JP2005233263A - Frp energy absorbing member structure - Google Patents

Frp energy absorbing member structure Download PDF

Info

Publication number
JP2005233263A
JP2005233263A JP2004041459A JP2004041459A JP2005233263A JP 2005233263 A JP2005233263 A JP 2005233263A JP 2004041459 A JP2004041459 A JP 2004041459A JP 2004041459 A JP2004041459 A JP 2004041459A JP 2005233263 A JP2005233263 A JP 2005233263A
Authority
JP
Japan
Prior art keywords
frp
cylindrical
cleavage
convex
pressing member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004041459A
Other languages
Japanese (ja)
Other versions
JP4443954B2 (en
Inventor
Daisei Abe
大生 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2004041459A priority Critical patent/JP4443954B2/en
Publication of JP2005233263A publication Critical patent/JP2005233263A/en
Application granted granted Critical
Publication of JP4443954B2 publication Critical patent/JP4443954B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Vibration Dampers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an FRP shock absorbing member structure making use of the material characteristics of an FRP material. <P>SOLUTION: The shock absorbing member structure is made of an FRP material light and having a high strength as a shock absorbing member, in which the compression load and/or the energy absorption amount is increased more than conventional by making use of the compression or tensile strength in the fiber direction as the feature of the FRP material. That is, the compression load value and the energy absorption amount are improved by an FRP cylinder as the shock absorbing member and a pressing member equipped with a three-dimensional shape such that the end of the FRP cylinder makes split fracture in the cylinder axis direction. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、高いエネルギー吸収量を実現したFRPの衝撃吸収部材の構造体に関する。   The present invention relates to a structure of an FRP shock absorbing member that realizes a high energy absorption amount.

自動車や航空機の衝突安全性を高めるために、衝突エネルギーを効果的に吸収する衝撃吸収用の部材や衝撃吸収構造が提案されている。特に自動車の場合は、ボディの前後に加わる衝突エネルギーを効果的に吸収するクラッシュボックス等をどのような構造にするかが検討されている。一般に、衝撃吸収部材は、軽量であって剛性が高いことが要求される。   In order to improve the collision safety of automobiles and aircraft, a shock absorbing member and a shock absorbing structure that effectively absorb collision energy have been proposed. In particular, in the case of automobiles, the structure of a crash box or the like that effectively absorbs collision energy applied before and after the body is being studied. Generally, the impact absorbing member is required to be lightweight and have high rigidity.

2種以上の材料を組み合わせた複合材料は、素材単独では出せない優れた特性を得る目的でつくられた人工材料であり、材料を強化する目的等の様々な目的のために開発されている。複合材料のうち材料を繊維で強化したものは、繊維強化複合材料とよばれ、FRP(繊維強化プラスチック)が代表的である。FRPは、マトリックス(素地)としてプラスチックを使用したもので、強化材としては一般的には、ガラスやカーボン等の繊維が使用される。   A composite material in which two or more kinds of materials are combined is an artificial material made for the purpose of obtaining excellent properties that cannot be obtained by the material alone, and has been developed for various purposes such as the purpose of strengthening the material. Of the composite materials, those obtained by reinforcing the materials with fibers are called fiber reinforced composite materials, and FRP (fiber reinforced plastic) is typical. FRP uses plastic as a matrix (base), and generally uses fibers such as glass and carbon as a reinforcing material.

FRPのうちカーボン繊維で形成されるCFRPは、繊維の配向に応じて異なる性質を持つ、UD材(ユニダイレクショナル材)、クロス材が知られている。UD材は、カーボン繊維をうすく一方向に並べてエポキシ樹脂等により成型した素材形態である。一方、クロス材はカーボン繊維を織物状にし、エポキシ樹脂等により成型した素材形態である。例えばUD材においては、炭素繊維の長さ方向(長手方向)には引張力が強いが、長さ方向に対しては引張力が弱い性質がある。   Among the FRPs, CFRPs formed of carbon fibers are known as UD materials (unidirectional materials) and cloth materials having different properties depending on the fiber orientation. The UD material is a material form in which carbon fibers are arranged in one direction and molded with an epoxy resin or the like. On the other hand, the cloth material is a material form in which carbon fibers are made into a woven shape and molded with an epoxy resin or the like. For example, the UD material has a property that the tensile force is strong in the length direction (longitudinal direction) of the carbon fiber, but the tensile force is weak in the length direction.

このようなFRP材により構成した衝撃吸収部材のみならず、衝撃吸収部材の端部に当接する押圧部材を含めた、衝撃吸収部材構造が吸収エネルギーを向上させるものとして提案されている。即ち、押圧部材の構造及び形状として、衝撃吸収部材が高いエネルギー吸収量を実現するような構造及び形状が検討されている。例えば、特許文献1は、FRP円筒管の圧縮変形において、FRP先端部に設置される押圧部材形状に破壊の起点となる三角形状の突起部を設けることで、部材の強度を高め破壊の形態を調整可能にしたプロペラシャフトの発明である。さらに、特許文献2は押圧部材に拡幅部を設けることで、耐えうる荷重を高め、FRPパイプの座屈を防ぎ、拡幅部の傾斜角を調整することで、従来よりもエネルギー吸収を高めることを開示している。加えて、特許文献3は、押圧部材に凹部を設けることで、FRP円筒管が凹部から破壊が進むことで繊維を破断させエネルギー吸収量を増加させた発明である。
特開平07−091432号公報 特開平08−185969号公報 特開平07−224874号公報
An impact absorbing member structure including not only an impact absorbing member made of such an FRP material but also a pressing member in contact with an end of the impact absorbing member has been proposed as improving the absorbed energy. That is, as the structure and shape of the pressing member, a structure and shape in which the shock absorbing member realizes a high energy absorption amount are being studied. For example, in Patent Document 1, in the compression deformation of an FRP cylindrical tube, a triangular protrusion serving as a starting point of destruction is provided in the shape of a pressing member installed at the tip of the FRP, thereby increasing the strength of the member and providing a form of destruction. It is an invention of an adjustable propeller shaft. Furthermore, Patent Document 2 discloses that a widening portion is provided on the pressing member, thereby increasing the load that can be withstood, preventing buckling of the FRP pipe, and adjusting the inclination angle of the widening portion, thereby increasing energy absorption than before. Disclosure. In addition, Patent Document 3 is an invention in which the recesses are provided in the pressing member, whereby the FRP cylindrical tube breaks down from the recesses to break the fibers and increase the amount of energy absorption.
Japanese Patent Laid-Open No. 07-091432 Japanese Patent Laid-Open No. 08-185969 Japanese Patent Application Laid-Open No. 07-224874

上述のような従来技術において、押圧部材に拡幅部や凹部を設けることで円滑な層間剥離を生じさせ、拡幅部や凹部に沿って繊維を曲げることで、圧縮荷重やエネルギー吸収量の増加を実現している。しかし、これらの従来技術ではFRP材の材料特性を十分に活用しているとは言い難い。一般に、FRP材は繊維方向の引張強度が強いため、破壊による引張方向がFRP材の繊維方向であれば、さらに大きな圧縮荷重に対応することが可能であり、よりエネルギー吸収のよいFRP衝撃吸収部材構造体が実現できる。従って、本発明ではFRP材の材料特性を活かしたFRP衝撃吸収部材構造体を提供することを目的とする。   In the conventional technology as described above, smooth delamination is generated by providing the pressing member with the widened portion and the concave portion, and the fiber is bent along the widened portion and the concave portion, thereby increasing the compressive load and the amount of energy absorption. doing. However, it cannot be said that these prior arts fully utilize the material properties of the FRP material. Generally, since the FRP material has a high tensile strength in the fiber direction, if the tensile direction due to fracture is the fiber direction of the FRP material, it is possible to cope with a larger compressive load, and an FRP shock absorbing member with better energy absorption. A structure can be realized. Accordingly, an object of the present invention is to provide an FRP impact absorbing member structure that takes advantage of the material properties of the FRP material.

