において10は分注制御部、11はポンプ駆動機構、16はノズル、20は試料、21は試料容器、50は超音波センサ、51はノズルチップ、52はノズルヘッド、54は超音波であり、ノズル16に接続されたポンプ駆動機構11によりノズル16内部を吸引することで試料20をノズルチップ51内に吸引し、ノズルヘッド52から超音波54をノズル16内部に発生し、ノズルチップ51内の試料20から反射したエコーを超音波センサ50で受波し、超音波54の発信と受波を分注制御部10で時間差として検出することで液面を検知し、その検知値により所定の試料20を吸引するようにポンプ駆動制御信号60をポンプ駆動機構11へ送信し試料20の吸引を行う。
このように従来の微小溶液採取方法及び装置は、超音波の送受信により液面を検知してノズル内に吸引した液量を検出するものである。
このように従来の微小溶液採取方法及び装置は、超音波の送受信により液面を検知してノズル内に吸引した液量を検出するものである。
従来の微小溶液採取方法及び装置は、超音波センサによる放射波と反射波の検出感度が低く、ノズルの長さに応じて誤差が生じるといった問題があった。超音波は不要輻射を発生させると共に外乱によって検出が困難になり、吸引液量の誤差が大きくなるといった問題もあった。また、液体を採取するときはポンプ駆動機構の性能に依存するため目的容量に対する誤差容量の比率が小さい場合には対応できず、高精度な溶液採取ができないといった問題もあった。
そこで、本発明はこのような問題点に鑑みてなされたものであり、電気的な液面検出において不要輻射を抑え、外乱による影響を抑制して高精度の吸引液量が得られると共に、電磁力を利用して微小溶液採取の調整を行うことができる微小溶液採取方法及び装置を提供することを目的とする。
そこで、本発明はこのような問題点に鑑みてなされたものであり、電気的な液面検出において不要輻射を抑え、外乱による影響を抑制して高精度の吸引液量が得られると共に、電磁力を利用して微小溶液採取の調整を行うことができる微小溶液採取方法及び装置を提供することを目的とする。
上記問題を解決するため、本発明は、次のように構成したものである。
請求項1に記載の発明は、溶液を介して所定の間隔で電極対を配置し、前記電極間にパルス電圧を印加し、前記電極間に磁界を発生させ、前記パルス電圧によって発生するパルス電流と前記磁界によって電磁力を発生させて液体の吸引または吐出を行い、微小溶液を採取するものである。
請求項2に記載の発明は、液体を吸引または吐出するノズルを分布定数線路となる電極構造とし、前記電極間にパルス電圧を印加することにより電磁力を発生させて液体の吸引または吐出を行い、微小溶液を採取するものである。
請求項3に記載の発明は、液体の吸引/吐出手段と、液面/液量検出手段とを有し、前記吸引/吐出手段はノズルを分布定数線路となる電極対構造とし、前記電極間にパルス電圧を印加することにより電磁力を発生させて液体の吸引または吐出を行い、前記液面/液量検出手段は前記ノズルを構成する電極間に放射波(放射信号)を印加し、前記ノズルが試料界面に接液する時に発生するインピーダンス値の変化と前記ノズルへの試料吸引によって発生するインピーダンス値の変化によって発生する入力信号の反射波(反射信号)を検出し、前記放射信号と前記反射信号の振幅値及び時間遅れを演算することによって試料の界面および液量を検出し、微小溶液を採取するものである。
請求項4に記載の発明は、前記放射信号と前記反射信号により試料界面への接液とノズル内への試料吸引を識別し、かつ試料界面に接液した後はパルス入力制御信号に応じたパルス電圧を前記電極間に印加しながら吸引液量の調整を行うものである。
また、請求項5に記載の発明は、前記吸引/吐出手段にポンプ駆動機構を加えて溶液の主吸引を行い、前記パルス電流印加によって吸引液量の微調整を行うものである。
請求項6に記載の発明は、液体を吸引または吐出する吸引/吐出手段と、液面を検知し液量を算出する液面/液量検出手段と、これらを制御する制御部とを備えた微小溶液採取装置において、前記吸引/吐出手段は分布定数線路となる電極対を有するノズルと、前記電極間にパルス電圧を印加するパルス電源とからなり、前記液面/液量検出手段は前記ノズルを構成する電極間に放射波(放射信号)を印加する放射波発生回路と、前記反射波を検出する反射波検出回路とからなり、前記電極間にパルス電圧を印加することにより液体の吸引または吐出を行い、並行して前記電極間に放射波(放射信号)を印加し、反射波(反射信号)を検出し、前記放射信号と前記反射信号の振幅値及び時間遅れを演算することによって試料の界面および液量を検出するものである。
請求項7に記載の発明は、前記ノズルが同軸円筒形状であり内部導体と外部導体間はスペーサによって絶縁されたものである。
請求項8に記載の発明は、前記スペーサを比誘電率と個数により一定の特性インピーダンスを得るものである。
請求項9に記載の発明は、前記スペーサを前記ノズルの先端及び接液部以外に配置するものである。
請求項10に記載の発明は、前記ノズルを構成する電極対の表面に被覆膜を施したものである。
請求項11に記載の発明は、前記吸引/吐出手段にポンプ駆動機構を加えて溶液の主吸引を行い、前記パルス電流印加によって吸引液量の微調整を行うものである。
請求項12に記載の発明は、前記制御部に試料界面及び吸引液量検出を行うための放射波として立ち上がり時間とパルス幅をサブμs以下にする機能をもたせたものである。
