JP2005233354A - Nano-crystal control bolt and manufacturing method thereof - Google Patents

Nano-crystal control bolt and manufacturing method thereof Download PDF

Info

Publication number
JP2005233354A
JP2005233354A JP2004045327A JP2004045327A JP2005233354A JP 2005233354 A JP2005233354 A JP 2005233354A JP 2004045327 A JP2004045327 A JP 2004045327A JP 2004045327 A JP2004045327 A JP 2004045327A JP 2005233354 A JP2005233354 A JP 2005233354A
Authority
JP
Japan
Prior art keywords
bolt
strength
heat treatment
nanocrystal
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004045327A
Other languages
Japanese (ja)
Inventor
Yuichi Murakami
祐一 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minebea Co Ltd
Original Assignee
Minebea Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minebea Co Ltd filed Critical Minebea Co Ltd
Priority to JP2004045327A priority Critical patent/JP2005233354A/en
Priority to US11/047,589 priority patent/US20050201886A1/en
Publication of JP2005233354A publication Critical patent/JP2005233354A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Processing of the speech or voice signal to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0272Voice signal separating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/20Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by extruding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/06Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of threaded articles, e.g. nuts
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Processing of the speech or voice signal to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0272Voice signal separating
    • G10L21/028Voice signal separating using properties of sound source
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L25/00Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
    • G10L25/90Pitch determination of speech signals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • C22C33/0285Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5% with Cr, Co, or Ni having a minimum content higher than 5%
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B35/00Screw-bolts; Stay-bolts; Screw-threaded studs; Screws; Set screws

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-strength bolt (a nano-crystal control bolt) and a manufacturing method thereof, dispensing with heat treatment, having excellent property such as high strength and high tenacity equal to those of the conventional high-strength bolt manufactured by heat-treating alloy steel, whereby the productivity in obtaining the high-strength bolt is improved and the cost is reduced. <P>SOLUTION: Powder compose of fine metal crystal grains of nano-meter order is solidified, and subjected to extrusion molding to obtain a bar material. The bar material is subjected to bolt forming (head cold pressing/machining/rolling), thereby finishing the nano-crystal control bolt as a high-strength bolt without heat treatment. As metal raw material, stainless steel material such as SUS410, and precipitation hardened type 13Cr-8Ni-2Mo series is used. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本願の発明は、高強度ボルトとしてのナノ結晶制御ボルトおよびその製造方法に関し、
特に高強度、高靱性で、製造工程において、熱処理をする必要なくして得られるようにさ
れて成るナノ結晶制御ボルトおよびその製造方法に関する。
The invention of the present application relates to a nanocrystal control bolt as a high-strength bolt and a manufacturing method thereof,
In particular, the present invention relates to a nanocrystal control bolt that has high strength and high toughness and is obtained without the need for heat treatment in the production process and a method for producing the same.

一般航空機用等に使用される高強度、高靱性の高強度ボルトは、従来、13Cr−8N
i系のステンレス鋼等を素材として、ボルトの頭部を圧造により成形後、熱処理し、次い
で、機械加工・転造を行なって、製作されている。このように、従来の高強度ボルトは、
熱処理を必須の工程としており、生産性が悪く、コストの高いものとなっていた。
特開平05−247593号公報
The high strength and high toughness high strength bolts used for general aircraft, etc. have been conventionally 13Cr-8N.
Using bolts made of i-type stainless steel as a raw material, the head of the bolt is molded by forging, heat-treated, and then machined and rolled. Thus, the conventional high-strength bolt is
Heat treatment is an indispensable process, resulting in poor productivity and high cost.
JP 05-247593 A

本願の発明は、従来の高強度ボルトおよびその製造方法が有する前記のような問題点を
解決して、熱処理を省略することができ、しかも、従来の、合金鋼を熱処理して製作して
いた高強度ボルトと同等の高強度、高靱性の優れた性質を示すことができ、これにより、
この種高強度ボルトを製造するのに生産性が向上して、コストの低減を図ることができる
高強度ボルト(ナノ結晶制御ボルト)およびその製造方法を提供することを課題とする。
The invention of the present application solves the above-mentioned problems of the conventional high-strength bolt and the manufacturing method thereof, can omit the heat treatment, and is manufactured by heat-treating the conventional alloy steel. High strength and high toughness equivalent to high strength bolts can be shown.
It is an object of the present invention to provide a high-strength bolt (nanocrystal control bolt) and a method for manufacturing the same that can improve the productivity and reduce the cost for manufacturing such a high-strength bolt.