そこで、本発明者は、上記目的を達成するために鋭意研究を重ねた結果、円筒状FRPの繊維方向の強度を活用し、円筒軸方向に分割を促進するような開裂誘導構造体を備えた押圧部材を提供することにより、FRP材の繊維方向に強度がある特徴を活かし、従来よりも大きな荷重値やエネルギー吸収量を実現した衝撃吸収部材構造体を提供する。より具体的には、本発明は以下のような衝撃吸収部材構造体を提供する。   Therefore, as a result of intensive studies to achieve the above object, the present inventor has provided a cleavage induction structure that uses the strength of the cylindrical FRP in the fiber direction and promotes division in the cylindrical axis direction. By providing the pressing member, an impact absorbing member structure that realizes a larger load value and energy absorption than the conventional one is provided by taking advantage of the strength of the FRP material in the fiber direction. More specifically, the present invention provides the following impact absorbing member structure.

(1) 円筒軸方向からの圧縮荷重による衝撃吸収を行うFRP材から形成された円筒状FRPと、前記円筒状FRPの端部に当接する押圧部材と、からなるFRP衝撃吸収部材構造体であって、前記押圧部材は、前記円筒状FRPの端部が当接する面に、当該円筒状FRPの長さ方向の開裂を誘導する開裂誘導構造体を備え、前記円筒状FRPは、前記円筒軸方向からの圧縮荷重を前記開裂誘導構造体による端部開裂によって前記FRP材の繊維方向への荷重に分散することにより衝撃吸収を行うFRP衝撃吸収部材構造体。   (1) An FRP impact absorbing member structure comprising a cylindrical FRP formed of an FRP material that absorbs an impact due to a compressive load from a cylindrical axis direction, and a pressing member that contacts an end of the cylindrical FRP. The pressing member includes a cleavage guide structure that guides the longitudinal cleavage of the cylindrical FRP on the surface with which the end of the cylindrical FRP abuts, and the cylindrical FRP extends in the cylindrical axial direction. An FRP shock absorbing member structure that absorbs shock by dispersing a compressive load from a load in a fiber direction of the FRP material by edge cleavage by the cleavage induction structure.

(2) 前記押圧部材は、前記円筒状FRPを誘導する円形状の凹凸部を備えた押圧台座部と、前記円筒状FRPの長さ方向に開裂を誘導する開裂誘導構造体を備え、前記円形状の凹凸部は、前記円筒状FRPが当接する内周側が凸状であり、外周側が凹状である中空切株状であって、前記開裂誘導構造体は、一以上の凸状トリガ部位であって、前記円形状の凹凸部の凹部に、前記一以上の凸状トリガ部位が円状に配置された押圧部材を含む、(1)記載のFRP衝撃吸収部材構造体。   (2) The pressing member includes a pressing pedestal portion provided with a circular concavo-convex portion for guiding the cylindrical FRP, and a cleavage guide structure that guides cleavage in a length direction of the cylindrical FRP. The uneven portion of the shape is a hollow stump shape in which the inner peripheral side with which the cylindrical FRP abuts is convex and the outer peripheral side is concave, and the cleavage guide structure is one or more convex trigger parts. The FRP impact absorbing member structure according to (1), further including a pressing member in which the one or more convex trigger portions are arranged in a circular shape in a concave portion of the circular concavo-convex portion.

(3) (1)記載のFRP衝撃吸収部材構造体において、前記開裂誘導構造体は独立した状態で取り外しが可能なものである着脱式開裂誘導構造体。   (3) The FRP impact absorbing member structure according to (1), wherein the cleavage induction structure is detachable in an independent state.

(4) 前記押圧部材は、前記円筒状FRPが当接する押圧台座部と、前記円筒状FRPの開裂を誘導する開裂誘導構造体とを備え、前記開裂誘導構造体は、一以上の凹凸の組み合わせの凸部と凹部の境界である境界部を含む凹凸構造体であって、前記圧縮荷重により、前記円筒状FRPの端部に前記開裂誘導構造体が当接することで前記境界部近傍から前記円筒状FRPの円筒軸方向への開裂を生じさせる開裂誘導構造体を含む、(1)記載のFRP衝撃吸収部材構造体。   (4) The pressing member includes a pressing pedestal portion with which the cylindrical FRP abuts and a cleavage induction structure that induces the cleavage of the cylindrical FRP, and the cleavage induction structure is a combination of one or more irregularities. A concavo-convex structure including a boundary portion that is a boundary between a convex portion and a concave portion of the cylindrical FRP. The FRP impact-absorbing member structure according to (1), including a cleavage-inducing structure that causes cleavage of the FRP in the cylindrical axis direction.

(5) 前記凹凸構造体は、一以上の独立した扇状立体部位が前記円筒状FRPを誘導するように、放射状に配置されることで形成された円柱状または偶数の角数を有する多角柱状の形状をした凹凸構造体であって、前記放射状に配置された前記扇状立体部位間の境界により一以上の第一の境界部が生成され、前記扇状立体部位の各々は、前記扇状の半径方向に凹凸を形成し、当該凹凸により一以上の第二の境界部が生成されており、前記一以上の第一の境界部近傍と前記一以上の第二の境界部近傍とから、前記円筒軸方向へ前記円筒状FRPを開裂する開裂誘導構造体を含む(4)記載のFRP衝撃吸収部材構造体。   (5) The concavo-convex structure has a columnar shape or a polygonal columnar shape having an even number of corners formed by radially arranging so that one or more independent fan-shaped three-dimensional parts guide the cylindrical FRP. A concavo-convex structure having a shape, wherein one or more first boundary portions are generated by a boundary between the fan-shaped three-dimensional parts arranged radially, and each of the fan-shaped three-dimensional parts is formed in the fan-shaped radial direction. An unevenness is formed, and one or more second boundary portions are generated by the unevenness, and from the vicinity of the one or more first boundary portions and the vicinity of the one or more second boundary portions, the cylindrical axis direction (4) The FRP shock absorbing member structure according to (4), including a cleavage induction structure that cleaves the cylindrical FRP.

(6) (1)から(5)いずれか記載のFRP衝撃吸収部材構造体が、自動車のクラッシュボックス構造体に採用されている自動車。   (6) An automobile in which the FRP shock absorbing member structure according to any one of (1) to (5) is employed in an automobile crash box structure.

(7) 自動車の衝突時の圧縮荷重に対する緩衝力を向上するための緩衝力向上方法であって、前記衝突により衝撃吸収を行うFRP材から形成された円筒状FRPと当該円筒状FRPに当接される押圧部材とにより緩衝力を向上する方法であって、前記押圧部材に備えられた開裂誘導構造体により、当該円筒状FRPの端部が開裂し、当該開裂によって前記円筒状FRPは、前記圧縮荷重を前記FRP材の繊維方向の荷重に分散することで、自動車の衝突時の緩衝力が向上される緩衝力向上方法。   (7) A buffering force improving method for improving a buffering force against a compressive load at the time of a collision of an automobile, wherein the cylindrical FRP is formed from an FRP material that absorbs shock by the collision, and contacts the cylindrical FRP. The end portion of the cylindrical FRP is cleaved by the cleavage guide structure provided in the pressing member, and the cylindrical FRP is A buffering force improving method in which a buffering force at the time of a collision of an automobile is improved by distributing a compressive load to a load in a fiber direction of the FRP material.

