JP2005233168A - Four cycle three layer rotary disk valve type eight valve engine - Google Patents

Four cycle three layer rotary disk valve type eight valve engine Download PDF

Info

Publication number
JP2005233168A
JP2005233168A JP2004075272A JP2004075272A JP2005233168A JP 2005233168 A JP2005233168 A JP 2005233168A JP 2004075272 A JP2004075272 A JP 2004075272A JP 2004075272 A JP2004075272 A JP 2004075272A JP 2005233168 A JP2005233168 A JP 2005233168A
Authority
JP
Japan
Prior art keywords
valve
exhaust
intake
engine
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004075272A
Other languages
Japanese (ja)
Inventor
Hideki Koike
秀喜 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2004075272A priority Critical patent/JP2005233168A/en
Publication of JP2005233168A publication Critical patent/JP2005233168A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Valve-Gear Or Valve Arrangements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high output high performance engine of a small size and light weight and excellent in durability by eliminating restriction of intake and exhaust of an engine. <P>SOLUTION: In this three layer rotary disk valve type eight valve engine (intake 4, exhaust 4, total 8), intake and exhaust can be done without restriction by rotating a valve 2. Rotation of a valve gets a eighth of rotation of a crankshaft by dividing the disk into sixteen, and four times of four stroke can be done by one rotation of the valve. Namely, intake and exhaust can be done four times during one rotation of a rotary valve. Since this rotates considerably slow, intake and exhaust can be surely done. Characteristics and usage of the engine depends on how quick large quantity of mixed gas can be sucked accurately. This high performance engine can perform instant high speed and maximum cruising speed travel for a long period of time without restriction. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

発明の詳細な説明Detailed Description of the Invention

発明が属する技術分野Technical field to which the invention belongs

本発明は自動車等エンジンの性能を著しく向上させるために4サイクル3層、円盤バルブ回転式、8バルブエンジンに関するものである。The present invention relates to a four-cycle, three-layer, disc-valve rotary, eight-valve engine in order to significantly improve the performance of engines such as automobiles.