請求項13に記載の発明は、前記パルス電源を立ち上がり時間とパルス幅がサブms以下にするようにしたものである。
請求項1に記載の発明は、溶液を介して所定の間隔で電極対を配置し、前記電極間にパルス電圧を印加し、前記電極間に磁界を発生させ、前記パルス電圧によって発生するパルス電流と前記磁界によって電磁力を発生させて液体の吸引または吐出を行い、微小溶液を採取するものである。
請求項2に記載の発明は、液体を吸引または吐出するノズルを分布定数線路となる電極構造とし、前記電極間にパルス電圧を印加することにより電磁力を発生させて液体の吸引または吐出を行い、微小溶液を採取するものである。
請求項3に記載の発明は、液体の吸引/吐出手段と、液面/液量検出手段とを有し、前記吸引/吐出手段はノズルを分布定数線路となる電極対構造とし、前記電極間にパルス電圧を印加することにより電磁力を発生させて液体の吸引または吐出を行い、前記液面/液量検出手段は前記ノズルを構成する電極間に放射波(放射信号)を印加し、前記ノズルが試料界面に接液する時に発生するインピーダンス値の変化と前記ノズルへの試料吸引によって発生するインピーダンス値の変化によって発生する入力信号の反射波(反射信号)を検出し、前記放射信号と前記反射信号の振幅値及び時間遅れを演算することによって試料の界面および液量を検出し、微小溶液を採取するものである。
請求項4に記載の発明は、前記放射信号と前記反射信号により試料界面への接液とノズル内への試料吸引を識別し、かつ試料界面に接液した後はパルス入力制御信号に応じたパルス電圧を前記電極間に印加しながら吸引液量の調整を行うものである。
また、請求項5に記載の発明は、前記吸引/吐出手段にポンプ駆動機構を加えて溶液の主吸引を行い、前記パルス電流印加によって吸引液量の微調整を行うものである。
請求項6に記載の発明は、液体を吸引または吐出する吸引/吐出手段と、液面を検知し液量を算出する液面/液量検出手段と、これらを制御する制御部とを備えた微小溶液採取装置において、前記吸引/吐出手段は分布定数線路となる電極対を有するノズルと、前記電極間にパルス電圧を印加するパルス電源とからなり、前記液面/液量検出手段は前記ノズルを構成する電極間に放射波(放射信号)を印加する放射波発生回路と、前記反射波を検出する反射波検出回路とからなり、前記電極間にパルス電圧を印加することにより液体の吸引または吐出を行い、並行して前記電極間に放射波(放射信号)を印加し、反射波(反射信号)を検出し、前記放射信号と前記反射信号の振幅値及び時間遅れを演算することによって試料の界面および液量を検出するものである。
請求項7に記載の発明は、前記ノズルが同軸円筒形状であり内部導体と外部導体間はスペーサによって絶縁されたものである。
請求項8に記載の発明は、前記スペーサを比誘電率と個数により一定の特性インピーダンスを得るものである。
請求項9に記載の発明は、前記スペーサを前記ノズルの先端及び接液部以外に配置するものである。
請求項10に記載の発明は、前記ノズルを構成する電極対の表面に被覆膜を施したものである。
請求項11に記載の発明は、前記吸引/吐出手段にポンプ駆動機構を加えて溶液の主吸引を行い、前記パルス電流印加によって吸引液量の微調整を行うものである。
請求項12に記載の発明は、前記制御部に試料界面及び吸引液量検出を行うための放射波として立ち上がり時間とパルス幅をサブμs以下にする機能をもたせたものである。
請求項13に記載の発明は、前記パルス電源を立ち上がり時間とパルス幅がサブms以下にするようにしたものである。
請求項1に記載の発明によると、溶液にパルス電圧を印加してピンチ効果により吸引または吐出を行うので、吸引/吐出量の調整が高精度で容易にできる。
請求項2に記載の発明によると、分布定数線路となる電極対構造を含んだノズルにしているので、パルス電流によって形成される磁界を内部に封じ込めて外部への漏れを抑えるることができ、かつエネルギーの損失を抑制できる。
請求項3に記載の発明によると、液体の吸引/吐出手段として、分布定数線路となる電極対構造を含んだノズルのノズルの電極間にパルス電圧を印加し液体の吸引または吐出を行い、また、液面/液量検出手段として吸引/吐出手段と同じノズルの電極間に放射波(放射信号)を印加して反射波を検出するので、放射波に対する反射波の信号減衰を最小限に抑えることができると共に試料の液面を高感度に検出することができる。また、ノズルが試料に接液するとノズル先端の反射係数が大きく変動するため容易に接液を感知することができる。
請求項4に記載の発明によると、放射信号と反射信号により接液とノズル内への試料吸引を識別し、かつ試料界面に接液した後はパルス電圧を印加しながら吸引液量の調整を行うので、ノズルの試料への接液と試料吸引の反射信号の違いを容易に感知できると共に、パルス電圧と液量液面検出信号とを所定の間隔で交互に印加することで容易に所定の液量を吸引することができる。
請求項5に記載の発明によると、吸引/吐出手段にポンプ駆動機構を加え、吸引液量の微調整をパルス電流印加によって行うので、ノズルの試料への接液と試料吸引の反射信号の違いを容易に感知できると共に、接液後はポンプ駆動装置で所定液量に対して任意の液量を吸引して最終的な微調整をパルス電圧の印加によるピンチ効果を利用するため、吸引液量の精度がポンプ駆動装置に依存せず高精度の吸引吐出を行うことができる。また任意の液量までポンプ駆動装置を使用するため高速な吸引吐出動作を行うことができる。