本発明の衝撃吸収部材構造を使用することで、FRP材を衝撃吸収部材に使用した際に、従来よりも大きな圧縮荷重を実現し、かつ大きなエネルギー吸収を実現することが可能である。即ち、繊維配向や繊維の種類で異なる様々なFRPに合わせて、そのFRPの繊維方向の強度を活かした最適な立体構造である開裂誘導構造体を備えた押圧部材を用いることで、従来よりも衝撃吸収性を高めることが可能である。さらに、押圧部材の立体的形状は、設計者が自由に設定可能であるために、FRP材の繊維の破壊をどのように促進するかを調整することができる。   By using the shock absorbing member structure of the present invention, when the FRP material is used for the shock absorbing member, it is possible to realize a larger compressive load than before and to realize a large energy absorption. That is, according to various FRPs that differ depending on the fiber orientation and fiber type, by using a pressing member equipped with a cleavage induction structure that is an optimal three-dimensional structure utilizing the strength of the FRP in the fiber direction, It is possible to improve shock absorption. Furthermore, since the designer can freely set the three-dimensional shape of the pressing member, it is possible to adjust how to promote the destruction of the fibers of the FRP material.

以下、本発明に好適な実施形態の一例について、図を参照しながら説明する。   Hereinafter, an example of an embodiment suitable for the present invention will be described with reference to the drawings.

図1は、繊維構造の異なる円筒状CFRP(内径80mm、外径88mm、長さ250mm)とCFRPが当接する立体構造の異なる押圧部材を用いて、圧縮試験を行った結果を示した図である。円筒状CFRPの軸方向からの圧縮荷重を、円筒状CFRPに押圧部材を当接させて行い、その際の平均荷重値(kN)と荷重変動量(%)を測定した。荷重特性におけるグラフに示した値が、平均荷重値である。CFRP材としては、UD材とクロス材を使用した。押圧部材は、平板を使用したものと、図2(a)、(b)、(c)にて示した円形状の凹凸部を備えた押圧部材である中空切株状部材200を使用した。ここでの円形状の凹凸部とは、円筒状FRPが当接する内周側が凸状であり、外周側が凹状である中空の切株状の形状である。   FIG. 1 is a diagram showing the results of a compression test using cylindrical CFRPs having different fiber structures (inner diameter 80 mm, outer diameter 88 mm, length 250 mm) and pressing members having different three-dimensional structures in contact with CFRP. . The compressive load from the axial direction of the cylindrical CFRP was performed by bringing the pressing member into contact with the cylindrical CFRP, and the average load value (kN) and load fluctuation amount (%) at that time were measured. The value shown in the graph in the load characteristics is the average load value. As the CFRP material, a UD material and a cloth material were used. As the pressing member, one using a flat plate and the hollow stump-shaped member 200 which is a pressing member provided with the circular concavo-convex portions shown in FIGS. 2 (a), 2 (b) and 2 (c) were used. Here, the circular concavo-convex portion is a hollow stump shape in which the inner peripheral side with which the cylindrical FRP contacts is convex and the outer peripheral side is concave.

図1の結果を参照すると、クロス材・UD材といった素材形態に依らずに中空切株状部材よりも平板のほうが、平均荷重値が大きい。例えば、UD材においては平板では平均荷重値が73kNであるが、中空切株状部材では48kNである。しかし、荷重変動量においては、中空切株状部材の方が平板の押圧部材よりも、小さくなる。従って、平均荷重値においては平板の方が押圧部材として適当であるが、荷重変動量においては中空切株状部材が適当という結果になる。このように、中空切株状部材の平均荷重値が減少するのは、押圧部材と当接することで円筒状CFRPが圧縮により曲げ変形を行う際に、圧縮によるエネルギーが主に積層したCFRP材の層間を剥離するように使用されるからである。CFRP材は繊維方向の引張または圧縮に強いため、この強度を活かして圧縮エネルギーが繊維方向への引張・圧縮のエネルギーとして消費されれば、平均荷重値が上がり、さらに大きなエネルギー吸収を実現できるものと考えられる。   Referring to the results of FIG. 1, the average load value of the flat plate is larger than that of the hollow stub-like member regardless of the material form such as the cloth material / UD material. For example, in a UD material, the average load value is 73 kN for a flat plate, but 48 kN for a hollow stub. However, in the load fluctuation amount, the hollow stub-like member is smaller than the flat pressing member. Therefore, a flat plate is more suitable as a pressing member in terms of average load value, but a hollow stub-like member is suitable in terms of load variation. Thus, the average load value of the hollow stub-like member is reduced when the cylindrical CFRP is bent and deformed by compression by contacting the pressing member, and the CFRP material layer between which the energy by compression is mainly laminated. It is because it is used to peel off. Since CFRP material is strong in tension or compression in the fiber direction, if the compression energy is consumed as tension / compression energy in the fiber direction by taking advantage of this strength, the average load value can be increased and greater energy absorption can be realized. it is conceivable that.

荷重変動量とは、荷重をかけ始めた初期荷重変動域を除いた荷重領域変動領域において、測定最大値と測定最小値の和を2で割ったものからその領域での平均値を引き、その値を平均値で割ったものである。また、平均荷重値とは上述の平均値と同義であり、荷重をかけ始めた初期荷重変動域を除いた荷重領域変動領域においての平均値である。図1の荷重特性に示すように、荷重が降伏点を越えて一定の変位を超えてから、安定した荷重値を保持するが、この荷重値はぶれが小さく、急激に降下しないことが望ましい。即ち、荷重変動量が小さい衝撃吸収部材や構造は、安定したエネルギー吸収を行える部材または構造である。従って、エネルギー吸収のよい衝撃吸収部材や構造にするためには、その平均荷重値を大きくし、荷重変動量を小さくすることが望まれる。   The load fluctuation amount is the load area fluctuation area excluding the initial load fluctuation area where the load is applied, and the average value in that area is subtracted from the sum of the measurement maximum value and the measurement minimum value divided by 2. The value is divided by the average value. Further, the average load value is synonymous with the above-described average value, and is an average value in a load region change region excluding an initial load change region where a load is applied. As shown in the load characteristics of FIG. 1, a stable load value is maintained after the load exceeds the yield point and exceeds a certain displacement. However, it is desirable that the load value is small and does not drop rapidly. That is, the impact absorbing member or structure having a small load fluctuation amount is a member or structure that can stably absorb energy. Therefore, in order to obtain a shock absorbing member or structure with good energy absorption, it is desired to increase the average load value and reduce the load fluctuation amount.

本明細書におけるFRPとしては、CFRPを使用しているが、その他の例えば、ガラス繊維、アラミド繊維、ボロン繊維、炭化珪素繊維、アルミナ繊維を使用してもよい。本発明は、繊維配向の特徴を活かした衝撃吸収部材の構造体に関するものであるため、繊維の種類を限定するものではない。   Although CFRP is used as FRP in the present specification, glass fiber, aramid fiber, boron fiber, silicon carbide fiber, and alumina fiber may be used, for example. Since the present invention relates to a structure of an impact absorbing member that takes advantage of the characteristics of fiber orientation, the type of fiber is not limited.

UD材は、CFRP材の素材形態であって、カーボン繊維の構造として繊維をほぼ一方向に揃えて固めたシート状のCFRP材、又はこのシート状のCFRP材を積層したCFRP材である。一般にUD材は、シート状のCFRP材の繊維方向を統一させ積層させたUD材であってもよいが、繊維方向がCFRP材の層ごとに異なり、一定の角度を有して積層してもよい。例えば層ごとに繊維方向が直角であるといった場合である。繊維方向を統一させ積層させたUD材は、繊維方向の引張強度が強いため、異方性を有するCFRP材料であるが、繊維方向を層ごとに直角に積層させたものは、等方性を有するCFRP材料となる。図1の圧縮実験では、円筒軸方向に対して0度と90度の繊維方向を有するシート状のCFRP材を積層させて形成したUD材を使用している。   The UD material is a material form of the CFRP material, and is a sheet-like CFRP material in which fibers are aligned and hardened in almost one direction as a carbon fiber structure, or a CFRP material obtained by laminating this sheet-like CFRP material. In general, the UD material may be a UD material in which the fiber direction of the sheet-like CFRP material is unified and laminated, but the fiber direction is different for each layer of the CFRP material, and may be laminated with a certain angle. Good. For example, the fiber direction is perpendicular to each layer. The UD material laminated with the fiber direction standardized is a CFRP material having anisotropy because the tensile strength in the fiber direction is strong, but the one with the fiber direction laminated perpendicular to each layer is isotropic. It becomes CFRP material which has. In the compression experiment of FIG. 1, a UD material formed by laminating sheet-like CFRP materials having fiber directions of 0 degrees and 90 degrees with respect to the cylindrical axis direction is used.