従来型の4サイクルDOHC4バルブエンジンは(DOHCとは、DダブルOHオ−バ−ヘッドCカムシャフト)ダブルオ−バ−ヘッドカムシャフトの略でシリンダ−ヘッドの上に(Dダブル)2本のカムシャフト(図10符号19)があるもので1本の方は吸気専用のシャフトで、2個の吸気バルブと2個の吸気口があり、もう1本の方は排気専用のシャフトで2個の排気バルブと2個の排気口があり、それぞれ2本のシャフトには(図10符号20)のカムが取り付けられており吸気用シヤフトとカムが1体となりシャフトが回転しながら吸気の時は吸気用のカムが吸気用バルブ(図10符号21)の頭を押し下げ吸気口(図10符号22)を開き吸気口から混合ガスを燃焼室(図10符号25)に送り込み、排気の時は排気用シャフトとカムが1体となりシャフトが回転しながら排気用バルブ(図10符号23)の頭を押し下げて排気口(図10符号24)を開き排気口から燃焼済みの排気ガスを外に送り出す仕組みで、吸気と排気を交互に行いながらピストン(図10符号26)を上下運動させ、その上下運動によりクランクシャフト(図1符号10)(従来型も回転型も同じ4サイクルなので図1を使った)を回転させ、その回転運動によりそれを動力源にして車が動く仕組みになっている。4サイクルエンジンとは▲1▼吸入▲2▼圧縮▲3▼燃焼(爆発)▲4▼排気の4行程である▲1▼の吸入でピストンが下がり燃焼室が広くなり吸気口から混合ガスを吸入し▲2▼の行程でピストンが上がり燃焼室に入った混合ガスを圧縮し▲3▼の行程で上がり切ったピストンにより圧縮された混合ガスにプラグ(図10符号5)に依り火花を出し点火、燃焼(爆発)させる、その爆発による力でピストンが押し下げられる▲4▼下がりきったピストンが上に上がるとき燃焼室で燃え切った混合ガスを排気ガスとして、排気バルブ(図10符号23)が下がって開いた排気口(図10符号24)より燃焼室外に放出される。
以上で説明したように従来型は棒状の吸気、排気バルブが回転してるカムシャフトとカ厶により押し下げられたり上げらりたりする上下運動なのでバルブの開閉には限度があった。前にも説明したように4サイクルでは▲1▼▲2▼の行程でクランクシャフトが1回転し▲3▼▲4▼の行程で又1回転する、つまり4行程でクランクシャフトは2回転する事になる、これが4サイクルの4行程になる。4行程のうち吸気と排気は各1回ずつになる。つまり従来型エンジンではクランクシャフトが2回転するうちバルブ開閉用カムシャフトは1回転する、つまりクランクシャフトの2分の1回転とゆう事になる。例えばエンジンの回転数が6000回転から6500回転が限度だが、なぜ限度(リミット)があるかといえばエンジン回転数が6500回転とするとバルブ開閉用カムシャフトは2分の1の3250回転になる、前にも説明したように吸気、排気バルブは上下運動のため3250回転がリミットになる。車のタコメ−タ−が6000回転から6500回転以上が赤く(レッドゾ−ン)なっているのはその為だ。レッドゾ−ンを越えると吸気、排気のバルブ開閉が正確に作動しなくなる恐れがあり誤作動の原因になる、そのため回転数に制限がある。
The conventional four-cycle DOHC four-valve engine (DOHC is D double OH over head C camshaft) is an abbreviation of double over head camshaft, and two cams on the cylinder head (D double). There is a shaft (reference numeral 19 in FIG. 10), one is a dedicated intake shaft, has two intake valves and two intake ports, and the other is an exhaust dedicated shaft with two There are an exhaust valve and two exhaust ports. Each of the two shafts has a cam (reference numeral 20 in FIG. 10). The intake shaft and cam are combined into one body and the shaft rotates while intake is taking in. The intake cam pushes down the head of the intake valve (reference numeral 21 in FIG. 10), opens the intake opening (reference numeral 22 in FIG. 10), and feeds the mixed gas from the intake opening to the combustion chamber (reference numeral 25 in FIG. 10). shaft As the cam rotates as one unit and the shaft rotates, the head of the exhaust valve (reference numeral 23 in FIG. 10) is pushed down to open the exhaust outlet (reference numeral 24 in FIG. 10) and exhausted exhaust gas is sent out from the exhaust outlet. The piston (reference numeral 26 in FIG. 10) is moved up and down while alternately evacuating and the crankshaft (reference numeral 10 in FIG. 1) is rotated by the up-and-down movement. The vehicle moves by using the rotational movement as a power source. What is a four-cycle engine? Then, the piston rises in the stroke (2), compresses the mixed gas that has entered the combustion chamber, and the mixture gas compressed by the piston that has gone up in the stroke (3) emits sparks by means of a plug (reference numeral 5 in FIG. 10). The piston is pushed down by the force of the explosion that causes combustion (explosion). (4) When the lowered piston rises upward, the exhaust valve (23 in FIG. 10) uses the mixed gas burned out in the combustion chamber as the exhaust gas. It is discharged out of the combustion chamber through the exhaust port (reference numeral 24 in FIG. 10) opened downward.
As described above, the conventional type has a limit in opening and closing because the rod-like intake and exhaust valves are moved up and down by the camshaft and the cage rotating. As explained before, in 4 cycles, the crankshaft makes one revolution in the stroke of (1) and (2), and makes one revolution in the stroke of (3) and (4), that is, the crankshaft makes two revolutions in the four strokes. This is 4 strokes of 4 cycles. Of the four strokes, intake and exhaust are performed once each. In other words, in the conventional engine, the valve opening / closing camshaft makes one revolution while the crankshaft makes two revolutions, that is, half the crankshaft. For example, the engine rotation speed is limited to 6000 to 6500 rotations, but the reason is that if the engine rotation speed is 6500 rotations, the valve opening / closing camshaft will be half the 3250 rotations. As described above, since the intake and exhaust valves move up and down, 3250 rotations is the limit. That is why the tachometer of the car is red (red zone) from 6000 to over 6500 revolutions. Exceeding the red zone may cause the intake / exhaust valve opening / closing to fail to operate correctly, leading to malfunctions. Therefore, the rotational speed is limited.

発明が解決しようとする課題Problems to be solved by the invention

従来型のDOHC4バルブエンジンでは吸気、排気の各バルブ(図10符号21,23)がカム(図10符号20)による上下運動のため回転が上がれば上がるほど、そのカ厶とバルブの動きに誤差が生じ正確に働かなくなる。そのため回転数の上限が6000回転から6500回転位迄と限度があり、それ以上回転させる事は不可能である。それを1万回転でも2万回転でも無制限に回転数をあげる事が出来、無制限に正確に吸気、排気バルブを開閉する事が出来れば車はもっと高出力高性能なエンジンになる。そうなれば当然今までのシャフトもカムもバルブ(図10符号19,20,21,23,)もいらなくなるので当然小型で軽量になる。又エンジンル−ム、ボンネットの形状も変える事が可能になり、従来の最大の欠点を解消するのが課題である。In the conventional DOHC 4-valve engine, the intake and exhaust valves (reference numerals 21 and 23 in FIG. 10) move up and down due to the vertical movement by the cam (reference numeral 20 in FIG. 10), and the more the rotation increases, the more the error in the movement of the valve and valve. Will not work correctly. Therefore, the upper limit of the rotational speed is limited from 6000 to 6500, and it is impossible to rotate further. If you can increase the number of revolutions at 10,000 or 20,000 rpm without limitation, and if you can open and close the intake and exhaust valves accurately without limitation, the car will be a higher output and higher performance engine. If this is the case, naturally the conventional shaft, cam, and valve (reference numerals 19, 20, 21, 23, FIG. 10) are no longer needed, so that it is naturally small and lightweight. It is also possible to change the shape of the engine room and the bonnet, and it is a problem to eliminate the biggest drawbacks of the prior art.