請求項6に記載の発明によると、吸引/吐出手段として、分布定数線路となる電極対を有するノズルとパルス電圧を印加するパルス電源とを備え、液面/液量検出手段としてノズルの電極に放射波(放射信号)を印加する放射波発生回路と、反射波を検出する反射波検出回路とを備えているので、パルス電流によって形成される磁界を内部に封じ込めることができ、エネルギーの損失を抑制できると共に外部への漏れ磁界を抑えることができる。放射波に対する反射波の信号減衰を最小限に抑えることができると共に試料の液面を高感度に検出することができる。また、ノズルの試料への接液と試料吸引の反射信号の違いを容易に感知できると共に、パルス電圧と液量液面検出信号とを所定の間隔で交互に印加することで容易に所定の液量を吸引することができる。
請求項7に記載の発明によると、ノズルを同軸円筒形状とし内部導体と外部導体間をスペーサで絶縁したので、外部からの電磁波に対する影響を抑制できると共に、放射波と反射波による不要輻射の外部漏洩を抑えることができる。また、液量検出と試料の吸引吐出を同一構造で行うことができ、構造が簡単であるのでメンテナンス性を向上することができる。
請求項8に記載の発明によると、スペーサを比誘電率と個数により一定の特性インピーダンスを得るようにしたので、ノズルの長さに制限されることなく安定した反射波を検出することができる。
請求項9に記載の発明によると、スペーサをノズルの先端及び接液部以外に配置したので、試料の不純物に対する影響を低減し、かつノズルの洗浄を確実に実行できる。また接液時の反射係数の変化を直接検知することができるので確実に接液を検出することができる。
請求項10に記載の発明によると、ノズルの電極対表面に被覆膜を施したので、耐腐食性を向上することができる。また、導電率の比較的高い試料を用いたときでもスパークを始めとする電気的障害を抑制することができる。
請求項11に記載の発明によると、吸引/吐出手段にポンプ駆動機構を加え、ノズルの電極間に印加するパルス電圧により微小液量の調整を行うので、外部からの電磁波に対する影響を抑制できると共に、放射波と反射波による不要輻射の外部漏洩を抑えることができる。また、構造が簡単であるのでメンテナンス性を向上することができる。
請求項12に記載の発明によると、制御部に試料界面及び吸引液量検出を行う放射波の立ち上がり時間とパルス幅をサブμs以下にする機能をもたせたので、波尾長がある放射波に比べて反射波の検出を容易に行うことができる。また高速パルスを放射波として使用するため、反射波との干渉を最低限に抑えることができる。
請求項13に記載の発明によると、パルス電源を立ち上がり時間とパルス幅がサブms以下のパルス電圧を発生するようにしたので、パルスパワーを利用したピンチ効果と同等の性能を得ることができるため、液量の吸引吐出および微調整を可能とすることができる。
請求項2に記載の発明によると、分布定数線路となる電極対構造を含んだノズルにしているので、パルス電流によって形成される磁界を内部に封じ込めて外部への漏れを抑えるることができ、かつエネルギーの損失を抑制できる。
請求項3に記載の発明によると、液体の吸引/吐出手段として、分布定数線路となる電極対構造を含んだノズルのノズルの電極間にパルス電圧を印加し液体の吸引または吐出を行い、また、液面/液量検出手段として吸引/吐出手段と同じノズルの電極間に放射波(放射信号)を印加して反射波を検出するので、放射波に対する反射波の信号減衰を最小限に抑えることができると共に試料の液面を高感度に検出することができる。また、ノズルが試料に接液するとノズル先端の反射係数が大きく変動するため容易に接液を感知することができる。
請求項4に記載の発明によると、放射信号と反射信号により接液とノズル内への試料吸引を識別し、かつ試料界面に接液した後はパルス電圧を印加しながら吸引液量の調整を行うので、ノズルの試料への接液と試料吸引の反射信号の違いを容易に感知できると共に、パルス電圧と液量液面検出信号とを所定の間隔で交互に印加することで容易に所定の液量を吸引することができる。
請求項5に記載の発明によると、吸引/吐出手段にポンプ駆動機構を加え、吸引液量の微調整をパルス電流印加によって行うので、ノズルの試料への接液と試料吸引の反射信号の違いを容易に感知できると共に、接液後はポンプ駆動装置で所定液量に対して任意の液量を吸引して最終的な微調整をパルス電圧の印加によるピンチ効果を利用するため、吸引液量の精度がポンプ駆動装置に依存せず高精度の吸引吐出を行うことができる。また任意の液量までポンプ駆動装置を使用するため高速な吸引吐出動作を行うことができる。
請求項6に記載の発明によると、吸引/吐出手段として、分布定数線路となる電極対を有するノズルとパルス電圧を印加するパルス電源とを備え、液面/液量検出手段としてノズルの電極に放射波(放射信号)を印加する放射波発生回路と、反射波を検出する反射波検出回路とを備えているので、パルス電流によって形成される磁界を内部に封じ込めることができ、エネルギーの損失を抑制できると共に外部への漏れ磁界を抑えることができる。放射波に対する反射波の信号減衰を最小限に抑えることができると共に試料の液面を高感度に検出することができる。また、ノズルの試料への接液と試料吸引の反射信号の違いを容易に感知できると共に、パルス電圧と液量液面検出信号とを所定の間隔で交互に印加することで容易に所定の液量を吸引することができる。