クロス材は、CFRP材の素材形態であって、CFRP材のカーボン繊維の構造として繊維を織り込むことで織物状に配向したシート状のCFRP材、又はこのシート状のCFRP材を積層したCFRP材である。即ち、クロス材とは、カーボン繊維の套を一本もしくは複数本ずつ編むことで平面を構成し、その平面に樹脂等のマトリクスを使用し固めたCFRP材である。織物状を形成するための編み方としては、平織りや綾織りであってよい。一方向UD材とは異なり、一般にクロス材は、その強度においては等方性を有するCFRP材料である。   The cloth material is a material form of the CFRP material, and is a sheet-like CFRP material oriented in a woven form by weaving fibers as a carbon fiber structure of the CFRP material, or a CFRP material in which this sheet-like CFRP material is laminated. is there. That is, the cloth material is a CFRP material in which a flat surface is formed by knitting one or a plurality of carbon fiber sleeves, and a matrix such as a resin is used for the flat surface. The knitting method for forming the woven shape may be plain weave or twill weave. Unlike unidirectional UD materials, cloth materials are generally CFRP materials that are isotropic in their strength.

次に、CFRP材の繊維方向に同じ荷重値がかかったときに、圧縮荷重と引張荷重ではどちらのひずみが大きいかを検討する。   Next, when the same load value is applied in the fiber direction of the CFRP material, which strain is larger in the compressive load and the tensile load is examined.

図3は、UD材(繊維方向は一方向のみ)の圧縮と引張を繊維方向に行ったときの応力・歪み線図である。ここでのCFRP材は、東レ(株)製カーボン繊維(T700S)を強化繊維とし、マトリクスに樹脂(#2500)を用いた。これによれば、繊維の圧縮応力は繊維の引張応力の半分以下の値になっている。即ち、圧縮は少ない荷重で大きく変形を行うのに対して、引張は大きな荷重で小さな変形を行う。従って、一方向に配向したUD材の特徴としては、繊維方向に圧縮荷重よりも引張荷重に衝撃荷重がかかれば、部材の変形が少ないと考えられる。これより、エネルギー吸収の大きい衝撃吸収構造体を提供するという観点からは、FRP材の引張荷重を活用した衝撃吸収部材構造体が望ましいと考えられる。   FIG. 3 is a stress / strain diagram when compression and tension of the UD material (fiber direction is only one direction) are performed in the fiber direction. The CFRP material used here was carbon fiber (T700S) manufactured by Toray Industries, Inc., and a resin (# 2500) was used as a matrix. According to this, the compressive stress of the fiber is less than half the tensile stress of the fiber. That is, compression greatly deforms with a small load, whereas tension performs small deformation with a large load. Therefore, as a characteristic of the UD material oriented in one direction, if the impact load is applied to the tensile load rather than the compressive load in the fiber direction, the deformation of the member is considered to be small. From this point of view, it is considered that an impact absorbing member structure utilizing the tensile load of the FRP material is desirable from the viewpoint of providing a shock absorbing structure having a large energy absorption.

Figure 2005233263
Figure 2005233263

表1は、図1にて示した圧縮実験における円筒状CFRP(円筒の軸方向に対して0度と90度の繊維方向であるシート状のCFRP材を交互に積層させたUD材)の圧縮による、変形後の形態と、円筒軸方向の分割数と、平均荷重値との関係を示す表である。同一のUD材であっても、押圧部材を中空切株状部材から平板にすることで、平均荷重値が30%以上向上する。押圧部材に平板を使用した場合は、圧縮による円筒状CFRPの変形が円筒の内側と外側の両開きになる。中空切株状部材は、円筒の外側が凹状であり内側が凸状であるため、圧縮により変形方向が促され、円筒に対して外向きに開き、内側には開かない。従って、中空切株状部材では、荷重による圧縮応力が円筒を外開きにする向きに集中し、円筒の端部が一箇所でも開裂されると、その部分の破壊が進んでしまい、結果として平均荷重値が低いのではないかと予想できる。さらに、円筒状CFRPの軸方向の分割数は、平板の方が多い。軸方向に分割するとは、軸方向に対して90度方向(円筒の円環方向)に繊維方向を有するUD材の繊維を切ることを意味する。即ち、CFRP円筒端部の分割数の多い平板の方が、平均荷重値が大きいことから、軸方向への開裂箇所が多い方が、繊維の強度を利用して圧縮荷重が行われているのではないかと考えられる。   Table 1 shows compression of cylindrical CFRP (UD material in which sheet-like CFRP materials having fiber directions of 0 degrees and 90 degrees with respect to the axial direction of the cylinder are alternately laminated) in the compression experiment shown in FIG. Is a table showing the relationship between the form after deformation, the number of divisions in the cylindrical axis direction, and the average load value. Even if it is the same UD material, an average load value improves 30% or more by making a press member into a flat plate from a hollow stump-shaped member. When a flat plate is used for the pressing member, the deformation of the cylindrical CFRP due to compression results in double opening of the inside and outside of the cylinder. Since the hollow stump-like member has a concave shape on the outside of the cylinder and a convex shape on the inside, the direction of deformation is urged by compression and opens outward with respect to the cylinder, but does not open on the inside. Therefore, in the hollow stump-like member, the compressive stress due to the load is concentrated in the direction of opening the cylinder outward, and if the end of the cylinder is cleaved even at one place, the destruction of the part proceeds, resulting in an average load. It can be expected that the value is low. Further, the number of divisions in the axial direction of the cylindrical CFRP is larger for the flat plate. Dividing in the axial direction means cutting the fibers of the UD material having a fiber direction in a direction 90 degrees (cylindrical ring direction) with respect to the axial direction. That is, since the average load value is larger in the flat plate having a larger number of divisions at the end of the CFRP cylinder, the compression load is performed by utilizing the strength of the fiber in the case where the number of axially cleaved portions is larger. It is thought that.

この結果より、円筒状CFRPの軸方向の分割、即ち円筒状CFRP端部の破壊箇所を増やすように押圧部材が誘導することで、CFRP材の特徴である繊維方向の引張強度が活用され、荷重値とエネルギー吸収量の増加が促されると考え、以下のような実施例について検討する。   From this result, the tensile force in the fiber direction, which is a feature of the CFRP material, is utilized by guiding the pressing member so as to increase the axial division of the cylindrical CFRP, that is, the number of broken portions at the end of the cylindrical CFRP, and the load Considering the following examples, the increase in the value and the amount of energy absorption is considered.