課題を解決するための手段Means for solving the problem

課題である制限付きのエンジンの回転数を無制限に回転させられる様にするために、4サイクル、3層、円盤バルブ回転式、8バルブエンジンを開発する事で課題の問題点を解決している。In order to be able to rotate the engine speed of the limited engine, which is the problem, without limitation, the problem of the problem is solved by developing a 4-cycle, 3-layer, disk valve rotary type, 8-valve engine. .

4サイクル3層、円盤バルブ回転式8バルブエンジンとは(図1,2,3,4,5,6,7,符号1,2)で示す様に固定型と回転型に分け、固定側の方は1層目と3層目(図1,3符号1)をエンジンブロック(シリンダ−ブロック)(図1,3符号17)と1体型としシリンダ−上部に固定し、1層目と3層目の固定型それぞれに吸気口4個と(従来型は2個)排気口4個(従来型は2個)(従来型の計4個)の倍の計8個(図6)を設け、真ん中にある2層目を回転型バルブ(図1,3,4,5,符号2)としてそれに吸気口4個と排気口4個の計8個(図7)を設け、この2層目を回転バルブとして回転させる事により吸気と排気をスム−ズに行える様にした。固定型の吸気口と回転型の吸気バルブが回転しながら合った時吸気口が開いて混合ガスを燃焼室に吸入し、排気口同士が合ったとき燃焼済みの排気ガスを燃焼室から放出する。吸気口が倍の4個になった事で倍の混合ガスを吸入する事ができるので、当然、出力も向上する。The four-cycle, three-layer, disc-valve rotary 8-valve engine is divided into a fixed type and a rotary type as shown in (Figs. 1, 2, 3, 4, 5, 6, 7, 1 and 2). The first and third layers (1 and 3 in FIG. 1) and the engine block (cylinder block) (17 in FIGS. 1 and 3) are combined into one body and fixed to the upper part of the cylinder, and the first and third layers. For each fixed eye type, there are 4 intake ports (2 for the conventional type) and 4 exhaust ports (2 for the conventional type) (4 for the conventional type) (8 in total) (Fig. 6). The second layer in the middle is a rotary valve (Figs. 1, 3, 4, 5 and 2), which is provided with four intake ports and four exhaust ports (Fig. 7). By rotating as a rotary valve, intake and exhaust can be performed smoothly. When the stationary inlet and the rotary inlet valve are rotated and matched, the inlet opens and sucks the mixed gas into the combustion chamber. When the outlets meet each other, the burned exhaust gas is released from the combustion chamber. . Since the number of intake ports has doubled, it is possible to inhale twice the mixed gas, so the output is naturally improved.

(図6)の固定型と(図7)の回転型とでは吸気口は同じ位置に配置出来るが、排気口は同じ位置に配置出来ない。(図7)の回転側バルブの方の排気口が1個分ずれている、それは固定側と回転側の吸気口と排気口の位置が全く同じ位置に配置されていると固定側と回転側の吸気口と排気口が同時に開いてしまい吸気と排気が同時に行われることになる、それではエンジンとして全く機能しない、それを吸気と排気が別々に行える様に(図7)の回転側の排気口を1個分ずらして配置してある。これで吸気の時は吸気口同士が同時に開き、排気の時は4サイクル、4行程の3行程の終了後に排気口同士が同時に開く、これで4サイクルエンジンとして立派に機能する。ここで4サイクル(4行程)をもう1度おさらいすると、▲1▼吸入▲2▼圧縮▲3▼燃焼(爆発)▲4▼排気 = ▲1▼吸入(混合ガスを吸気口から燃焼室に吸入する)▲2▼圧縮(混合ガスを燃焼室内でピストンに依り圧縮する)▲3▼燃焼(爆発)(燃焼室内で圧縮された混合ガスにプラグに依り火花で点火させる、これが動力源になりピストンを回転させる)▲4▼排気(燃焼室内で燃え尽きた混合ガスを排気ガスとして燃焼室から排気口、排気管を通して外に放出する)。因みにこの回転バルブの回転方向は右周り(時計周り)である。In the fixed type of (FIG. 6) and the rotary type of (FIG. 7), the intake port can be arranged at the same position, but the exhaust port cannot be arranged at the same position. The exhaust port on the rotation side valve in FIG. 7 is shifted by one, which means that the fixed side and the rotation side when the positions of the intake and exhaust ports on the fixed side and the rotation side are exactly the same position. The intake and exhaust ports of the engine are opened at the same time, and intake and exhaust are performed at the same time, so that it does not function as an engine at all, so that the intake and exhaust can be performed separately (FIG. 7). Are shifted by one. Thus, the intake ports open at the same time during intake, and the exhaust ports open simultaneously after the completion of 3 cycles of 4 cycles and 4 strokes at the time of exhaust, which functions as a 4-cycle engine. Here, if 4 cycles (4 strokes) are reviewed again, (1) intake (2) compression (3) combustion (explosion) (4) exhaust = (1) intake (mixed gas from the intake port to the combustion chamber) (2) Compression (mixed gas is compressed by a piston in the combustion chamber) (3) Combustion (explosion) (mixed gas compressed in the combustion chamber is ignited by a spark by a plug, which becomes the power source. (4) Exhaust (The mixed gas burned out in the combustion chamber is discharged as exhaust gas from the combustion chamber to the outside through the exhaust port and exhaust pipe). Incidentally, the rotation direction of this rotary valve is clockwise (clockwise).