請求項7に記載の発明によると、ノズルを同軸円筒形状とし内部導体と外部導体間をスペーサで絶縁したので、外部からの電磁波に対する影響を抑制できると共に、放射波と反射波による不要輻射の外部漏洩を抑えることができる。また、液量検出と試料の吸引吐出を同一構造で行うことができ、構造が簡単であるのでメンテナンス性を向上することができる。
請求項8に記載の発明によると、スペーサを比誘電率と個数により一定の特性インピーダンスを得るようにしたので、ノズルの長さに制限されることなく安定した反射波を検出することができる。
請求項9に記載の発明によると、スペーサをノズルの先端及び接液部以外に配置したので、試料の不純物に対する影響を低減し、かつノズルの洗浄を確実に実行できる。また接液時の反射係数の変化を直接検知することができるので確実に接液を検出することができる。
請求項10に記載の発明によると、ノズルの電極対表面に被覆膜を施したので、耐腐食性を向上することができる。また、導電率の比較的高い試料を用いたときでもスパークを始めとする電気的障害を抑制することができる。
請求項11に記載の発明によると、吸引/吐出手段にポンプ駆動機構を加え、ノズルの電極間に印加するパルス電圧により微小液量の調整を行うので、外部からの電磁波に対する影響を抑制できると共に、放射波と反射波による不要輻射の外部漏洩を抑えることができる。また、構造が簡単であるのでメンテナンス性を向上することができる。
請求項12に記載の発明によると、制御部に試料界面及び吸引液量検出を行う放射波の立ち上がり時間とパルス幅をサブμs以下にする機能をもたせたので、波尾長がある放射波に比べて反射波の検出を容易に行うことができる。また高速パルスを放射波として使用するため、反射波との干渉を最低限に抑えることができる。
請求項13に記載の発明によると、パルス電源を立ち上がり時間とパルス幅がサブms以下のパルス電圧を発生するようにしたので、パルスパワーを利用したピンチ効果と同等の性能を得ることができるため、液量の吸引吐出および微調整を可能とすることができる。
以下、本発明の方法の具体的実施例について、図に基づいて説明する。
図1は、本発明の微小溶液採取装置の動作原理を示す側断面図である。図において、13は内部導体、14は外部導体、15はスペーサ、17はパルス電源、20は試料、22は液面、70はパルス電流、71は磁界、72は電磁力である。共通する部分には同一符号を用いている。
本発明が特許文献1と異なる部分は、試料の吸引/吐出をパルス電流によるピンチ効果を利用する部分である。
本発明が特許文献1と異なる部分は、試料の吸引/吐出をパルス電流によるピンチ効果を利用する部分である。
その動作は、所定の信号が入力されることでパルス電源17から内部導体13と外部導体14間にパルス電圧が印加され、印加したパルス電圧に応じたパルス電流70が導通する。パルス電流70は試料20を介して外部導体14と内部導体13間に流れることによって磁界71を発生させ、発生した磁界71によって生じる電磁力72が試料20の液面22aに作用して液面22b面へ吸引する力を発生することによって試料20の吸引が行われる。吸引した試料20の吐出は、パルス電流70の極性を反転させて電磁力72を逆向きに働かせたりパルス電流70を停止することによる試料20の自然落下で行われる。
このような構成にしているため、ピンチ効果を利用した試料20の吸引/吐出を行うことができるのでパルス電流70のパルス幅と波高値、極性で吸引/吐出量を容易に調整することができる。
このような構成にしているため、ピンチ効果を利用した試料20の吸引/吐出を行うことができるのでパルス電流70のパルス幅と波高値、極性で吸引/吐出量を容易に調整することができる。
図2は本発明の実施例1を示す構成図である。図において、10は分注制御部、12はマニホールド、13は内部導体、14は外部導体、15はスペーサ、16はノズル、18は空隙、19は内部導体用空隙、21は試料容器、24は脱気バルブである。
ノズル16は、マニホールド12に内部導体13と外部導体14とを組み立てたもので、両者の距離を一定に保つために同軸円筒形状とし、スペーサ15を介して配置されている。スペーサ15は、図3に詳細を示すように、空隙18と内部導体用空隙19を有している。空隙18の形状は円形や台形などにしている。
本発明が特許文献1と異なる部分は、ノズル本体を分布定数線路で構成し、かつノズル本体が試料液面液量の検出と試料吐出吸引を行う機能を有する部分である。
ノズル16は、マニホールド12に内部導体13と外部導体14とを組み立てたもので、両者の距離を一定に保つために同軸円筒形状とし、スペーサ15を介して配置されている。スペーサ15は、図3に詳細を示すように、空隙18と内部導体用空隙19を有している。空隙18の形状は円形や台形などにしている。
本発明が特許文献1と異なる部分は、ノズル本体を分布定数線路で構成し、かつノズル本体が試料液面液量の検出と試料吐出吸引を行う機能を有する部分である。
つぎに、本実施例の動作を図4および図5を用いて説明する。
図4は微小溶液採取装置の回路図、図5は液量検出と試料吸引/吐出の信号例である。図において、30は放射波発生回路、31は反射波検出回路、32は比較回路、33は時間遅れ検出回路、34は演算回路、35は信号出力回路、36は液量検出回路、37は吸引/吐出回路、40は放射信号、41は反射信号、42は遅れ時間、43は放射波、44は反射波、61はパルス入力制御信号、62はパルス電圧、63は脱気バルブ制御信号である。