図4(a)、(b)、(c)は第1の実施例を示した図である。第1の実施例の押圧部材400は、中空切株状部材200の円形状凹凸部の凹部に凸状のトリガ部位401を円形に配置した押圧部材である。このトリガ部位401は開裂誘導構造体の一例であって、円筒状FRPの長さ方向(円筒軸方向)の開裂を誘導し、円筒状FRPの端部開裂の起点となる。トリガ部位401の形状は、四角い形状であってもよいし任意の多角形であってもよい。トリガ部位401の配置は、図4では押圧部材の凹部に円筒の円周を30度の角度で均等に配置しているが、角度は設計者が任意に設定できる。また、一定の角度で均等に配置していなくてもよい。トリガ部位401の部材は、押圧部材と同一のスチール等の部材であってもよいし、異なっていてもよい。また、押圧部材400に示すように、図4の実施例ではトリガ部位401の凸部の高さが円筒外側の凹部の高さと同じであるが、凹部の高さより高くても低くてもよい。また、トリガ部位の台座となる中空切株状部材200の切株(円筒内側が当接する凸部)の高さは任意に設定することが可能であり、円筒外側に凹部を設けなくてもよい。   FIGS. 4A, 4B, and 4C are views showing the first embodiment. The pressing member 400 according to the first embodiment is a pressing member in which convex trigger portions 401 are circularly arranged in the concave portions of the circular concavo-convex portion of the hollow stub-like member 200. The trigger portion 401 is an example of a cleavage induction structure, which induces the cleavage of the cylindrical FRP in the length direction (cylindrical axis direction) and serves as a starting point for the end cleavage of the cylindrical FRP. The shape of the trigger part 401 may be a square shape or an arbitrary polygon. In FIG. 4, the trigger portion 401 is arranged with the circumference of the cylinder uniformly at an angle of 30 degrees in the concave portion of the pressing member, but the angle can be arbitrarily set by the designer. Moreover, it does not need to be uniformly arranged at a certain angle. The member of the trigger part 401 may be the same member such as steel as the pressing member, or may be different. Further, as shown in the pressing member 400, the height of the convex portion of the trigger part 401 is the same as the height of the concave portion outside the cylinder in the embodiment of FIG. 4, but it may be higher or lower than the height of the concave portion. Moreover, the height of the stump of the hollow stump-shaped member 200 that serves as a base for the trigger portion (the convex portion with which the inner side of the cylinder abuts) can be arbitrarily set, and the concave portion need not be provided on the outer side of the cylinder.

図4(d)に示すように、各トリガ部位401が環状に結合されたリング状の独立した構造体であってもよい。即ち、円筒状FRPの外周側の凹部に独立した状態で装着可能であって、トリガ部位401を一定の角度で配置した着脱式開裂誘導構造体450とすることで、複数のトリガ部位を中空切株状部材200から容易に着脱可能にすることができる。図4(d)での着脱式開裂誘導構造体450の形状は、輪切りにしたドーナツ形状の円環内部に、複数のトリガ部位401が組み込まれているが、これは本発明の一実施例を示したに過ぎない。従って、中空切株状部材200の円筒外周側の凹部がない場合は、中空円盤にトリガ部位401を周上に配置した着脱式開裂誘導構造体450が使用されてもよい。   As shown in FIG. 4D, a ring-shaped independent structure in which each trigger portion 401 is connected in a ring shape may be used. That is, the trigger part 401 can be attached in an independent state to the concave part on the outer peripheral side of the cylindrical FRP, and the trigger part 401 is arranged at a certain angle, whereby a plurality of trigger parts are formed into a hollow stump. The member 200 can be easily attached and detached. The shape of the detachable cleavage guide structure 450 in FIG. 4D is such that a plurality of trigger portions 401 are incorporated inside a donut-shaped circular ring that is cut into a ring. This is an example of the present invention. It is only shown. Therefore, when there is no concave portion on the outer circumferential side of the hollow stub-like member 200, a detachable cleavage guide structure 450 in which the trigger portion 401 is arranged on the circumference of the hollow disk may be used.

図5(a)、(b)、(c)は、第2の実施例を示した図である。第2の実施例の押圧部材500は、円筒状CFRP100の形状に合わせて、円筒が当接する内側及び外側に開裂誘導構造体501と、構造体の台座となる押圧台座部とからなる。開裂誘導構造体501は、凹凸構造体であって、凹凸の境界部近傍から円筒状CFRPの端部開裂を行うような構造になっている。図5の実施例での凹凸構造体は、2種類の扇状立体部位505、506が放射状に独立して配置され、全体として12角柱を形成した凹凸構造である。扇状立体部位505、506それ自体にも、半径方向(12角柱の対角線方向)に異なる高さの段階状の凹凸が形成されている。即ち、扇状立体部位505、506の扇形状である面の領域が3つに分割され、各領域により高さが異なる。扇状立体部位505は、高さの順番が、円周の外側、円周の内側、その真ん中という3段階である扇状立体部位505と、高さの順番が、円周の内側、その真ん中、円周の外側という3段階である第2の扇状立体部位506がある。扇状立体部位505と扇状立体部位506は、交互に配置されており、12角形の開裂誘導構造体501を形成する。尚、一の扇状立体部位505、506ともう一つの扇状立体部位505、506の間である境界部を第1の境界部510とし、扇状立体部位505、506に有する領域により異なる高さの凹凸部の境界部を第2の境界部520とする。   FIGS. 5A, 5B, and 5C are views showing a second embodiment. According to the shape of the cylindrical CFRP 100, the pressing member 500 according to the second embodiment includes a cleavage guide structure 501 and a pressing pedestal portion serving as a pedestal of the structure on the inner side and the outer side where the cylinder abuts. The cleavage induction structure 501 is a concavo-convex structure and has a structure in which the end of the cylindrical CFRP is cleaved from the vicinity of the boundary of the concavo-convex. The concavo-convex structure in the embodiment of FIG. 5 is a concavo-convex structure in which two types of fan-shaped three-dimensional parts 505 and 506 are radially arranged independently to form a dodecagonal column as a whole. The fan-shaped three-dimensional parts 505 and 506 themselves are also provided with stepped irregularities having different heights in the radial direction (diagonal direction of the dodecagonal prism). That is, the fan-shaped surface areas of the fan-shaped three-dimensional parts 505 and 506 are divided into three, and the height differs depending on each area. The fan-shaped three-dimensional part 505 has a three-stage structure in which the height order is the outer side of the circumference, the inner side of the circumference, and the middle thereof, and the order of the height is the inner side of the circumference, the middle, and the circle. There is a second fan-shaped three-dimensional portion 506 that is a three-stage outer side. The fan-shaped three-dimensional parts 505 and the fan-shaped three-dimensional parts 506 are alternately arranged to form a dodecagonal cleavage induction structure 501. In addition, the boundary part between one fan-shaped solid part 505,506 and another fan-shaped solid part 505,506 is made into the 1st boundary part 510, and unevenness | corrugation of height which changes with the area | region which has in the fan-shaped solid part 505,506 is different. The boundary part of the part is defined as a second boundary part 520.

実施例では、扇状立体部位505、506により、開裂誘導構造体501は12角柱を形成しているが、この形状は例示したものであって、8角柱、16角柱、24角柱等の任意の偶数の角を有する多角柱もしくは円柱を形成してもよい。また、扇状立体部位505、506は、円周の半径方向に高さが3段階以上分かれていてもよく、2段階であってもよい。また、開裂誘導構造体501は、中央部が中空でなくてもよく、円筒状CFRPの厚みに適合させて各扇状立体部位に円筒状CFRPが嵌め込まれる凹部を設けてもよい。   In the embodiment, the cleavage induction structure 501 forms a dodecagonal column by the fan-shaped three-dimensional parts 505 and 506. However, this shape is only an example, and an arbitrary even number such as an octagonal column, a hexagonal column, or a 24-square column. You may form the polygonal column or cylinder which has this angle | corner. Further, the fan-shaped three-dimensional parts 505 and 506 may have three or more heights in the radial direction of the circumference, or may have two stages. Further, the cleavage induction structure 501 does not have to be hollow at the center, and may be provided with a recess in which the cylindrical CFRP is fitted in each fan-shaped three-dimensional portion in accordance with the thickness of the cylindrical CFRP.