前記のような課題は、本願の各請求項に記載された次のような発明により解決される。
すなわち、その請求項1に記載された発明は、ナノメーターのオーダーの微細化された
金属結晶粒から成る粉末を固化し、押出成形して得られた棒材にボルト成型を施し、熱処
理を経ることなく、仕上げられたことを特徴とするナノ結晶制御ボルトである。
The above problems can be solved by the following invention described in each claim of the present application.
In other words, the invention described in claim 1 solidifies a powder made of fine metal crystal grains of nanometer order, performs bolt molding on a bar obtained by extrusion molding, and undergoes heat treatment. It is a nanocrystal control bolt characterized by having been finished without.

請求項1に記載された発明は、前記のように構成されているので、そのナノ結晶制御ボ
ルトの素材をなす、ナノメーターのオーダーの微細化された金属結晶粒から成る粉末を固
化し、押出成形して得られた棒材(ナノ結晶材)は、材料そのものが高強度、高靱性であ
るので、熱処理を施さなくても、従来と同様のボルト成型(頭部圧造・機械加工・転造)
を施すのみで、従来の、合金鋼を熱処理して製作していた高強度ボルトと同等の強度およ
び靱性を有する高強度ボルト、すなわち、ナノ結晶制御ボルトを得ることができる。また
、これが首下長さの長い頭付きボルトとされる場合には、熱処理による曲がり矯正が不要
となる。これらにより、この種高強度ボルトを得るのに、生産性が向上して、コストの低
減を図ることができる。
Since the invention described in claim 1 is configured as described above, the powder composed of fine metal crystal grains of nanometer order, which forms the material of the nanocrystal control bolt, is solidified and extruded. The rod material (nanocrystalline material) obtained by molding has high strength and high toughness, so it can be bolted as before (head heading / machining / rolling) without heat treatment. )
It is possible to obtain a high-strength bolt having the same strength and toughness as a conventional high-strength bolt manufactured by heat-treating alloy steel, that is, a nanocrystal control bolt. Further, when this is a headed bolt having a long neck length, it is not necessary to correct the bending by heat treatment. Thus, in order to obtain this kind of high-strength bolt, productivity can be improved and cost can be reduced.

また、その請求項2に記載された発明においては、請求項1に記載の発明における金属
は、ステンレス鋼とされる。
これにより、汎用の素材を使用しながら、耐蝕性に優れ、高強度、高靱性の高強度ボル
トであるナノ結晶制御ボルトを容易に得ることができ、特に応力腐食割れを起こし易いプ
ラント等に使用して好適な高強度ボルトを得ることができる。
In the invention described in claim 2, the metal in the invention described in claim 1 is stainless steel.
This makes it possible to easily obtain nano-crystal control bolts that are high-strength, high-toughness high-strength bolts with excellent corrosion resistance while using general-purpose materials, especially for plants that are prone to stress corrosion cracking. Thus, a suitable high-strength bolt can be obtained.

また、その請求項3に記載された発明は、ナノメーターのオーダーの微細化された金属
結晶粒から成る粉末を固化し、押出成形して得られた棒材にボルト成型を施し、熱処理を
経ることなく、ボルトに仕上げることを特徴とするナノ結晶制御ボルトの製造方法である
Further, the invention described in claim 3 solidifies powder made of fine metal crystal grains of nanometer order, performs bolt molding on a bar obtained by extrusion molding, and undergoes heat treatment. This is a method for producing a nanocrystal controlled bolt characterized in that it is finished into a bolt.