ここでは従来型のカムシャフトの回転数(問題有り)に課題があるので、ここで取り上げる。この3層、円盤回転型エンジンも従来型と同じ4サイクル(4行程)であるが、従来型と異なるところは、バルブ回転方式に加え、吸気、排気各4、計8バルブにした事である。なぜ8バルブの方が良いかと言うと、従来型ではカムシャフトの回転がクランクシャフトの回転の2分の1回転、つまりクランクシャフト(図1、2符号10)(従来型も円盤回転型も、ピストンから下は同じ形式なので(図1)を使う)の回転が6000回転ならば、カムシャフト(図10符号19)の回転は2分の1の3000回転となり、吸気、排気バルブの開閉は3000回転から3250回転迄が限度(従来型)と説明しましたが、3層円盤、回転バルブ型では(図6,7)で示す様に、固定側も回転側も1個の円盤の中を16分割する事により、円盤が1回転で4行程を4回こなす事になる(1行程は吸気から排気までの4区分、16(分割)分の4、つまり円盤の4分の1回転になる、それを4回こなせば1回転になる。『つまり従来型4サイクルでは▲1▼吸入▲2▼圧縮でクランクシャフトが1回転、▲3▼燃焼▲4▼排気で1回転、4行程をこなすとクランクシャフトは2回転する、その間バルブを開閉するカ厶シャフトは1回転する、つまりカムシャフトはクランクシャフトの2分の1回転になる。(ここは最重要の所なので重複しますが)クランクシャフトが6500回転ならカ厶シャフトは3250回転、これまでが限度になる。』(ここで少々前に戻しますが)これに対し円盤回転型バルブの方は、1回転で4行程を4回こなす事になるつまり回転数で言えばクランクシャフトが1行程の中で2回転するので、4行程で(2×4=8)で8回転する、その間回転バルブは1回転する、つまりクランクシャフトの回転数の8分の1回転が回転バルブの回転数になる。と言うことは回転数で言えばクランクシャフトが6000回転すれば回転バルブは8分の1の750回転である。10000回転すれば8分の1で1250回転になる。それに加え回転方式なので回転には制限が無い。従来型と比較すると従来型3000回転に対し回転型750回転、これはもう余裕の数字で更に回転も無制限、回転式にしただけでも無制限に回る所をそれを更に16分割する事により回転バルブもゆっくり回る事が出来るし、更に制限も無くなったので、吸気も排気も無駄なく正確に更にス厶−ズに行う事が出来る。それにカムシャフトや棒状のバルブが無くなった分、小型で軽量になった。これがこの4サイクル3層、円盤バルブ回転式8バルブエンジンの最大のメリットである。これでこの発明の課題が全て解決出来た。Here, since there is a problem with the rotational speed (with problems) of the conventional camshaft, it will be taken up here. This three-layer, disk-rotating engine also has the same four cycles (four strokes) as the conventional type, but the difference from the conventional type is that in addition to the valve rotation method, there are four intake and exhaust valves, a total of eight valves. . The reason why the 8 valve is better is that in the conventional type, the camshaft rotation is one half of the rotation of the crankshaft, that is, the crankshaft (Fig. 1, reference numeral 10) (both the conventional type and the disk rotary type, If the rotation from the piston to the bottom is the same type (FIG. 1 is used), the rotation of the camshaft (reference numeral 19 in FIG. 10) is 3000 times 1/2, and the intake and exhaust valves are opened and closed 3000 times. We explained that the limit from the rotation to 3250 rotations (conventional type), but the three-layer disk and the rotary valve type (Figs. 6 and 7) show that the fixed side and the rotating side are 16 in one disk. By dividing, the disk will perform 4 strokes 4 times in 1 rotation (1 stroke is 4 divisions from intake to exhaust, 4 for 16 (division), that is, 1/4 rotation of the disk, If you do it 4 times, it will be 1 turn. In conventional four-cycle, (1) intake (2) compression, crankshaft makes one revolution, (3) combustion, (4) exhaust, one revolution, and four strokes, crankshaft makes two revolutions, while opening and closing the valve The car shaft rotates once, that is, the camshaft is one half of the crankshaft (this is the most important point, so it will be duplicated). (In this case, the disc rotation type valve will perform 4 strokes 4 times per revolution, that is, the crankshaft is 1 in terms of the number of revolutions.) Since there are 2 rotations in the stroke, 8 rotations (2 × 4 = 8) in the 4th stroke. During that time, the rotary valve rotates once, that is, 1/8 rotation of the crankshaft rotation speed is the rotation of the rotary valve. In other words, if the crankshaft is rotated 6000, the rotary valve is 1/8 750. If it is 10000, it is 1250, 1/8. There is no limit on rotation because it is a method.Comparing with the conventional type, the rotation type is 750 rotations compared to the conventional type, and this is an extra number, and further rotation is unlimited. Further, by dividing into 16 parts, the rotary valve can be rotated slowly and there are no restrictions, so intake and exhaust can be performed more smoothly and accurately without waste. This is the small size and light weight, which is the biggest advantage of this 4-cycle 3-layer disk valve rotary 8-valve engine. I was able to resolve.