先ず、放射波発生回路30から所定の形状に整形された放射波43をノズル16を構成する内部導体13に入力すると放射波43は分布定数線路で構成されるノズル16内を伝播しノズル16先端部のインピーダンスに応じて反射波44が形成され、反射波検出回路31に導入される。このとき比較回路32には放射波発生回路30からの放射信号40と反射波検出回路31からの反射信号41が入力され、それぞれの波高値からノズル16内の液面状態を演算し、演算結果と相関のある信号出力回路35を介してパルス電源17へパルス入力制御信号61が送られ所定のパルス電圧62が内部導体13へ入力され、ピンチ効果を利用した電磁力72の発生により試料20の吸引を行う。同時にノズル16内部の圧力が上昇するため所要液量に応じて信号出力回路35より脱気バルブ制御信号63を脱気バルブ24に入力してノズル16内圧の調整を行う。これらの一連の動作を行うことで所定の液量を吸引する。また、吐出動作を行う場合はパルス電圧62の極性を反転させて電磁力72を逆向きに作用させたり脱気バルブ24を開放することで行われる。
信号入力の時間関係は図4に示されるように、液量検出回路36で得られる放射信号40と反射信号41の波高値と遅れ時間42によってノズル16が試料20に接液しているかについても検出することが可能であり、演算回路34によって得られる演算結果に基づいてパルス入力制御信号61がパルス電源17に入力されてパルス電圧62が出力される。
図4は微小溶液採取装置の回路図、図5は液量検出と試料吸引/吐出の信号例である。図において、30は放射波発生回路、31は反射波検出回路、32は比較回路、33は時間遅れ検出回路、34は演算回路、35は信号出力回路、36は液量検出回路、37は吸引/吐出回路、40は放射信号、41は反射信号、42は遅れ時間、43は放射波、44は反射波、61はパルス入力制御信号、62はパルス電圧、63は脱気バルブ制御信号である。
先ず、放射波発生回路30から所定の形状に整形された放射波43をノズル16を構成する内部導体13に入力すると放射波43は分布定数線路で構成されるノズル16内を伝播しノズル16先端部のインピーダンスに応じて反射波44が形成され、反射波検出回路31に導入される。このとき比較回路32には放射波発生回路30からの放射信号40と反射波検出回路31からの反射信号41が入力され、それぞれの波高値からノズル16内の液面状態を演算し、演算結果と相関のある信号出力回路35を介してパルス電源17へパルス入力制御信号61が送られ所定のパルス電圧62が内部導体13へ入力され、ピンチ効果を利用した電磁力72の発生により試料20の吸引を行う。同時にノズル16内部の圧力が上昇するため所要液量に応じて信号出力回路35より脱気バルブ制御信号63を脱気バルブ24に入力してノズル16内圧の調整を行う。これらの一連の動作を行うことで所定の液量を吸引する。また、吐出動作を行う場合はパルス電圧62の極性を反転させて電磁力72を逆向きに作用させたり脱気バルブ24を開放することで行われる。
信号入力の時間関係は図4に示されるように、液量検出回路36で得られる放射信号40と反射信号41の波高値と遅れ時間42によってノズル16が試料20に接液しているかについても検出することが可能であり、演算回路34によって得られる演算結果に基づいてパルス入力制御信号61がパルス電源17に入力されてパルス電圧62が出力される。
このような構造になっているため、分布定数線路を構成するノズル16がパルス電流70によって形成される磁界71を内部に封じ込めることができるのでエネルギーの損失を抑制できると共に外部への漏れ磁界を抑えることができると共に、放射波43に対する反射波44の信号減衰を最小限に抑えることができ、試料20の液面を高感度に検出することができる。更に、ノズル16が試料20に接液するとノズル16先端の反射係数が大きく変動するため容易に接液を感知することができると共にノズル16の試料20への接液と試料吸引の反射波44を容易に感知できるためパルス電圧62と放射波発生回路30からの放射波43を所定の間隔で交互に印加することで容易に所定の液量を吸引することができる。
また、スペーサ15によって一定の特性インピーダンスを得ることができるためノズル16の長さに制限されることなく安定した反射波44を検出することができると共にノズル16が同軸円筒形状なので外部からの電磁波に対する影響を抑制できる。また、放射波43と反射波44による不要輻射の外部漏洩を抑えることができ、試料20の液量検出と吸引/吐出を同一構造で行うことができると共に、構造が簡単であるのでメンテナンス性を向上することができる
図6は本発明の実施例2を示す構成図である。図において、23は被覆膜である。
本発明が特許文献1と異なる部分は、ノズル本体を分布定数線路で構成し、かつノズル本体が試料液面液量の検出と試料吐出吸引を行う機能を有し、かつノズル表面への液残留を抑制する部分である。
本発明が特許文献1と異なる部分は、ノズル本体を分布定数線路で構成し、かつノズル本体が試料液面液量の検出と試料吐出吸引を行う機能を有し、かつノズル表面への液残留を抑制する部分である。
その動作については、実施例1と同じである。