Figure 2005233263
Figure 2005233263

表2は、実施例1、2の荷重変動量及び平均荷重値を、平板、中空切株状部材と比較し、CFRPとしてUD材(円筒軸方向0度と90度を交互に積層)、クロス材に対して測定した結果である。実施例1、2の押圧部材は、平均荷重値において平板を大きく上回る結果であり、UD材においては70%以上(実施例1)向上している。また、荷重変動量においても、中空切株状部材の値と同じ3.8%であった。クロス材を用いた荷重変動量は、実施例2においては中空切り株状部材以下の値を示している。即ち、実施例1と2の押圧部材は、平均荷重値と荷重変動量において、平板と中空切株状部材の両方のメリットを持った押圧部材である。従って、実施例1、2の押圧部材は従来よりもさらに大きな圧縮荷重とエネルギー吸収を実現できる部材を提供するものである。   Table 2 compares the load fluctuation amount and the average load value of Examples 1 and 2 with a flat plate and a hollow stub-like member, as a CFRP, a UD material (stacked alternately at 0 degrees and 90 degrees in the cylindrical axis direction), a cloth material It is the result of having measured with respect to. The pressing member of Examples 1 and 2 is a result which greatly exceeds a flat plate in an average load value, and has improved 70% or more (Example 1) in UD material. Also, the load fluctuation amount was 3.8%, which is the same as the value of the hollow stump member. In Example 2, the load fluctuation amount using the cloth material shows a value less than that of the hollow stump-like member. That is, the pressing members of Examples 1 and 2 are pressing members having the advantages of both a flat plate and a hollow stub-like member in terms of an average load value and a load fluctuation amount. Therefore, the pressing members of Examples 1 and 2 provide a member that can realize a larger compressive load and energy absorption than conventional pressure members.

実施例1の押圧部材では、円筒状FRPの厚み部分に当接する開裂誘導構造体であるトリガ部位が、円筒状FRPの長さ方向に開裂を誘導する。即ち、トリガ部位が円筒端部を分割する端部起点となり開裂を行う。FRP材の繊維方向は円筒の円周方向にも有しうるため、軸方向の開裂は円周方向の繊維を切断することを意味する。さらなる圧縮荷重が加わると、起点となった開裂部から継続して割裂が行われるが、割裂を行うためには円周方向の繊維の切断を行わなくてはならないため、大きな圧縮荷重を必要とする。実施例1のトリガ部位は円周上に一定の角度で配置されているため、割裂の起点となる開裂部の数が多くなる。従って、押圧部材として中空切株状部材を採用したときのように、圧縮荷重が一の開裂部に集中し破壊されることはなく、割裂による円筒状FRPの破壊が複数箇所に分散して行われる。即ち、円筒状FRPの複数箇所の開裂により、開裂部から、さらなる割裂を行うために、繊維方向である円周方向の引張力に圧縮荷重が分散される。従って、実施例1の押圧部材により大きな平均荷重値を実現していると推察される。   In the pressing member according to the first embodiment, a trigger portion that is a cleavage induction structure that abuts on a thickness portion of the cylindrical FRP induces cleavage in the length direction of the cylindrical FRP. That is, the trigger site becomes an end portion starting point that divides the cylindrical end portion, and the cleavage is performed. Since the fiber direction of the FRP material can also be in the circumferential direction of the cylinder, cleavage in the axial direction means cutting the fibers in the circumferential direction. When further compressive load is applied, splitting is continuously performed from the cleaved part that is the starting point, but in order to perform splitting, the fibers in the circumferential direction must be cut, so a large compressive load is required. To do. Since the trigger part of Example 1 is arrange | positioned on the circumference at a fixed angle, the number of the cleavage parts used as the starting point of a split increases. Therefore, unlike when a hollow stump-like member is employed as the pressing member, the compressive load is not concentrated and broken at one cleavage part, and the destruction of the cylindrical FRP by splitting is performed in a plurality of locations. . That is, the compression load is distributed to the tensile force in the circumferential direction, which is the fiber direction, in order to perform further splitting from the cleaved portion by cleaving a plurality of portions of the cylindrical FRP. Therefore, it is inferred that a large average load value is realized by the pressing member of Example 1.

実施例2の押圧部材では、開裂誘導構造体501の第1の境界部510と第2の境界部520が、円筒状FRPの長さ方向に開裂を誘導する。即ち、境界部近傍が円筒端部を分割する端部起点となり開裂を行う。FRP材の繊維方向は円筒の円周方向にも有しうるため、軸方向の開裂は円周方向の繊維を切断することを意味する。さらなる圧縮荷重が加わると、起点となった開裂部から継続して割裂が行われるが、割裂を行うためには円周方向の繊維の切断を行わなくてはならないため、大きな圧縮荷重を必要とする。実施例2の第1の境界部は12角形を等間隔に分割して配置され、第2の境界部は一定の距離で半径方向に等間隔にて配置されているため、割裂の起点となる開裂部の数が多くなる。従って、押圧部材として平板を使用したときのように、圧縮荷重が一の開裂部に集中し破壊されることはなく、割裂による円筒状FRPの破壊が複数箇所に分散して行われる。即ち、円筒状FRPの複数箇所の開裂により、開裂部からさらなる割裂を行うために、繊維方向である円周方向の引張力に圧縮荷重が分散される。従って、実施例2の押圧部材により従来よりも大きな平均荷重値を実現していると推察される。   In the pressing member according to the second embodiment, the first boundary portion 510 and the second boundary portion 520 of the cleavage guide structure 501 guide the cleavage in the length direction of the cylindrical FRP. That is, the vicinity of the boundary portion becomes an end portion starting point that divides the cylindrical end portion, and cleavage is performed. Since the fiber direction of the FRP material can also be in the circumferential direction of the cylinder, cleavage in the axial direction means cutting the fibers in the circumferential direction. When further compressive load is applied, splitting is continuously performed from the cleaved part that is the starting point, but in order to perform splitting, the fibers in the circumferential direction must be cut, so a large compressive load is required. To do. In the second embodiment, the first boundary portion is arranged by dividing the dodecagon at equal intervals, and the second boundary portion is arranged at a constant distance in the radial direction at equal intervals. The number of cleavage parts increases. Therefore, unlike the case where a flat plate is used as the pressing member, the compressive load is not concentrated and broken at one cleavage portion, and the destruction of the cylindrical FRP by splitting is performed in a plurality of locations. That is, the compressive load is dispersed in the tensile force in the circumferential direction, which is the fiber direction, in order to perform further splitting from the cleavage portion by cleavage at a plurality of locations in the cylindrical FRP. Therefore, it is presumed that the pressing member of Example 2 achieves a larger average load value than before.

さらに、実施例1、2におけるトリガ部位や境界部位の大きさや高さは、設計者が自由に調整可能であるため、望ましい圧縮荷重値、荷重変動量を有するような開裂誘導構造体を作製することが可能である。これより、繊維配向や繊維の種類で異なる様々なFRPに合わせて、そのFRPの繊維方向の強度を活かした最適な立体構造を備えた押圧部材を提供することが可能である。   Furthermore, since the designer can freely adjust the size and height of the trigger part and the boundary part in the first and second embodiments, a cleavage induction structure having a desirable compressive load value and load fluctuation amount is produced. It is possible. Accordingly, it is possible to provide a pressing member having an optimal three-dimensional structure utilizing the strength of the FRP in the fiber direction in accordance with various FRPs that differ depending on the fiber orientation and fiber type.

本発明のFRP衝撃吸収部材構造体は、自動車のクラッシュボックス構造体に採用することが可能である。例えば、FRP円筒を採用したクラッシュボックスに、本発明の押圧部材を採用することで、ボディの前後に加わる衝突荷重を従来よりもさらに効率的に吸収することができる。   The FRP shock absorbing member structure of the present invention can be used in a crash box structure of an automobile. For example, by applying the pressing member of the present invention to a crash box that employs an FRP cylinder, it is possible to absorb the collision load applied to the front and rear of the body more efficiently than before.

本発明は、自動車の衝突時の圧縮荷重に対する緩衝力向上方法として提供することも可能である。上述のように、衝突により衝撃吸収を行うFRP材から形成された円筒状FRPと押圧部材とにより、押圧部材に備えられた開裂誘導構造体が、当該円筒状FRPの端部を開裂し、当該開裂によって前記円筒状FRPは、前記圧縮荷重を前記FRP材の繊維方向の荷重に分散することで、自動車の衝突時の緩衝力が向上される緩衝力向上方法である。例えば、実施例1、2においては、円筒状FRPの複数箇所の開裂により、開裂部から、さらなる割裂を行うために、繊維方向である円周方向の引張力に圧縮荷重が分散される。この、荷重の分散により圧縮荷重に対する緩衝力が向上される方法である。   The present invention can also be provided as a method for improving the buffering force against a compressive load at the time of an automobile collision. As described above, by the cylindrical FRP formed from the FRP material that absorbs shock by collision and the pressing member, the cleavage guide structure provided in the pressing member cleaves the end of the cylindrical FRP, The cylindrical FRP is a buffering force improving method in which the buffering force at the time of a collision of an automobile is improved by dispersing the compressive load into the load in the fiber direction of the FRP material by cleavage. For example, in Examples 1 and 2, the compressive load is distributed to the tensile force in the circumferential direction, which is the fiber direction, in order to perform further splitting from the cleaved portion by cleaving a plurality of portions of the cylindrical FRP. This is a method in which the buffer force against the compression load is improved by the dispersion of the load.