仕組み・はたらきStructure and function

回転式バルブの回転数をクランクシャフトの8分の1回転に減速させるには(図1、B、図2)で示すように例えば(符号14a,)小さいギヤ(10枚歯)タイミングギヤから(符号14b)大きいギヤ(20枚歯)タイミングギヤを回せば2分の1回転に減速出来る、この20枚歯ギヤと同じ軸(符号16)に10枚歯ギヤを取り付け、その10枚歯ギヤの方で別の20枚歯ギヤを回せば、更に2分の1回転減速出来る、これで合計4分の1回転に減速出来る、更に20枚歯ギヤと同じ軸に10枚歯ギヤを取り付け、その10枚歯ギヤの方にタイミングベルト(符号15)で回転バルブシャフト(符号11)に取り付けた20枚歯ギヤを回せば、更に2分の1回転減速出来る、これで合計6分の1回転に減速出来る、更に20枚歯ギヤを取り付けた回転バルブシャフトに10枚歯ギヤのバルブ回転用ギヤ(符号12)を、エンジン上中央にある20枚歯ギヤ(符号13)の付いた回転バルブ(符号2)を回せる位置に取り付ければ(図2,符号12,13、参照)更に2分の1回転減速出来る、これで合計8分の1回転になる。これで予定通りの回転数になる。これはほんの1例であり他に減速の仕方はいろいろある。がいっきに減速させようとして、あんまり大きなギヤは使わない方が良い、エンジンが重くなってしまう。(図1のB)は本来(図1のA)の正面中央に取り付けられてあるものだが、説明上(A)と(B)として別にした。In order to decelerate the rotational speed of the rotary valve to one-eighth of the crankshaft (FIGS. 1, B and 2), for example, (reference numeral 14a), from a small gear (10 teeth) timing gear ( Reference numeral 14b) A 10-gear gear is mounted on the same shaft (reference numeral 16) as the 20-gear gear, which can be reduced to a half rotation by turning a large gear (20-gear) timing gear. If you turn another 20-tooth gear on the other side, you can further reduce the speed by one-half rotation, so you can reduce it to a total of one-fourth rotation, and attach a 10-tooth gear on the same shaft as the 20-tooth gear, By rotating the 20-tooth gear attached to the rotary valve shaft (reference 11) with the timing belt (reference 15) toward the 10-tooth gear, the speed can be reduced by one-half revolution. You can decelerate an additional 20 gears If a 10-tooth gear valve rotation gear (symbol 12) is attached to the mounted rotary valve shaft at a position where a rotary valve (symbol 2) with a 20-tooth gear (symbol 13) in the center of the engine can be turned. (Refer to FIG. 2, reference numerals 12 and 13) Further, the motor can be decelerated by one half of a revolution. This is the planned number of rotations. This is just one example, and there are many other ways to slow down. However, it is better not to use large gears to reduce the speed at the same time, which will make the engine heavier. (B in FIG. 1) is originally attached to the center of the front (A in FIG. 1), but is separated as (A) and (B) for explanation.

3層、円盤バルブ回転式エンジンを、1気筒以上の多気筒にする場合いはバルブ回転用シャフトを(図8,9符号11)の様に4気筒でも、6気筒でも気筒分まで延ばせば、多気筒にすることが出来る。When the three-layer, disc valve rotary engine is made to be a multi-cylinder having one or more cylinders, if the shaft for rotating the valve is extended to as many as four cylinders or six cylinders as shown in FIG. Can be multi-cylinder.

発明の効果The invention's effect

上述のようにこの3層、円盤バルブ回転式、8バルブエンジンの効果は、従来型エンジンではバルブの開閉が上下運動のため自ずと限界があった、又それが最大の弱点でもあった、がこの3層円盤回転式のバルブ開閉方式エンジンは吸気、排気が従来より更に正確に出来るようになった。又、バルブ自体が回転するので回転運動には制限が無い、無制限なのでエンジン性能を飛躍的に向上させることが出来る。又従来型エンジンのシリンダ−ヘッド部分の棒状バルブとカムシャフト等が無くなったので、その分エンジン自体の重量が軽くなりスッキリ小型化出来る。小型で軽量且つ耐久性に優れた高出力で高性能なエンジンだ。棒状バルブを回転型バルブにしただけでこれだけの効果が出る。これがこのエンジンの最大の効果である。エンジンが小型軽量になった分、現在実用化が進んでいるハイブリットカ−(ガソリンと電気モ−タ−を併用して走る車)にも最適である。
又、F1の様なレ−シングカ−等は、いかに小さなスペ−スに、小型で軽量且つ耐久性に優れた高出力、高性能のエンジンを搭載出来るかにレ−スの勝敗がかかっているので、この3層、円盤バルブ回転式、8バルブエンジンを搭載できればその効果は絶大である。もちろん自動車だけでなくオ−トバイ用としても最適であり、その効果は絶大である。
As described above, the effects of this three-layer, disc-valve rotating, eight-valve engine were naturally limited because of the up-and-down movement of the valve in the conventional engine, and this was the greatest weakness. The three-layer disk-rotating valve opening and closing engine has made intake and exhaust more accurate than before. In addition, since the valve itself rotates, there is no limit to the rotational motion, and since there is no limit, the engine performance can be dramatically improved. In addition, since the rod-like valve and the camshaft etc. in the cylinder-head portion of the conventional engine are eliminated, the weight of the engine itself is reduced and the size can be reduced. It is a small, lightweight, durable engine with high output and high performance. You can get this effect just by turning the rod valve into a rotary valve. This is the greatest effect of this engine. Since the engine has become smaller and lighter, it is also ideal for hybrid cars (cars that run in combination with gasoline and electric motors) that are currently in practical use.
In addition, racers such as F1 have a decisive effect on how small a space can be equipped with a high-power, high-performance engine that is compact, lightweight and durable. Therefore, if this three-layer, disk valve rotary type, 8-valve engine can be installed, the effect will be great. Of course, it is optimal not only for automobiles but also for motorcycles, and its effect is tremendous.

4サイクル3層、円盤バルブ回転式、8バルブエンジンの正面立面図の総図(A)はエンジン本体の正面立面図 (B)は円盤バルブ回転の仕組み本体の円盤バルブ回転用のタイミングギヤとタイミングベルトの正面図(本来はAとBは1対のものなのだが説明上別々にした)A four-cycle, three-layer, disc-valve rotating, 8-valve engine front elevation view (A) is a front elevation view of the engine body. (B) is a disc valve rotation mechanism. And front view of timing belt (Originally, A and B are a pair, but they are separated for explanation) 4サイクル3層、円盤バルブ回転式、8バルブエンジンの側立面図Side elevation of 4-cycle 3-layer, disc valve rotary, 8-valve engine 3総、円盤バルブ回転式の固定側と回転側のバルブと吸気、排気系の拡大図3 Enlarged view of the disk valve rotary fixed and rotary valves and intake and exhaust systems 3層式の1層目と3層目の固定側だけの吸気口と排気口付き拡大図Enlarged view with intake and exhaust ports on the fixed side of the first and third layers of the three-layer system 3層式の2層目の回転側だけの吸気口と排気口付き回転バルブの拡大図(図5)の回転バルブが(図4)の回転バルブスペ−スにはいるThe rotary valve in the enlarged view (Fig. 5) of the rotary valve with the intake and exhaust ports on the rotary side of the second layer of the three-layer type is in the rotary valve space of (Fig. 4). 3層式の1層目と3層目の固定側の吸気口4個と排気口4個付き平面図Plan view with four inlets and four outlets on the fixed side of the first and third layers of the three-layer system 3層式の2層目の回転側の吸気口4個と排気口4個付き回転バルブの平面図Plan view of a rotary valve with four intake ports and four exhaust ports on the rotation side of the second layer of the three-layer system 3層、円盤バルブ回転式、8バルブエンジンの多気筒型(1気筒以上の)立側面図Multi-cylinder (1 cylinder or more) elevational view of a three-layer, disc valve rotating, 8-valve engine 多気筒型の平面図Plan view of multi-cylinder type 従来型エンジンの正面立断面図Front sectional view of a conventional engine 従来型エンジンの平面断面図Plan sectional view of a conventional engine 4サイクル3層、円盤バルブ回転式、8バルブエンジンの(ペントル−フ型)エンジンの正面立断面図 (図1,2)とまったく同じ方式だが、ペントル−フ型にしたものFrontal sectional view of a 4-cycle 3-layer, disc-valve rotary (8-valve) engine (Pentol-Fu type) (Figs. 1 and 2) 3層式の1層目の上部に取り付けた吸気ポ−トと排気ポ−ト付きの断面図Sectional view with intake port and exhaust port attached to the top of the first layer of the 3-layer system

符号の簡単な説明Brief description of symbols

1 : 1層目、3層目、固定型
2 : 2層目、円盤回転8バルブ式、回転バルブ(斜線の部分)(本発明の最重要部分、これが全ての基準になる)
3 : 吸気口、(固定側も回転側も同じ)
4 : 排気口(固定側も回転側も同じ)
5 : プラグ
6 : 燃焼室
7 : ピストン
8 : コンロッド
9 : カウンタ−ウエイト(又はバランスウエイト)
10 : クランクシャフト
11 : バルブ回転用シャフト
12 : バルブ回転用ギヤ
13 : 回転バルブギヤ
14 : 大、小、タイミングギヤ(a)小(b)大
15 : タイミングベルト
16 : タイミングギヤ用軸
17 : エンジンブロック(又はシリンダ−ブロック)
18 : オイルパン
19 : 従来型のカムシャフト(右吸気用、左排気用)
20 : 従来用のカム(右吸気用、左排気用)
21 : 従来型の吸気バルブ
22 : 従来型の吸気口
23 : 従来型の排気バルブ
24 : 従来型の排気口
25 : 従来型の燃焼室
26 : 従来型のピストン
27 : 吸気ポ−ト
28 : 排気ポ−ト
1: First layer, third layer, fixed type 2: Second layer, disk rotating 8-valve type, rotating valve (shaded portion) (the most important part of the present invention, this is all the reference)
3: Intake port (same on fixed side and rotating side)
4: Exhaust port (same on fixed side and rotating side)
5: Plug 6: Combustion chamber 7: Piston 8: Connecting rod 9: Counter-weight (or balance weight)
10: crankshaft 11: valve rotation shaft 12: valve rotation gear 13: rotary valve gear 14: large, small, timing gear (a) small (b) large 15: timing belt 16: timing gear shaft 17: engine block (Or cylinder block)
18: Oil pan 19: Conventional camshaft (for right intake and left exhaust)
20: Conventional cam (for right intake and left exhaust)
21: Conventional intake valve 22: Conventional intake port 23: Conventional exhaust valve 24: Conventional exhaust port 25: Conventional combustion chamber 26: Conventional piston 27: Intake port 28: Exhaust Port

Claims (3)

エンジン本体のシリンダ−の上部の吸気と排気を3層の円盤回転式(図1、3,4,5,符号1,2,)にして3層のうち1層目と下部の3層目(図3,4,5,符号1)をエンジンブロック(図1,2、3,符号17)と1体の固定型とし、真ん中の2層目だけを回転式(図3,4,5符号2)にしてそれに吸気口4個と排気口4個を付けて計8バルブとして回転させる(図7)。1層目と3層目の固定型にも吸気口4個と排気口4個を付けて計8バルブ方式とした(図6)。2層目のバルブを回転させる事に依り、1層目と3層目の固定型の吸気口と2層目の回転型の吸気口が回転しながら会った時吸気口が開き混合ガスを燃焼室に送り込み吸気する。又、排気の時も固定型と回転型の排気口が回転しながら会った時排気口から燃焼後の排気ガスを外に排出する。バルブを回転させる事に依り吸気と排気を円滑、且つ正確に行える様にした事を特徴とする円盤バルブ回転式、吸気、排気8バルブエンジン。  The intake and exhaust of the upper part of the cylinder of the engine body is made into a three-layer disk rotation type (FIGS. 1, 3, 4, 5, reference numerals 1, 2), and the first and lower third layers of the three layers ( 3, 4, 5, 1) is an engine block (FIG. 1, 2, 3, 17) and one fixed type, and only the second middle layer is a rotary type (FIG. 3, 4, 5, 2). ), 4 intake ports and 4 exhaust ports are added to it and rotated as a total of 8 valves (FIG. 7). The fixed type of the first layer and the third layer is also provided with four intake ports and four exhaust ports, for a total of eight valves (FIG. 6). By rotating the second-layer valve, when the first and third-layer fixed inlets and the second-layer rotary inlet meet while rotating, the inlet opens and burns the mixed gas. Inhale into the room and inhale. Also, when exhausting, when the stationary and rotating exhaust ports meet while rotating, the exhaust gas after combustion is discharged out of the exhaust port. Disc valve rotary type, intake and exhaust 8-valve engine, characterized by smooth and accurate intake and exhaust by rotating the valve. 3層、円盤バルブ回転式、8バルブエンジンの特徴とは1層目の上部には吸気口と排気口にそれぞれ吸気ポ−トと排気ポ−トを取り付け固定するために固定型とし(図13、符号27、28)3層目は真下に燃焼室(図1,3、符号6)があるので、混合ガスを燃焼(爆発)させた時に起こる衝撃を直接回転バルブに与えないで和らげるために(これは回転バルブ保護のため)(図1,3)設けたちので固定型とし、2層目の回転バルブが何の衝撃も受けずにスム−ズに回転出来るように3層式とした。  The features of the three-layer, disc-valve rotary, and eight-valve engine are fixed types for attaching and fixing the intake port and the exhaust port to the intake port and the exhaust port, respectively, on the upper part of the first layer (FIG. 13). 27, 28) In the third layer, there is a combustion chamber (Figs. 1, 3 and 6), so that the impact that occurs when the mixed gas is burned (exploded) is not directly applied to the rotary valve. (This is for protection of the rotary valve) (FIGS. 1 and 3) Since it is provided, it is a fixed type and a three-layer type so that the second-layer rotary valve can rotate smoothly without receiving any impact. このエンジンは4サイクルエンジン(4行程エンジン)なので8バルブにする事によりバルブが1回転する間に4行程を4回こなす事になる、したがってクランクシャフトの方はバルブが1回転する間に8回転する。つまりバルブはクランクシャフトの8分の1の回転で済む事になる、これはバルブの回転がかなりゆっくり回るとゆう事なので、より正確により無駄なく吸気、排気が出来る様になる。又バルブは回転する事で無制限に回るのでこれはかなり有利になる(従来の技術)参照。Since this engine is a four-cycle engine (four-stroke engine), if eight valves are used, four strokes are performed four times during one rotation of the valve. Therefore, the crankshaft is rotated eight times during one rotation of the valve. To do. In other words, the valve needs only one-eighth rotation of the crankshaft. This means that if the valve rotates fairly slowly, intake and exhaust can be performed more accurately and without waste. Also, since the valve rotates indefinitely by rotation, this is quite advantageous (see the prior art).
JP2004075272A 2004-02-18 2004-02-18 Four cycle three layer rotary disk valve type eight valve engine Pending JP2005233168A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004075272A JP2005233168A (en) 2004-02-18 2004-02-18 Four cycle three layer rotary disk valve type eight valve engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004075272A JP2005233168A (en) 2004-02-18 2004-02-18 Four cycle three layer rotary disk valve type eight valve engine

Publications (1)

Publication Number Publication Date
JP2005233168A true JP2005233168A (en) 2005-09-02

Family

ID=35016364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004075272A Pending JP2005233168A (en) 2004-02-18 2004-02-18 Four cycle three layer rotary disk valve type eight valve engine

Country Status (1)

Country Link
JP (1) JP2005233168A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102434240A (en) * 2011-09-27 2012-05-02 浙江大学 Rotary built-in platy valve and valve structure thereof
CN106437927A (en) * 2016-11-10 2017-02-22 安徽工程大学 Rotary net type valve timing mechanism

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102434240A (en) * 2011-09-27 2012-05-02 浙江大学 Rotary built-in platy valve and valve structure thereof
CN106437927A (en) * 2016-11-10 2017-02-22 安徽工程大学 Rotary net type valve timing mechanism

Similar Documents

Publication Publication Date Title
KR960007104B1 (en) Engine using compressed air
US5025756A (en) Internal combustion engine
EP1404946B1 (en) Radial internal combustion engine with floating balanced piston
US6948458B2 (en) Two-way cylinder engine
US5988133A (en) Engine disc valve
WO1991010815A1 (en) Valve for four-cycle engine
CN1186524C (en) Self-balanced rotor engine
JP2005233168A (en) Four cycle three layer rotary disk valve type eight valve engine
CN210195867U (en) Rotary piston engine
US5911203A (en) Modular rotary discoid valve assembly for engines and other applications
CN101122244A (en) Rotary axle valve type engine valve train device
KR100305447B1 (en) Intake/exhaust valve device of engine
AU2007100307B4 (en) Improvements for two-stroke engines
JPH0374507A (en) Valve arrangement for internal combustion engine
US9322274B2 (en) Rotary piston internal combustion engine
CN200996323Y (en) Oscillating piston-type IC engine
US2288774A (en) Valve mechanism
JP2005016497A (en) New exhaust system and four cycle six valve engine
KR100241371B1 (en) One body device for intake-exhaust valve of a vehicle engine
US1635533A (en) burtnett
KR20020008555A (en) Engine
JPS6138321B2 (en)
JPS5946311A (en) Rotary valve system cylinder head
JPS60192813A (en) Rotary valve in engine
JPS60192814A (en) Rotary valve in engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060411

A521 Written amendment

Effective date: 20060530

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20060801

Free format text: JAPANESE INTERMEDIATE CODE: A02