請求項3に記載された発明は、前記のように構成されているので、そのナノ結晶制御ボ
ルトの素材をなす、ナノメーターのオーダーの微細化された金属結晶粒から成る粉末を固
化し、押出成形して得られた棒材(ナノ結晶材)は、材料そのものが高強度、高靱性であ
るので、熱処理を施さなくても、従来と同様のボルト成型(頭部圧造・機械加工・転造)
を施すのみで、従来の、合金鋼を熱処理して製作していた高強度ボルトと同等の強度およ
び靱性を有する高強度ボルト、すなわち、ナノ結晶制御ボルトを製造することができる。
また、これが首下長さの長い頭付きボルトとされる場合には、熱処理による曲がり矯正が
不要となる。これらにより、この種高強度ボルトを製造するのに、生産性が向上して、コ
ストの低減を図ることができる。
Since the invention described in claim 3 is configured as described above, the powder composed of fine metal crystal grains in the order of nanometers, which is the material of the nanocrystal control bolt, is solidified and extruded. The rod material (nanocrystalline material) obtained by molding has high strength and high toughness, so it can be bolted as before (head heading / machining / rolling) without heat treatment. )
It is possible to produce a high-strength bolt having the same strength and toughness as a conventional high-strength bolt manufactured by heat-treating alloy steel, that is, a nanocrystal control bolt.
Further, when this is a headed bolt having a long neck length, it is not necessary to correct the bending by heat treatment. As a result, in order to manufacture this kind of high-strength bolt, productivity can be improved and cost can be reduced.

さらに、その請求項4に記載された発明においては、請求項3に記載の発明における金
属は、ステンレス鋼とされる。
これにより、汎用の素材を使用しながら、耐蝕性に優れ、高強度、高靱性の高強度ボル
トであるナノ結晶制御ボルトを容易に製造することができ、特に応力腐食割れを起こし易
いプラント等に使用して好適な高強度ボルトを製造することができる。
Furthermore, in the invention described in claim 4, the metal in the invention described in claim 3 is stainless steel.
This makes it possible to easily manufacture nanocrystal control bolts that are high-strength, high-toughness, high-strength bolts with excellent corrosion resistance while using general-purpose materials, especially for plants that are prone to stress corrosion cracking. High strength bolts suitable for use can be produced.

前記のとおり、本願の発明のナノ結晶制御ボルトおよびその製造方法によれば、ナノ結
晶制御ボルトの素材をなす、ナノメーターのオーダーの微細化された金属結晶粒から成る
粉末を固化し、押出成形して得られた棒材(ナノ結晶材)は、材料そのものが高強度、高
靱性であるので、熱処理を施さなくても、従来と同様のボルト成型(頭部圧造・機械加工
・転造)を施すのみで、従来の、合金鋼を熱処理して製作していた高強度ボルトと同等の
強度および靱性を有する高強度ボルト、すなわち、ナノ結晶制御ボルトを得ることができ
る。この結果、この種高強度ボルトを製造するのに、生産性が向上して、コストの低減を
図ることができる。
As described above, according to the nanocrystal control bolt of the invention of the present application and the manufacturing method thereof, the powder composed of fine metal crystal grains of nanometer order, which is the material of the nanocrystal control bolt, is solidified and extruded. The rod material (nanocrystalline material) obtained in this way has high strength and high toughness, so bolts can be formed in the same way as before (head heading, machining, rolling) without heat treatment. It is possible to obtain a high-strength bolt having the same strength and toughness as a conventional high-strength bolt manufactured by heat-treating alloy steel, that is, a nanocrystal control bolt. As a result, in order to manufacture this kind of high-strength bolt, productivity can be improved and cost can be reduced.

また、その金属素材をステンレス鋼とすれば、汎用の素材を使用しながら、耐蝕性に優
れ、高強度、高靱性の高強度ボルトであるナノ結晶制御ボルトを容易に得ることができる
Further, if the metal material is stainless steel, a nanocrystal control bolt that is a high-strength bolt having excellent corrosion resistance and high strength and toughness can be easily obtained while using a general-purpose material.

ナノメーターのオーダーの微細化された金属結晶粒から成る粉末を固化し、押出成形し
て得られた棒材にボルト成型(頭部圧造・機械加工・転造)を施し、熱処理を経ることな
く、ナノ結晶制御ボルトを仕上げる。金属素材として、好ましくはステンレス鋼材を用い
る。
Solidified powder made of fine metal crystal grains on the order of nanometers, and then subjected to bolt molding (head heading / machining / rolling) on the bar material obtained by extrusion molding without passing through heat treatment Finish the nanocrystal control bolt. A stainless steel material is preferably used as the metal material.

次に、本願の発明の一実施例について説明する。
本実施例において、ナノ結晶材の素材としては、SUS410相当のステンレス鋼材が
使用される。このステンレス鋼材が、ガスアトマイズ法により、数10μmのオーダーの
微細粒子に粉砕され、次いで、媒体攪拌ミル等の超微粉砕機にかけられて、さらに細かい
ナノメーター(nm)のオーダーの微細粒子にされる。
Next, an embodiment of the present invention will be described.
In this embodiment, a stainless steel material equivalent to SUS410 is used as the material for the nanocrystal material. This stainless steel material is pulverized into fine particles of the order of several tens of μm by a gas atomization method, and then applied to a fine pulverizer such as a medium stirring mill to obtain fine particles of a finer nanometer (nm) order. .

このようにして形成された微細粒子から成る粉体は、次いで、固化され、熱間押出成形
により、ナノ結晶ステンレス鋼の棒材(ナノ結晶材)とされる。この熱間加工中、素材中
のZrが粒子の成長を抑制するので、粒子は、所定のオーダーの粒径に制御される。この
ようなナノ結晶粉体は、株式会社超高温材料研究所により供給されている。
The powder composed of the fine particles thus formed is then solidified and made into a nanocrystalline stainless steel rod (nanocrystalline material) by hot extrusion. During this hot working, Zr in the material suppresses the growth of the particles, so that the particles are controlled to have a predetermined particle size. Such nanocrystalline powder is supplied by the Ultra-High Temperature Materials Laboratory.

次いで、この棒材は、所望の長さに切断され、従来と同様のボルト成型(頭部圧造・機
械加工・転造)工程を経ることにより、図1に示されるようなボルト(ナノ結晶制御ボル
ト)1に仕上げられる。このボルト1においては、その金属組織の結晶粒径は、ナノメー
ターのオーダーに制御されている。なお、このボルト成型工程の前後で、熱処理が施され
ることはない。
Next, this bar is cut into a desired length, and a bolt (nanocrystal control) as shown in FIG. 1 is performed through the same bolt forming (head forging / machining / rolling) process as before. Bolt) 1 is finished. In this bolt 1, the crystal grain size of the metal structure is controlled to the order of nanometers. In addition, heat processing is not performed before and after this bolt formation process.

このボルト1は、供試体として製作されたものであり、φ5の前記棒材から試作されて
おり、頭部2を有し、ボルト本体部をなす首下部3が長く形成されており、さらに、その
端部から所定長の部分には、ねじ部3aが形成されていて、図1に示されるような諸寸法
を有する。ねじ部3aは、#10−32UNJF−3Aのねじとされている。このボルト
1に対して、引張り、剪断および疲労の各試験を行なった。
This bolt 1 is manufactured as a specimen, is prototyped from the bar of φ5, has a head 2, a neck lower part 3 forming a bolt main body is formed long, A thread portion 3a is formed in a portion having a predetermined length from the end portion, and has various dimensions as shown in FIG. The screw portion 3a is a # 10-32UNJF-3A screw. The bolt 1 was subjected to tensile, shear, and fatigue tests.

引張り試験は、米国規格MIL−STD−1312TEST No.8により行なった
。その結果、17.50kNで、ねじ部3aが破断した(図2参照)。
The tensile test was conducted according to US standard MIL-STD-1312TEST No. No. 8 was performed. As a result, the threaded portion 3a was broken at 17.50 kN (see FIG. 2).

剪断試験は、米国規格MIL−STD−1312TEST No.13により、二面剪
断試験を行なった。その結果、28.55kNで、剪断破壊が生じた(図3参照)。
The shear test was performed according to US standard MIL-STD-1312TEST No. A two-sided shear test was performed according to No.13. As a result, shear fracture occurred at 28.55 kN (see FIG. 3).

また、疲労試験は、米国規格MIL−STD−1312TEST No.11により行
なった。疲労高荷重は引張り破断荷重の40%(7kN)、疲労低荷重は高荷重の0.1
(0.7kN)として、振動数30Hzで試験を行なった。その結果、3,994,90
0サイクルで、ねじ破断した(図4参照)。
In addition, the fatigue test was conducted according to US standard MIL-STD-1312TEST No. 11 was performed. Fatigue high load is 40% (7 kN) of tensile fracture load, fatigue low load is 0.1% of high load
(0.7 kN) was tested at a frequency of 30 Hz. As a result, 3,994,90
The screw was broken at 0 cycle (see FIG. 4).

以上の試験結果を、特に規格はないので、標準材としてJISのSUS410と比較し
てみた。
JISG4303のSUS410は、焼入れ焼戻し状態で、その引張り強さが540N/mm以上となっている。これを供試体のボルト1のねじ有効断面積12.73mm当たりに直して、その引張り強さを計算すると、540N/mm×12.73mm=6.88kNとなる。
The above test results were compared with JIS SUS410 as a standard material because there is no standard.
SUS410 of JISG4303 is quenched and tempered and has a tensile strength of 540 N / mm 2 or more. Mended this to screw effective area 12.73Mm 2 per bolt 1 of the specimen, calculating the tensile strength, the 540N / mm 2 × 12.73mm 2 = 6.88kN.

次に、この標準材の剪断強さを、供試体の軸径φ4.801当たりに直して計算すると、540N/mm×0.6×18.09mm=5.87kNとなり、二面剪断強さは、その2倍の11.74kNとなる。
以上の結果を表にすると、図5のとおりとなる。
Next, when the shear strength of this standard material is calculated by correcting it per shaft diameter φ4.801 of the specimen, it becomes 540 N / mm 2 × 0.6 × 18.09 mm 2 = 5.87 kN, and the two-surface shear strength That is twice that of 11.74kN.
The above results are tabulated as shown in FIG.

上記表より明らかなとおり、本実施例のSUS410相当のステンレス鋼を素材とする
ナノ結晶制御ボルト1は、JISのSUS410の標準材と比較しても、2倍以上の引張
り強さと剪断強さとを有している。
As is clear from the above table, the nanocrystal control bolt 1 made of stainless steel equivalent to SUS410 of this example has a tensile strength and shear strength that is twice or more even when compared with the standard material of JIS SUS410. Have.

これは、ナノメーターのオーダーの微細化されたステンレス鋼結晶粒から成る粉末を固
化し、押出成形して得られた棒材(ナノ結晶材)そのものが高強度、高靱性であるからで
ある。しかも、ステンレス鋼を素材としているので、耐蝕性にも優れており、特に応力腐
食割れを起こし易いプラント等に使用して好適な高強度ボルトを得ることができる。
This is because the rod material (nanocrystalline material) itself obtained by solidifying and extruding the powder composed of refined stainless steel crystal grains of nanometer order has high strength and high toughness. In addition, since stainless steel is used as a material, it is excellent in corrosion resistance, and can be used for a plant or the like that is particularly susceptible to stress corrosion cracking to obtain a high-strength bolt that is suitable.

このような高強度ボルト(ナノ結晶制御ボルト)1は、それが首下長さの長い頭付きボ
ルトであっても、熱処理による曲がり矯正が不要である。
このように、高強度ボルトを得るのに、熱処理を要しないので、生産性が向上して、コ
ストの低減を図ることができる。
Such a high-strength bolt (nanocrystal control bolt) 1 does not need to bend by heat treatment even if it is a headed bolt with a long neck length.
Thus, since heat treatment is not required to obtain a high-strength bolt, productivity can be improved and cost can be reduced.

また、前記試験は、ナノ結晶ステンレス鋼の棒材(ナノ結晶材)を、熱処理をすること
なく、そのままボルト成型(頭部圧造・機械加工・転造)して得られた供試体に対して行
なわれたものであるが、その結果、熱処理をしなくても、一般航空機用として多く使用さ
れている、熱処理された引張り強さ1240MPa(180KSI(Kp/in))クラスのボルトに相当する強度があるという結果が得られた。
In addition, the test described above was performed on a specimen obtained by directly forming a rod (nanocrystalline material) of a nanocrystalline stainless steel without performing a heat treatment, by bolt molding (head forging / machining / rolling). As a result, it corresponds to a bolt with a heat-treated tensile strength of 1240 MPa (180 KSI (Kp / in 2 )) that is widely used for general aircraft without heat treatment. The result was strong.

本願の発明は、以上の実施例に限定されず、その要旨を逸脱しない範囲において、種々
の変形が可能である。
例えば、金属素材として、SUS410に限らず、析出硬化型13Cr−8Ni−2M
o系材、その他のステンレス鋼材を適宜使用することができる。
The invention of the present application is not limited to the above embodiments, and various modifications can be made without departing from the scope of the invention.
For example, the metal material is not limited to SUS410, but precipitation hardening type 13Cr-8Ni-2M
o-based materials and other stainless steel materials can be used as appropriate.

本実施例のナノ結晶制御ボルトの側面図である。It is a side view of the nanocrystal control bolt of a present Example. 同ナノ結晶制御ボルトの引張り試験後の側面図である。It is a side view after the tension test of the nanocrystal control bolt. 同ナノ結晶制御ボルトの二面剪断試験後の側面図である。It is a side view after the two-plane shear test of the nanocrystal control bolt. 同ナノ結晶制御ボルトの疲労試験後の側面図である。It is a side view after the fatigue test of the nanocrystal control bolt. 実施例の供試体の引張り、剪断および疲労の各試験結果を標準材と比較して示した図である。It is the figure which showed each test result of the tension | pulling of the test body of an Example, shear, and fatigue compared with the standard material.

符号の説明Explanation of symbols

1…ボルト、2…頭部、3…首下部、3a…ねじ部。
DESCRIPTION OF SYMBOLS 1 ... Bolt, 2 ... Head, 3 ... Neck lower part, 3a ... Screw part.

Claims (4)

ナノメーターのオーダーの微細化された金属結晶粒から成る粉末を固化し、押出成形し
て得られた棒材にボルト成型を施し、熱処理を経ることなく、仕上げられたことを特徴と
するナノ結晶制御ボルト。
Nanocrystals characterized by solidifying powders made of fine metal crystal grains of nanometer order and extruding them into bolts and finishing them without heat treatment Control bolts.
前記金属は、ステンレス鋼であることを特徴とする請求項1に記載のナノ結晶制御ボル
ト。
The nanocrystal control bolt according to claim 1, wherein the metal is stainless steel.
ナノメーターのオーダーの微細化された金属結晶粒から成る粉末を固化し、押出成形し
て得られた棒材にボルト成型を施し、熱処理を経ることなく、ボルトに仕上げることを特
徴とするナノ結晶制御ボルトの製造方法。
Nanocrystals characterized by solidifying powder made of fine metal crystal grains of the order of nanometers, bolting the rods obtained by extrusion molding, and finishing them into bolts without heat treatment Control bolt manufacturing method.
前記金属は、ステンレス鋼であることを特徴とする請求項3に記載のナノ結晶制御ボル
トの製造方法。













The said metal is stainless steel, The manufacturing method of the nanocrystal control bolt of Claim 3 characterized by the above-mentioned.