本発明の衝撃吸収部材構造を自動車、二輪車、航空機等の乗物に利用することで、従来よりもさらにエネルギー吸収が高い衝撃吸収を行う乗物を提供することができる。即ち、繊維配向や繊維の種類で異なる様々なFRP材に合わせて、そのFRP材の繊維方向の強度を活かした最適な立体構造を備えた押圧部材を提供することが可能である。さらに、本発明の衝撃吸収部材構造における押圧部材の形状は、設計者が自由に設定可能であるために、FRP材の繊維の開裂をどのように行うか、破壊後の形状をどうするか、といった観点から押圧部材の形状を調整することができる。   By using the shock absorbing member structure of the present invention for vehicles such as automobiles, two-wheeled vehicles, and airplanes, it is possible to provide a vehicle that performs shock absorption with higher energy absorption than before. That is, it is possible to provide a pressing member having an optimal three-dimensional structure that utilizes the strength of the FRP material in the fiber direction according to various FRP materials that differ depending on the fiber orientation and fiber type. Furthermore, since the shape of the pressing member in the shock absorbing member structure of the present invention can be freely set by the designer, how to split the fiber of the FRP material, what to do after the fracture, etc. From the viewpoint, the shape of the pressing member can be adjusted.

繊維構造の異なるCFRP材と立体構造の異なる押圧部材を用いた圧縮試験の結果を示した図である。It is the figure which showed the result of the compression test using the CFRP material from which a fiber structure differs, and the press member from which a three-dimensional structure differs. 中空切株状部材の形状を示した図である。It is the figure which showed the shape of the hollow stump-shaped member. UD材の圧縮と引張を繊維方向に行ったときの応力・歪み線図である。It is a stress and strain diagram when compression and tension of a UD material are performed in the fiber direction. 本発明の第1の実施例を示した図である。It is the figure which showed the 1st Example of this invention. 本発明の第2の実施例を示した図である。It is the figure which showed the 2nd Example of this invention.

符号の説明Explanation of symbols

100 円筒状CFRP
200 押圧部材
400 押圧部材
401 トリガ部位
400 押圧部材
450 着脱式開裂誘導構造体
500 押圧部材
501 開裂誘導構造体
505 扇状立体部位
506 扇状立体部位
510 第1の境界部
520 第2の境界部
100 Cylindrical CFRP
200 Press member 400 Press member 401 Trigger site 400 Press member 450 Detachable cleavage guide structure 500 Press member 501 Cleavage guide structure 505 Fan-shaped three-dimensional portion 506 Fan-shaped three-dimensional portion 510 First boundary portion 520 Second boundary portion

Claims (7)

円筒軸方向からの圧縮荷重による衝撃吸収を行うFRP材から形成された円筒状FRPと、前記円筒状FRPの端部に当接する押圧部材と、からなるFRP衝撃吸収部材構造体であって、
前記押圧部材は、前記円筒状FRPの端部が当接する面に、当該円筒状FRPの長さ方向の開裂を誘導する開裂誘導構造体を備え、
前記円筒状FRPは、前記円筒軸方向からの圧縮荷重を前記開裂誘導構造体による端部開裂によって前記FRP材の繊維方向への荷重に分散することにより衝撃吸収を行うFRP衝撃吸収部材構造体。
A FRP shock absorbing member structure comprising a cylindrical FRP formed of an FRP material that absorbs shock due to a compressive load from a cylindrical axis direction, and a pressing member that contacts an end of the cylindrical FRP,
The pressing member includes a cleavage induction structure that induces the longitudinal cleavage of the cylindrical FRP on the surface with which the end of the cylindrical FRP contacts.
The cylindrical FRP is a FRP shock absorbing member structure that absorbs shock by dispersing a compressive load from the cylindrical axis direction into a load in the fiber direction of the FRP material by edge cleavage by the cleavage induction structure.
前記押圧部材は、前記円筒状FRPを誘導する円形状の凹凸部を備えた押圧台座部と、前記円筒状FRPの長さ方向に開裂を誘導する開裂誘導構造体を備え、
前記円形状の凹凸部は、前記円筒状FRPが当接する内周側が凸状であり、外周側が凹状である中空切株状であって、
前記開裂誘導構造体は、一以上の凸状トリガ部位であって、
前記円形状の凹凸部の凹部に、前記一以上の凸状トリガ部位が円状に配置された押圧部材を含む、請求項1記載のFRP衝撃吸収部材構造体。
The pressing member includes a pressing pedestal portion provided with a circular concavo-convex portion for guiding the cylindrical FRP, and a cleavage induction structure for inducing cleavage in the length direction of the cylindrical FRP,
The circular concavo-convex portion has a hollow stump shape in which the inner peripheral side with which the cylindrical FRP contacts is convex and the outer peripheral side is concave,
The cleavage-inducing structure is one or more convex trigger sites,
The FRP impact absorbing member structure according to claim 1, further comprising: a pressing member in which the one or more convex trigger portions are arranged in a circular shape in a concave portion of the circular concavo-convex portion.
請求項1記載のFRP衝撃吸収部材構造体において、前記開裂誘導構造体は独立した状態で取り外しが可能なものである着脱式開裂誘導構造体。   The detachable cleavage induction structure according to claim 1, wherein the cleavage induction structure is removable in an independent state. 前記押圧部材は、前記円筒状FRPが当接する押圧台座部と、前記円筒状FRPの開裂を誘導する開裂誘導構造体とを備え、
前記開裂誘導構造体は、一以上の凹凸の組み合わせの凸部と凹部の境界である境界部を含む凹凸構造体であって、
前記圧縮荷重により、前記円筒状FRPの端部に前記開裂誘導構造体が当接することで前記境界部近傍から前記円筒状FRPの円筒軸方向への開裂を生じさせる開裂誘導構造体を含む、請求項1記載のFRP衝撃吸収部材構造体。
The pressing member includes a pressing pedestal portion with which the cylindrical FRP abuts, and a cleavage induction structure that induces the cleavage of the cylindrical FRP,
The cleavage induction structure is a concavo-convex structure including a boundary part that is a boundary between a convex part and a concave part of a combination of one or more concavo-convex parts,
And a cleavage-inducing structure that causes the cylindrical FRP to be cleaved in the cylindrical axial direction from the vicinity of the boundary portion when the cleavage-inducing structure abuts against an end portion of the cylindrical FRP by the compressive load. Item 2. The FRP shock absorbing member structure according to Item 1.
前記凹凸構造体は、一以上の独立した扇状立体部位が前記円筒状FRPを誘導するように、放射状に配置されることで形成された円柱状または偶数の角数を有する多角柱状の形状をした凹凸構造体であって、
前記放射状に配置された前記扇状立体部位間の境界により一以上の第一の境界部が生成され、
前記扇状立体部位の各々は、前記扇状の半径方向に凹凸を形成し、当該凹凸により一以上の第二の境界部が生成されており、
前記一以上の第一の境界部近傍と前記一以上の第二の境界部近傍とから、前記円筒軸方向へ前記円筒状FRPを開裂する開裂誘導構造体を含む請求項4記載のFRP衝撃吸収部材構造体。
The concavo-convex structure has a cylindrical shape or a polygonal column shape having an even number of angles formed by radially arranging one or more independent fan-shaped three-dimensional parts so as to guide the cylindrical FRP. A concavo-convex structure,
One or more first boundary portions are generated by a boundary between the fan-shaped three-dimensional parts arranged radially,
Each of the fan-shaped three-dimensional parts forms irregularities in the fan-shaped radial direction, and one or more second boundary portions are generated by the irregularities,
5. The FRP shock absorption according to claim 4, further comprising: a cleavage induction structure that cleaves the cylindrical FRP in the cylindrical axis direction from the vicinity of the one or more first boundary portions and the vicinity of the one or more second boundary portions. Member structure.
請求項1から5いずれか記載のFRP衝撃吸収部材構造体が、自動車のクラッシュボックス構造体に採用されている自動車。   An automobile in which the FRP shock absorbing member structure according to any one of claims 1 to 5 is employed in an automobile crash box structure. 自動車の衝突時の圧縮荷重に対する緩衝力を向上するための緩衝力向上方法であって、前記衝突により衝撃吸収を行うFRP材から形成された円筒状FRPと当該円筒状FRPに当接される押圧部材とにより緩衝力を向上する方法であって、
前記押圧部材に備えられた開裂誘導構造体により、当該円筒状FRPの端部が開裂し、当該開裂によって前記円筒状FRPは、前記圧縮荷重を前記FRP材の繊維方向の荷重に分散することで、自動車の衝突時の緩衝力が向上される緩衝力向上方法。
A method for improving a buffering force for improving a buffering force against a compressive load at the time of a collision of an automobile, wherein the cylindrical FRP is formed from an FRP material that absorbs shock by the collision, and a pressure abutted on the cylindrical FRP It is a method of improving the buffering force by a member,
The end portion of the cylindrical FRP is cleaved by the cleavage induction structure provided in the pressing member, and the cylindrical FRP disperses the compressive load to the load in the fiber direction of the FRP material by the cleaving. A method for improving the shock-absorbing force in which the shock-absorbing force during a car collision is improved.
JP2004041459A 2004-02-18 2004-02-18 FRP energy absorbing member structure Expired - Fee Related JP4443954B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004041459A JP4443954B2 (en) 2004-02-18 2004-02-18 FRP energy absorbing member structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004041459A JP4443954B2 (en) 2004-02-18 2004-02-18 FRP energy absorbing member structure