本実施例ではノズル16の表面に被覆膜23を配置しているため、試料20に対する耐腐食性を向上することができ、導電率の比較的高い試料20を用いたときでもスパークを始めとする電気的障害を抑制することができる。また、スペーサ15をノズル16の先端及び接液部以外に配置することにより試料20の不純物に対する影響を低減し、ノズル16の洗浄を確実に実行することができ、接液時の反射係数の変化を直接検知することができるため高精度に接液を検出することができる。
本実施例ではノズル16の表面に被覆膜23を配置しているため、試料20に対する耐腐食性を向上することができ、導電率の比較的高い試料20を用いたときでもスパークを始めとする電気的障害を抑制することができる。また、スペーサ15をノズル16の先端及び接液部以外に配置することにより試料20の不純物に対する影響を低減し、ノズル16の洗浄を確実に実行することができ、接液時の反射係数の変化を直接検知することができるため高精度に接液を検出することができる。
図7は本発明の実施例3を示す構成図である。図において、11はポンプ駆動装置、60はポンプ駆動制御信号である。
本発明が特許文献1と異なる部分は、ノズル本体を分布定数線路で構成し、かつ試料の吸引/吐出をポンプ駆動機構と電圧印加の併用で行う部分である。
本発明が特許文献1と異なる部分は、ノズル本体を分布定数線路で構成し、かつ試料の吸引/吐出をポンプ駆動機構と電圧印加の併用で行う部分である。
つぎに、本実施例の動作を図8を用いて説明する。図8は微小溶液採取装置の回路図である。
先ず、放射波発生回路30から所定の形状に整形された放射波43をノズル16を構成する内部導体13に入力すると放射波43は分布定数線路で構成されるノズル16内を伝播しノズル16先端部のインピーダンスに応じて反射波44が形成され、反射波検出回路31に導入される。このとき比較回路32には放射波発生回路30からの放射信号40と反射波検出回路31からの反射信号41が入力され、それぞれの波高値からノズル16内の液面状態を演算し、演算結果と相関のある信号出力回路35を介してポンプ駆動機構11へポンプ駆動制御信号60が送られて試料20が吸引される。その後、再度の液面状態を検出した後にパルス電源17へパルス入力制御信号61が送られ所定のパルス電圧62が内部導体13へ入力され、ピンチ効果を利用した電磁力72の発生により試料20吸引量の微調整を行う。微調整を行う際の液の増減はパルス電圧62の極性を変えることにより電磁力72の作用する方向を変えることで行われる。これらの一連の動作を行うことで所定の液量を吸引する。吐出動作を行う場合はポンプ駆動機構11により強制的にノズル16から排出される。
先ず、放射波発生回路30から所定の形状に整形された放射波43をノズル16を構成する内部導体13に入力すると放射波43は分布定数線路で構成されるノズル16内を伝播しノズル16先端部のインピーダンスに応じて反射波44が形成され、反射波検出回路31に導入される。このとき比較回路32には放射波発生回路30からの放射信号40と反射波検出回路31からの反射信号41が入力され、それぞれの波高値からノズル16内の液面状態を演算し、演算結果と相関のある信号出力回路35を介してポンプ駆動機構11へポンプ駆動制御信号60が送られて試料20が吸引される。その後、再度の液面状態を検出した後にパルス電源17へパルス入力制御信号61が送られ所定のパルス電圧62が内部導体13へ入力され、ピンチ効果を利用した電磁力72の発生により試料20吸引量の微調整を行う。微調整を行う際の液の増減はパルス電圧62の極性を変えることにより電磁力72の作用する方向を変えることで行われる。これらの一連の動作を行うことで所定の液量を吸引する。吐出動作を行う場合はポンプ駆動機構11により強制的にノズル16から排出される。
このような構造になっているため、分布定数線路を構成するノズル16がパルス電流70によって形成される磁界71を内部に封じ込めることができるのでエネルギーの損失を抑制できると共に外部への漏れ磁界を抑えることができると共に、放射波43に対する反射波44の信号減衰を最小限に抑えることができ、試料20の液面を高感度に検出することができる。ノズル16が試料20に接液するとノズル16先端の反射係数が大きく変動するため容易に接液を感知することができると共にノズル16の試料20への接液と試料吸引の反射波44を容易に感知できるためパルス電圧62と放射波発生回路30からの放射波43を所定の間隔で交互に印加することで容易に所定の液量を吸引することができる。また、ノズル16の試料20への接液と試料吸引の反射波44の違いを容易に感知できると共に、接液後はポンプ駆動装置11で所定液量に対して任意の液量を吸引して最終的な微調整をパルス電圧62の印加による電磁力72(ピンチ効果)を利用するため、吸引液量の精度がポンプ駆動装置11に依存せず高精度の吸引/吐出を行うことができ、任意の液量までポンプ駆動装置11を使用するため高速な吸引/吐出動作を行うことができる。
本発明は分布定数線路で構成したノズル16を使用するため液面センサとして使用することができ、センサ単体としても適用することができる。更に微小液体の吸引/吐出を行う他分野にも応用することができる。なお、本発明の内容を逸脱しない範囲で構成及び方法を変更できることは無論である。
10 分注制御部
11 ポンプ駆動機構
12 マニホールド
13 内部導体
14 外部導体
15 スペーサ
16 ノズル
17 パルス電源
18 空隙
19 内部導体用空隙
20 試料
21 試料容器
22 液面
23 被覆膜
24 脱気バルブ
30 放射波発生回路
31 反射波検出回路
32 比較回路
33 時間遅れ検出回路
34 演算回路
35 信号出力回路
36 液量検出回路
37 吸引/吐出回路
40 放射信号
41 反射信号
42 遅れ時間
43 放射波
44 反射波
50 超音波センサ
51 ノズルチップ
52 ノズルヘッド
53 超音波
60 ポンプ駆動制御信号
61 パルス入力制御信号
62 パルス電圧
63 脱気バルブ制御信号
11 ポンプ駆動機構
12 マニホールド
13 内部導体
14 外部導体
15 スペーサ
16 ノズル
17 パルス電源
18 空隙
19 内部導体用空隙
20 試料
21 試料容器
22 液面
23 被覆膜
24 脱気バルブ
30 放射波発生回路
31 反射波検出回路
32 比較回路
33 時間遅れ検出回路
34 演算回路
35 信号出力回路
36 液量検出回路
37 吸引/吐出回路
40 放射信号
41 反射信号
42 遅れ時間
43 放射波
44 反射波
50 超音波センサ
51 ノズルチップ
52 ノズルヘッド
53 超音波
60 ポンプ駆動制御信号
61 パルス入力制御信号
62 パルス電圧
63 脱気バルブ制御信号
Claims (13)
- 溶液を介して所定の間隔で電極対を配置し、前記電極間にパルス電圧を印加し、前記電極間に磁界を発生させ、前記パルス電圧によって発生するパルス電流と前記磁界によって電磁力を発生させて液体の吸引または吐出を行い、微小溶液を採取することを特徴とする微小溶液採取方法。
- 液体を吸引または吐出するノズルを分布定数線路となる電極構造とし、前記電極間にパルス電圧を印加することにより電磁力を発生させて液体の吸引または吐出を行い、微小溶液を採取することを特徴とする微小溶液採取方法。
- 液体の吸引/吐出手段と、液面/液量検出手段とを有し、
前記吸引/吐出手段はノズルを分布定数線路となる電極対構造とし、前記電極間にパルス電圧を印加することにより電磁力を発生させて液体の吸引または吐出を行い、
前記液面/液量検出手段は前記ノズルを構成する電極間に放射波(放射信号)を印加し、前記ノズルが試料界面に接液する時に発生するインピーダンス値の変化と前記ノズルへの試料吸引によって発生するインピーダンス値の変化によって発生する入力信号の反射波(反射信号)を検出し、前記放射信号と前記反射信号の振幅値及び時間遅れを演算することによって試料の界面および液量を検出し、微小溶液を採取することを特徴とする微小溶液採取方法。 - 前記放射信号と前記反射信号により試料界面への接液とノズル内への試料吸引を識別し、かつ試料界面に接液した後はパルス入力制御信号に応じたパルス電圧を前記電極間に印加しながら吸引液量の調整を行うことを特徴とする請求項3記載の微小溶液採取方法。
- 前記吸引/吐出手段にポンプ駆動機構を加えて溶液の主吸引を行い、前記パルス電流印加によって吸引液量の微調整を行うことを特徴とする請求項3または4に記載の微小溶液採取方法。
- 液体を吸引または吐出する吸引/吐出手段と、液面を検知し液量を算出する液面/液量検出手段と、これらを制御する制御部とを備えた微小溶液採取装置において、
前記吸引/吐出手段は分布定数線路となる電極対を有するノズルと、前記電極間にパルス電圧を印加するパルス電源とからなり
前記液面/液量検出手段は前記ノズルを構成する電極間に放射波(放射信号)を印加する放射波発生回路と、前記反射波を検出する反射波検出回路とからなり、
前記電極間にパルス電圧を印加することにより液体の吸引または吐出を行い、並行して前記電極間に放射波(放射信号)を印加し、反射波(反射信号)を検出し、前記放射信号と前記反射信号の振幅値及び時間遅れを演算することによって試料の界面および液量を検出することを特徴とする微小溶液採取装置。 - 前記ノズルは、同軸円筒形状であり、内部導体と外部導体間はスペーサによって絶縁されたことを特徴とする請求項6記載の微小溶液採取装置。
- 前記スペーサは、比誘電率と個数により一定の特性インピーダンスを得ることを特徴とする請求項6または7記載の微小溶液採取装置。
- 前記スペーサは、前記ノズルの先端及び接液部以外に配置することを特徴とする請求項6から8のいずれか1項に記載の微小溶液採取装置。
- 前記ノズルを構成する電極対は、表面に被覆膜を施していることを特徴とする請求項6から9のいずれか1項に記載の微小溶液採取装置。
- 前記吸引/吐出手段にポンプ駆動機構を加えて溶液の主吸引を行い、前記パルス電流印加によって吸引液量の微調整を行うことを特徴とする請求項6から10のいずれか1項に記載の微小溶液採取装置。
- 前記制御部は、試料界面及び吸引液量検出を行うための放射波として立ち上がり時間とパルス幅がサブμs以下のパルスを発生する機能を備えたことを特徴とする請求項6から11のいずれか1項に記載の微小溶液採取装置。
- 前記パルス電源は、立ち上がり時間とパルス幅がサブms以下のパルス電圧を発生することを特徴とする請求項6から12のいずれか1項に記載の微小溶液採取装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004039598A JP2005233649A (ja) | 2004-02-17 | 2004-02-17 | 微小溶液採取方法及びその装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004039598A JP2005233649A (ja) | 2004-02-17 | 2004-02-17 | 微小溶液採取方法及びその装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005233649A true JP2005233649A (ja) | 2005-09-02 |
Family
ID=35016785
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004039598A Pending JP2005233649A (ja) | 2004-02-17 | 2004-02-17 | 微小溶液採取方法及びその装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005233649A (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110126645A1 (en) * | 2006-04-03 | 2011-06-02 | Artel, Inc. | Apparatus and method for aspirating and dispensing liquid |
-
2004
- 2004-02-17 JP JP2004039598A patent/JP2005233649A/ja active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110126645A1 (en) * | 2006-04-03 | 2011-06-02 | Artel, Inc. | Apparatus and method for aspirating and dispensing liquid |
US8850903B2 (en) * | 2006-04-03 | 2014-10-07 | Artel, Inc. | Apparatus and method for aspirating and dispensing liquid |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105406611B (zh) | 确定过金属壁超声无线能量传输通道优化频率的装置及方法 | |
US9238250B2 (en) | Control apparatus for capacitive electromechanical transducer, and method of controlling the capacitive electromechanical transducer | |
JP6825129B2 (ja) | プラズマ発生器 | |
EP0597228B1 (en) | Coordinate input apparatus | |
US20200174116A1 (en) | Distance-detection system for determining a time-of-flight measurement and having a reduced dead zone | |
US10739172B2 (en) | Measuring device | |
JP2010522870A (ja) | ピペット針部と容器内の液体との接触を検出する方法および装置 | |
US20070126416A1 (en) | Displacement Sensor Systems and Methods | |
US20200033181A1 (en) | Liquid level detector | |
CN101952693A (zh) | 检测移液管状态的方法,吸移方法,吸移设备和吸移设备的吸入管 | |
EP3238629A1 (en) | Integrated acoustic transducer with reduced propagation of undesired acoustic waves | |
EP2698612B1 (en) | Extended stroke position sensor | |
CN106694346B (zh) | 一种低噪声的收发一体电磁超声换能器及其工作方法 | |
JP2005233649A (ja) | 微小溶液採取方法及びその装置 | |
CN101520425A (zh) | 水质传感器 | |
CN103207239A (zh) | 一种一体化可调节磁致伸缩纵向导波探头 | |
CN113340382A (zh) | 反射回波可调的磁致伸缩液位计以及液位检测方法 | |
CN105371906B (zh) | 具有变频式液体导电度测量功能的电磁式流量计 | |
CN102665939B (zh) | 用于机电变换器装置的控制设备和方法以及测量系统 | |
JP2005181105A (ja) | 分注方法及び装置 | |
JP2006242804A (ja) | 混合気体又は液体中の気体又は液体の濃度計測方法及び装置 | |
JP2009145056A (ja) | 電磁超音波探触子および電磁超音波探傷装置 | |
KR101807859B1 (ko) | 비전도성 유체의 유량 측정 장치 | |
TWI509226B (zh) | 具有變頻式液體導電度量測之電磁式流量計 | |
CN220732741U (zh) | 应用于电容式接近传感器中的振荡电路结构 |