JP2004045327A 2004-02-20 2004-02-20 Nano-crystal control bolt and manufacturing method thereof Pending JP2005233354A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004045327A JP2005233354A (en) 2004-02-20 2004-02-20 Nano-crystal control bolt and manufacturing method thereof
US11/047,589 US20050201886A1 (en) 2004-02-20 2005-02-02 Nanocrystalline bolt and method for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004045327A JP2005233354A (en) 2004-02-20 2004-02-20 Nano-crystal control bolt and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2005233354A true JP2005233354A (en) 2005-09-02

Family

ID=34917882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004045327A Pending JP2005233354A (en) 2004-02-20 2004-02-20 Nano-crystal control bolt and manufacturing method thereof

Country Status (2)

Country Link
US (1) US20050201886A1 (en)
JP (1) JP2005233354A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111706600A (en) * 2020-06-10 2020-09-25 侯杰烨 Oil-containing thread and fastener

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110238402A (en) * 2019-03-27 2019-09-17 无锡苏明达科技有限公司 A kind of production method of oxygen sensor pedestal

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6499926B2 (en) * 2001-05-18 2002-12-31 The Boeing Company Fastener apparatus and method of fastening non-metallic structures
JP4975916B2 (en) * 2001-09-21 2012-07-11 株式会社日立製作所 High toughness and high strength ferritic steel and its manufacturing method
US7435306B2 (en) * 2003-01-22 2008-10-14 The Boeing Company Method for preparing rivets from cryomilled aluminum alloys and rivets produced thereby
US7241328B2 (en) * 2003-11-25 2007-07-10 The Boeing Company Method for preparing ultra-fine, submicron grain titanium and titanium-alloy articles and articles prepared thereby
US20050147520A1 (en) * 2003-12-31 2005-07-07 Guido Canzona Method for improving the ductility of high-strength nanophase alloys

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111706600A (en) * 2020-06-10 2020-09-25 侯杰烨 Oil-containing thread and fastener

Also Published As

Publication number Publication date
US20050201886A1 (en) 2005-09-15

Similar Documents

Publication Publication Date Title
Pachla et al. Effect of severe plastic deformation realized by hydrostatic extrusion and rotary swaging on the properties of CP Ti grade 2
Valiev et al. The innovation potential of bulk nanostructured materials
JP6943513B2 (en) High tough filamentous crystalline pure titanium and its manufacturing method
EP1287173B1 (en) $g(G)-TIAL ALLOY-BASED COMPONENT COMPRISING AREAS HAVING A GRADUATED STRUCTURE
Kumar et al. Microstructural and mechanical properties of Al 7075 alloy processed by equal channel angular pressing
CN103180473A (en) Magnesium alloy filament, and bolt, nut, and washer
CN105102644A (en) Nanostructured titanium alloy and method for thermomechanically processing the same
Darban et al. Effect of equal channel angular pressing on fracture toughness of Al-7075
CN103210101A (en) Titanium alloy containing nanocrystals, and process for producing same
KR20180037324A (en) High strength alpha/beta titanium alloy fasteners and fastener stock
Sepahi-Boroujeni et al. Expansion equal channel angular extrusion, as a novel severe plastic deformation technique
CN102844130A (en) Metallic glass fastening screw
JP6079294B2 (en) Free forging method of Ni-base heat-resistant alloy member
Jin et al. Continuous ECAP process design for manufacturing a microstructure-refined bolt
Jafarzadeh et al. Fabrication of ultra-fine grained aluminium tubes by RTES technique
JP2014161861A5 (en)
JP2017512901A (en) Nanostructured titanium alloy and method for thermomechanical processing thereof
AT501546B1 (en) METHOD FOR PRODUCING METALLIC COMPOSITE MATERIALS
EP3544753A1 (en) Method for machining a workpiece from a metallic material
US9687895B2 (en) Large strain extrusion machining processes and bulk forms produced therefrom
Sharath Multi directional forging: an advanced deforming technique for severe plastic deformation
JP2005233354A (en) Nano-crystal control bolt and manufacturing method thereof
Valiev et al. Bulk nanostructured materials by SPD processing: techniques, microstructures and properties
JP2010222632A (en) HIGH STRENGTH Fe-Ni-Co-Ti BASED ALLOY AND METHOD FOR PRODUCING THE SAME
CN108796330A (en) A kind of strong Mg-Gd-Y-Zr nanometers of isomery magnesium alloy preparation method of superelevation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080122

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080624