Publications (2)

Publication Number Publication Date
JP2005233263A true JP2005233263A (en) 2005-09-02
JP4443954B2 JP4443954B2 (en) 2010-03-31

Family

ID=35016440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004041459A Expired - Fee Related JP4443954B2 (en) 2004-02-18 2004-02-18 FRP energy absorbing member structure

Country Status (1)

Country Link
JP (1) JP4443954B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1878623A1 (en) * 2006-07-11 2008-01-16 Toyoda Iron Works Co., Ltd. Impact absorbing member for vehicle
JP2009101717A (en) * 2007-10-19 2009-05-14 Toyota Motor Corp Mounting part structure for impact absorbing member
JP2009287749A (en) * 2008-05-30 2009-12-10 Nissan Motor Co Ltd Energy absorber and energy absorbing method
JP2015055258A (en) * 2013-09-10 2015-03-23 富士重工業株式会社 Energy absorption member and impact absorption device
EP3135541A2 (en) 2015-08-31 2017-03-01 Toyota Jidosha Kabushiki Kaisha Energy absorbing structure of vehicle
EP3147163A1 (en) 2015-09-25 2017-03-29 Toyota Jidosha Kabushiki Kaisha Vehicular energy absorption structure
CN108216909A (en) * 2016-12-09 2018-06-29 通用汽车环球科技运作有限责任公司 It is designed for the lid of fiber-reinforced composites crush member
CN112172722A (en) * 2020-09-30 2021-01-05 徐州徐工随车起重机有限公司 Vehicle-mounted telescopic crash cushion and vehicle provided with same
CN114162073A (en) * 2021-11-09 2022-03-11 湖南大学 Triple coupling trigger structure and application thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9199592B1 (en) 2014-11-04 2015-12-01 Ford Global Technologies, Llc Crash box
CN109681562B (en) * 2018-12-21 2020-11-10 上海交通大学 Reusable variable-load energy-absorbing strut based on inverted composite pipe

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1878623A1 (en) * 2006-07-11 2008-01-16 Toyoda Iron Works Co., Ltd. Impact absorbing member for vehicle
US7862104B2 (en) 2006-07-11 2011-01-04 Toyoda Iron Works Co., Ltd. Impack absorbing member for vehicle
JP2009101717A (en) * 2007-10-19 2009-05-14 Toyota Motor Corp Mounting part structure for impact absorbing member
JP2009287749A (en) * 2008-05-30 2009-12-10 Nissan Motor Co Ltd Energy absorber and energy absorbing method
JP2015055258A (en) * 2013-09-10 2015-03-23 富士重工業株式会社 Energy absorption member and impact absorption device
EP3135541A2 (en) 2015-08-31 2017-03-01 Toyota Jidosha Kabushiki Kaisha Energy absorbing structure of vehicle
EP3147163A1 (en) 2015-09-25 2017-03-29 Toyota Jidosha Kabushiki Kaisha Vehicular energy absorption structure
JP2017061273A (en) * 2015-09-25 2017-03-30 トヨタ自動車株式会社 Vehicular energy absorption structure
CN106553604A (en) * 2015-09-25 2017-04-05 丰田自动车株式会社 The energy absorbing structure of vehicle
US9932006B2 (en) 2015-09-25 2018-04-03 Toyota Jidosha Kabushiki Kaisha Vehicular energy absorption structure
CN108216909A (en) * 2016-12-09 2018-06-29 通用汽车环球科技运作有限责任公司 It is designed for the lid of fiber-reinforced composites crush member
CN112172722A (en) * 2020-09-30 2021-01-05 徐州徐工随车起重机有限公司 Vehicle-mounted telescopic crash cushion and vehicle provided with same
CN114162073A (en) * 2021-11-09 2022-03-11 湖南大学 Triple coupling trigger structure and application thereof

Also Published As

Publication number Publication date
JP4443954B2 (en) 2010-03-31

Similar Documents

Publication Publication Date Title
US10077015B2 (en) Impact absorber
JP4443954B2 (en) FRP energy absorbing member structure
JP5797713B2 (en) Shock absorber
US6830286B2 (en) Fiber composite crash structure
US8376275B2 (en) Energy absorbing structure for aircraft
US4742899A (en) Fiber reinforced tubular component
US20050147804A1 (en) Energy absorber and method for manufacturing the same
JP2010138953A (en) Energy absorbing member and manufacturing method therefor
JP4583775B2 (en) Shock absorber for automobile
JP6679970B2 (en) Vehicle impact energy absorption structure
JP6220198B2 (en) Shock absorber
US20150137538A1 (en) Bumper back beam made of composite material and having improved energy absorption rate, and bumper including same
JP4118263B2 (en) Shock absorber for automobile
US9545989B2 (en) Aircraft fuselage structure comprising an energy absorbing device
CN110044211B (en) Lining part of bulletproof helmet
JP4247038B2 (en) Shock-absorbing composite structure, manufacturing method thereof, and traveling body or navigation body using the same
JP2008045736A (en) Resin member, and method for manufacturing the same
JP2009287749A (en) Energy absorber and energy absorbing method
JP2006207679A (en) Shock absorbing member manufacturing method
JP6560568B2 (en) Energy absorbing structure
US20080152887A1 (en) Impact-Absorbing Composite Structure, Method of Manufacturing the Impact-Absorbing Composite Structure, and Driving Object or Aviating Object Employing the Impact-Absorbing Composite Structure
JP2017227277A (en) Energy absorption structure
JP5328401B2 (en) Shock absorbing member
JP2007170520A (en) Energy-absorbing structural member
CN111328366A (en) Component for absorbing impact forces

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100112

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100113

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140122

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees