JP2005233026A - Ejector - Google Patents

Ejector Download PDF

Info

Publication number
JP2005233026A
JP2005233026A JP2004041177A JP2004041177A JP2005233026A JP 2005233026 A JP2005233026 A JP 2005233026A JP 2004041177 A JP2004041177 A JP 2004041177A JP 2004041177 A JP2004041177 A JP 2004041177A JP 2005233026 A JP2005233026 A JP 2005233026A
Authority
JP
Japan
Prior art keywords
space
fluid
pressure
refrigerant
needle valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004041177A
Other languages
Japanese (ja)
Other versions
JP4134918B2 (en
Inventor
Takayuki Sugiura
崇之 杉浦
Hirotsugu Takeuchi
裕嗣 武内
Hiroshi Oshitani
洋 押谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2004041177A priority Critical patent/JP4134918B2/en
Publication of JP2005233026A publication Critical patent/JP2005233026A/en
Application granted granted Critical
Publication of JP4134918B2 publication Critical patent/JP4134918B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0012Ejectors with the cooled primary flow at high pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0013Ejector control arrangements

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ejector for controlling the flow amount of refrigerant passing therethrough with the displacement of a needle valve while preventing the displacement of the needle valve to the side of reducing the flow amount of the refrigerant when refrigerant pressure on the flow-in side of high pressure refrigerant suddenly rises. <P>SOLUTION: A high pressure space 18 into which the high pressure refrigerant flows from an inlet 17a is partitioned into a space 18a on the side of a jet and a space 18b on the opposite side to the jet with a piston portion 19b formed integrally with the needle valve 19 as a flow amount control means. The inlet 17a is arranged in the space 18a on the side of the jet. Besides, a communication passage 17d is arranged for communicating a throttle portion 17c for converting the pressure energy of the refrigerant into velocity energy with the space 18b on the opposite side of the jet. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、流体を減圧する減圧手段であるとともに、高速で噴出する作動流体の巻き込み作用によって流体輸送を行う運動量輸送式ポンプであるエジェクタ(JIS Z 8126 番号2.1.2.3等参照)に関するもので、冷媒を減圧する減圧手段および冷媒を循環させるポンプ手段としてエジェクタを採用した冷凍機、車両用空調装置等に適用して有効である。   The present invention is an ejector (see JIS Z 8126 No. 2.1.2.3, etc.) that is a decompression means for decompressing a fluid and that transports fluid by the entrainment action of a working fluid ejected at high speed. Therefore, the present invention is effective when applied to a refrigerator, a vehicle air conditioner, or the like that employs an ejector as a decompression means for decompressing the refrigerant and a pump means for circulating the refrigerant.

従来、冷凍サイクルで冷媒減圧手段および冷媒循環手段として用いられるエジェクタにおいて、エジェクタを通過する冷媒の流量を調節するものが特許文献1にて知られている。   Conventionally, an ejector used as a refrigerant decompression unit and a refrigerant circulation unit in a refrigeration cycle is known in Patent Document 1 for adjusting the flow rate of the refrigerant passing through the ejector.

この図4の特許文献1に記載の従来例のエジェクタ50では、圧縮機で高圧となった冷媒が流入口51を通って高圧空間18に流入する。その後、高圧冷媒はノズル17の絞り部17cで通路面積を絞られることにより、圧力エネルギーが速度エネルギーに変換されて加速し、噴出口17bから噴出する。この噴出した高い速度の冷媒流の巻き込み作用により、蒸発器で蒸発した気相冷媒が気相冷媒流入口23から吸引される。   In the ejector 50 of the conventional example described in Patent Document 1 in FIG. 4, the refrigerant having a high pressure in the compressor flows into the high-pressure space 18 through the inlet 51. Thereafter, the passage area of the high-pressure refrigerant is reduced by the restriction portion 17c of the nozzle 17, whereby the pressure energy is converted into velocity energy, accelerates, and is ejected from the ejection port 17b. Due to the entraining action of the jetted high-speed refrigerant flow, the vapor-phase refrigerant evaporated by the evaporator is sucked from the vapor-phase refrigerant inlet 23.

さらに、冷媒は混合部21を通過してディフューザ部22へ流れる。エジェクタは、このディフューザ部22で冷媒の膨張エネルギーを圧力エネルギーに変換して圧縮機の吸入側の冷媒圧力を上昇させることにより、冷媒流れ下流側の圧縮機の消費動力を低減している。ディフューザ部22通過後、冷媒は気液分離器で液相冷媒と気相冷媒に分離され、気相冷媒は圧縮機に吸入され、液相冷媒は蒸発器で蒸発して気相冷媒となり、気相冷媒流入口23に到達する。   Further, the refrigerant passes through the mixing unit 21 and flows to the diffuser unit 22. The ejector reduces the consumption power of the compressor on the downstream side of the refrigerant flow by converting the expansion energy of the refrigerant into pressure energy and increasing the refrigerant pressure on the suction side of the compressor by the diffuser portion 22. After passing through the diffuser unit 22, the refrigerant is separated into a liquid-phase refrigerant and a gas-phase refrigerant by a gas-liquid separator, the gas-phase refrigerant is sucked into a compressor, and the liquid-phase refrigerant is evaporated by an evaporator to become a gas-phase refrigerant. It reaches the phase refrigerant inlet 23.

また、従来例ではニードル弁19をノズルの軸線方向(図4中左右方向)Rに変位させることにより、絞り部17c、つまりノズル17の開度(冷媒が通過可能な流路面積)を変化させてノズル17を通過する冷媒の流量を増減させることができる。従来例では、ニードル弁19が噴出口方向(図4中右方向)R1に変位するとノズル17の開度が小さくなり、噴出口とは反対方向(図4中左方向)R2に変位するとノズル17の開度が大きくなる。   In the conventional example, the needle valve 19 is displaced in the nozzle axial direction (left-right direction in FIG. 4) R, thereby changing the opening of the throttle portion 17c, that is, the nozzle 17 (flow passage area through which the refrigerant can pass). Thus, the flow rate of the refrigerant passing through the nozzle 17 can be increased or decreased. In the conventional example, when the needle valve 19 is displaced in the jet direction (right direction in FIG. 4) R1, the opening degree of the nozzle 17 is reduced, and when the needle valve 19 is displaced in the opposite direction (left direction in FIG. 4) R2, the nozzle 17 The opening of becomes larger.

これによると、圧縮機が高回転、つまりエジェクタ50に流入する冷媒が多い時にはノズル17の開度を大きくして、ノズル17(エジェクタ50)を通過する冷媒量を増やすことができる。したがって、エジェクタ50の冷媒流れ下流側の蒸発器を流れる冷媒量が増えるため、エジェクタ50を通過する冷媒流量を増減できない場合に比べて、特にサイクルを流れる冷媒量が多い時の冷凍(冷房)能力を向上することができる。
特開2003−185275号公報
According to this, when the compressor rotates at a high speed, that is, when there is a large amount of refrigerant flowing into the ejector 50, the opening degree of the nozzle 17 can be increased to increase the amount of refrigerant passing through the nozzle 17 (ejector 50). Therefore, since the amount of refrigerant flowing through the evaporator on the downstream side of the refrigerant flow of the ejector 50 increases, the refrigeration (cooling) capacity when the amount of refrigerant flowing through the cycle is larger than when the flow rate of refrigerant passing through the ejector 50 cannot be increased or decreased. Can be improved.
JP 2003-185275 A

しかし、従来例では圧縮機の回転数が急に高くなった場合などに高圧空間18に流入して噴出口17bへ向かう冷媒の圧力が急激に上昇すると、ニードル弁19は冷媒から噴出口方向(図4中右方向)R1への力を受ける。つまり、ニードル弁19がノズル17の開度を小さくする方向へ変位する。   However, in the conventional example, if the pressure of the refrigerant flowing into the high-pressure space 18 and going toward the outlet 17b suddenly increases when the rotation speed of the compressor suddenly increases, the needle valve 19 moves from the refrigerant to the outlet ( (Right direction in FIG. 4) The force to R1 is received. That is, the needle valve 19 is displaced in a direction to reduce the opening degree of the nozzle 17.

特に冷媒循環量が少なく、ニードル弁19がノズル17の開度を小さくしている時に冷媒の圧力が急激に上昇するとニードル弁19がノズル17を閉塞してしまう場合もある。これにより、高圧側配管などの圧力が異常に高圧となり、配管などを破損するという問題が発生してしまう。   In particular, when the refrigerant circulation amount is small and the needle valve 19 reduces the opening of the nozzle 17, the needle valve 19 may block the nozzle 17 if the refrigerant pressure rapidly increases. As a result, the pressure of the high-pressure side piping becomes abnormally high, which causes a problem of damaging the piping.

本発明は、上記点に鑑み、ニードル弁の変位により通過する冷媒の流量を調節するエジェクタにおいて、高圧冷媒が流入する側の冷媒圧力が急激に上昇した時のニードル弁の冷媒流量を少なくする側への変位を防ぐことを目的とする。   In view of the above points, the present invention provides an ejector that adjusts the flow rate of refrigerant passing through the displacement of the needle valve, and reduces the refrigerant flow rate of the needle valve when the refrigerant pressure on the side into which high-pressure refrigerant flows suddenly increases. The purpose is to prevent displacement.

上記目的を達成するため、請求項1に記載の発明では、流入口(17a)から高圧流体が流入する高圧空間(18)と、高圧空間(18)から流体噴出口(17b)へ向かって高圧流体の通路面積を縮小する絞り部(17c)を有する絞り手段(17)と、高圧空間(18)内において、絞り部(17c)の軸線方向(R)に変位することにより、絞り部(17c)の開度を変化させるニードル弁(19)とを備え、流体噴出口(17b)から高速で噴出する作動流体の巻き込み作用によって流体輸送を行う運動量輸送式ポンプであるエジェクタであって、
ニードル弁(19)は、軸線方向(R)の流体噴出口側方向(R1)に変位すると絞り部(17c)の開度を小さくし、一方軸線方向(R)の流体噴出口とは反対側方向(R2)に変位すると絞り部(17c)の開度を大きくするようになっており、
ニードル弁(19)には、高圧空間(18)を流体噴出口(17b)側の空間(18a)と、流体噴出口(17b)とは反対側空間(18b)とに仕切るピストン部(19b)が一体に形成されており、
流体噴出口(17b)へ向かう流体がニードル弁(19)を流体噴出口側方向(R1)に変位させる場合には、ピストン部(19b)が流体噴出口とは反対側方向(R2)に圧力を受けるようになっていることを特徴としている。
In order to achieve the above object, according to the first aspect of the present invention, the high pressure space (18) into which the high pressure fluid flows from the inflow port (17a) and the high pressure from the high pressure space (18) to the fluid jet port (17b) are provided. A throttle means (17) having a throttle portion (17c) for reducing the passage area of the fluid, and displacement in the axial direction (R) of the throttle portion (17c) in the high-pressure space (18) An ejector that is a momentum transport pump that includes a needle valve (19) that changes a degree of opening) and that transports fluid by the entrainment action of a working fluid ejected from the fluid ejection port (17b) at high speed,
When the needle valve (19) is displaced in the direction (R1) of the fluid jet outlet in the axial direction (R), the opening of the throttle part (17c) is reduced, while the side opposite to the fluid jet outlet in the axial direction (R). Displacement in the direction (R2) increases the opening of the throttle part (17c),
The needle valve (19) includes a piston portion (19b) that partitions the high-pressure space (18) into a space (18a) on the fluid ejection port (17b) side and a space (18b) opposite to the fluid ejection port (17b). Is integrally formed,
When the fluid toward the fluid outlet (17b) displaces the needle valve (19) in the fluid outlet side direction (R1), the piston portion (19b) is pressurized in the direction opposite to the fluid outlet (R2). It is characterized by receiving.

これによると、流体噴出口(17b)へ向かう流体がニードル弁(19)を流体噴出口側方向(R1)に変位させる場合、例えば流体噴出口(17b)へ向かう流体の圧力が急に高くなった場合などには、ピストン部(19b)が流体噴出口とは反対側方向(R2)に圧力を受ける。つまり、ニードル弁(19)が絞り部(17c)の開度を大きくする。   According to this, when the fluid heading toward the fluid outlet (17b) displaces the needle valve (19) in the fluid outlet side direction (R1), for example, the pressure of the fluid toward the fluid outlet (17b) suddenly increases. In such a case, the piston portion (19b) receives pressure in the direction (R2) opposite to the fluid ejection port. That is, the needle valve (19) increases the opening of the throttle part (17c).

これにより、流体噴出口(17b)へ向かう流体の圧力が急に高くなった時にニードル弁(19)が絞り部(17c)を閉塞して高圧空間(18)の圧力が異常に高くなり、部材などが破損することを防止できる。   As a result, when the pressure of the fluid toward the fluid ejection port (17b) suddenly increases, the needle valve (19) closes the throttle portion (17c), and the pressure in the high-pressure space (18) becomes abnormally high. Can be prevented from being damaged.

また、請求項2に記載の発明では、請求項1のエジェクタにおいて、流入口(17a)を流体噴出口(17b)側の空間(18a)に配置し、
さらに、絞り部(17c)と、流体噴出口(17b)とは反対側空間(18b)とを連通する連通路(17d)を配置したことを特徴としている。
In the invention according to claim 2, in the ejector according to claim 1, the inflow port (17a) is disposed in the space (18a) on the fluid jet port (17b) side,
Furthermore, the communication part (17d) which connects a throttle part (17c) and the space (18b) on the opposite side to the fluid ejection port (17b) is arranged.

ところで、ノズル(17)の絞り部(17c)では流体の圧力エネルギーが速度エネルギーに変換される。そのため、流体の圧力は流体噴出口(17b)側の空間(18a)の圧力値から流体噴出口(17b)へ向かって低くなっていく。   By the way, the pressure energy of the fluid is converted into velocity energy at the throttle portion (17c) of the nozzle (17). Therefore, the pressure of the fluid decreases from the pressure value of the space (18a) on the fluid ejection port (17b) side toward the fluid ejection port (17b).

したがって、流体噴出口(17b)とは反対側空間(18b)の圧力は、反対側空間(18b)よりも圧力が低い絞り部(17c)と連通路(17d)を介して通じているため、流体噴出口(17b)側の空間(18a)よりも圧力が低くなっている。   Therefore, the pressure in the space (18b) opposite to the fluid outlet (17b) communicates with the throttle portion (17c) having a lower pressure than the space on the opposite side (18b) through the communication passage (17d). The pressure is lower than the space (18a) on the fluid ejection port (17b) side.

この時、流体噴出口(17b)へ向かう流体の圧力、つまり流体噴出口(17b)側の空間(18a)の圧力が急に高くなると反対側空間(18b)の圧力が小、噴出口側空間の圧力が大という圧力差が大きくなるため、両空間(18a、18b)を仕切っているピストン部(19b)は、流体噴出口とは反対側方向(R2)に圧力を受ける。   At this time, when the pressure of the fluid toward the fluid outlet (17b), that is, the pressure of the space (18a) on the fluid outlet (17b) side suddenly increases, the pressure of the opposite side space (18b) decreases, and the outlet side space Therefore, the piston portion (19b) partitioning both spaces (18a, 18b) receives pressure in the direction opposite to the fluid ejection port (R2).

これにより、ピストン部(19b)と一体のニードル弁(19)が流体噴出口とは反対側方向(R2)に変位、つまりニードル弁(19)が絞り部(17c)の開度を大きくすることができる。したがって、ニードル弁(19)の変位を機械的に制御して請求項1と同様の効果を発揮することができる。   Thereby, the needle valve (19) integrated with the piston part (19b) is displaced in the direction (R2) opposite to the fluid outlet, that is, the needle valve (19) increases the opening of the throttle part (17c). Can do. Therefore, the displacement of the needle valve (19) can be mechanically controlled to exhibit the same effect as that of the first aspect.

また、請求項3に記載の発明では、請求項1のエジェクタにおいて、流入口(17a)を流体噴出口(17b)側の空間(18a)に配置し、さらにピストン部(19b)には、流体噴出口(17b)側の空間(18a)と、流体噴出口(17b)とは反対側空間(18b)とを連通するピストン連通路(19c)が形成されており、
高圧流体が、流入口(17a)→流体噴出口(17b)側の空間(18a)→ピストン連通路(19c)→流体噴出口(17b)とは反対側空間(18b)→流体噴出口(17b)の順に流れるようになっていることを特徴としている。
In the invention according to claim 3, in the ejector according to claim 1, the inflow port (17a) is disposed in the space (18a) on the fluid ejection port (17b) side, and the piston portion (19b) is provided with a fluid A piston communication path (19c) is formed to communicate the space (18a) on the jet outlet (17b) side and the space (18b) opposite to the fluid jet outlet (17b),
The high-pressure fluid flows into the inlet (17a) → the space (18a) on the fluid outlet (17b) side → the piston communication path (19c) → the space (18b) opposite to the fluid outlet (17b) → the fluid outlet (17b) ) In that order.

ここで、ピストン連通路(19c)の通路面積は当然に流体噴出口(17b)側の空間(18a)での流体の通路面積よりも小さい。そのため、ピストン連通路(19c)においても前述した絞り部(17c)と同様に流体の圧力エネルギーが速度エネルギーに変換される。つまり、ピストン連通路(19c)の流体流れ上流側の流体噴出口側空間(18a)での流体圧力よりも、ピストン連通路(19c)の流体流れ下流側の噴出口とは反対側空間(18b)での流体圧力のほうが低い値となる。   Here, the passage area of the piston communication passage (19c) is naturally smaller than the passage area of the fluid in the space (18a) on the fluid ejection port (17b) side. Therefore, also in the piston communication passage (19c), the pressure energy of the fluid is converted into velocity energy in the same manner as the throttle portion (17c) described above. That is, the space (18b) opposite to the jet outlet on the downstream side of the fluid flow in the piston communication passage (19c) rather than the fluid pressure in the fluid jet side space (18a) on the upstream side of the fluid flow in the piston communication passage (19c). The fluid pressure at) is lower.

これによっても、請求項1と同様に流体噴出口(17b)側の空間(18a)の圧力が急に高くなると、両空間(18a、18b)の圧力差が大きくなるため、ピストン部(19b)と一体のニードル弁(19)が流体噴出口とは反対側方向(R2)に変位、つまりニードル弁(19)が絞り部(17c)の開度を大きくすることができる。したがって、ニードル弁(19)の変位を機械的に制御することができる。   Also in this manner, as in the first aspect, when the pressure in the space (18a) on the fluid ejection port (17b) side suddenly increases, the pressure difference between the two spaces (18a, 18b) increases, so the piston portion (19b) And the needle valve (19) integral with the fluid nozzle are displaced in the direction (R2) opposite to the fluid ejection port, that is, the needle valve (19) can increase the opening of the throttle portion (17c). Therefore, the displacement of the needle valve (19) can be controlled mechanically.

なお、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。   In addition, the code | symbol in the bracket | parenthesis of each said means shows the correspondence with the specific means as described in embodiment mentioned later.

(第1実施形態)
本実施形態は、本発明に係るエジェクタを車両用空調装置の冷凍サイクルに適用したものであり、図1は本実施形態に係る冷凍サイクルの模式図である。図1中、11は冷媒を吸入圧縮する圧縮機11である。この圧縮機11で高圧状態となった冷媒は放熱器12に流入する。放熱器12では冷媒が室外空気へ放熱する、言い換えると冷媒が室外空気により冷却される。
(First embodiment)
In the present embodiment, the ejector according to the present invention is applied to a refrigeration cycle of a vehicle air conditioner, and FIG. 1 is a schematic diagram of the refrigeration cycle according to the present embodiment. In FIG. 1, 11 is a compressor 11 that sucks and compresses refrigerant. The refrigerant that has become a high pressure state by the compressor 11 flows into the radiator 12. In the radiator 12, the refrigerant radiates heat to the outdoor air, in other words, the refrigerant is cooled by the outdoor air.

冷却された冷媒は、エジェクタ13に流入する。エジェクタ13は放熱器12から流出する冷媒を減圧膨張させて後述する蒸発器16にて蒸発した気相冷媒を吸引するとともに、膨張エネルギーを圧力エネルギーに変換して圧縮機11の吸入圧を上昇させている。このエジェクタ13についての詳細は後述する。   The cooled refrigerant flows into the ejector 13. The ejector 13 decompresses and expands the refrigerant flowing out of the radiator 12 and sucks the gas-phase refrigerant evaporated in the evaporator 16 described later, and converts the expansion energy into pressure energy to increase the suction pressure of the compressor 11. ing. Details of the ejector 13 will be described later.

エジェクタ13から流出した冷媒は、気液分離器14に流入する。気液分離器14では、流入した冷媒を気相冷媒と液相冷媒とに分離して冷媒を蓄えており、分離された気相冷媒は圧縮機11に吸引されて再び圧縮され、一方、分離された液相冷媒は蒸発器16側に吸引される。   The refrigerant that has flowed out of the ejector 13 flows into the gas-liquid separator 14. In the gas-liquid separator 14, the refrigerant that has flowed is separated into a gas-phase refrigerant and a liquid-phase refrigerant and stored, and the separated gas-phase refrigerant is sucked into the compressor 11 and compressed again. The liquid refrigerant thus drawn is sucked to the evaporator 16 side.

蒸発器16は、液相冷媒が室内に吹き出す空気と熱交換して蒸発することにより冷房能力を発揮するものである。なお、気液分離器14と蒸発器16との間に配置される第1減圧器15は、気液分離器14から蒸発器16側に吸引される液相冷媒を減圧する絞り(減圧)手段であり、この第1減圧器15により蒸発器16内の圧力(蒸発圧力)を確実に低下させている。   The evaporator 16 exhibits cooling capability by heat-exchanging the liquid-phase refrigerant with the air blown into the room and evaporating. The first decompressor 15 disposed between the gas-liquid separator 14 and the evaporator 16 is a throttle (decompression) means for decompressing the liquid-phase refrigerant sucked from the gas-liquid separator 14 to the evaporator 16 side. The pressure in the evaporator 16 (evaporation pressure) is reliably reduced by the first decompressor 15.

次に、図2を使用して本発明に係るエジェクタ13について説明すると、エジェクタ13は主として冷媒を減圧するノズル17と、ノズル17の冷媒流れ下流側で主として冷媒の循環(吸引)、混合、昇圧を行う部分とに大別できる。   Next, the ejector 13 according to the present invention will be described with reference to FIG. 2. The ejector 13 mainly includes a nozzle 17 that depressurizes the refrigerant, and circulation (suction), mixing, and pressure increase of the refrigerant mainly on the downstream side of the refrigerant flow of the nozzle 17. It can be roughly divided into the parts that perform

ノズル17には、前述した放熱器12通過後の高圧冷媒が流入する流入口17a、ノズル内部に形成された高圧空間18および冷媒がノズルから噴出する噴出口17bが備えられている。また、高圧空間18と噴出口17bとの間の部位には、高圧空間18から噴出口17bに向かって高圧冷媒の通路面積が縮小するテーパ形状の絞り部17cが形成されている。さらに、ノズル17には、絞り部17cと噴出口と反対側空間18b(後述する)との間を連通する連通路17dが形成されている。   The nozzle 17 is provided with an inflow port 17a into which the high-pressure refrigerant that has passed through the radiator 12 flows, a high-pressure space 18 formed inside the nozzle, and an outlet 17b through which the refrigerant is ejected from the nozzle. In addition, a tapered throttle portion 17c is formed in a portion between the high-pressure space 18 and the jet port 17b so that the passage area of the high-pressure refrigerant decreases from the high-pressure space 18 toward the jet port 17b. Further, the nozzle 17 is formed with a communication passage 17d that communicates between the throttle portion 17c and the jetting outlet and the opposite space 18b (described later).

また、ノズル17内の高圧空間18にはノズル17の軸線方向Rに変位することにより、絞り部17bの開度を変化させてノズル17を通過する冷媒の流量を調整するニードル弁19が配置されている。   In addition, a needle valve 19 that adjusts the flow rate of the refrigerant passing through the nozzle 17 by changing the opening degree of the throttle portion 17b by being displaced in the axial direction R of the nozzle 17 is disposed in the high-pressure space 18 in the nozzle 17. ing.

ニードル弁19は、略針形状の棒状部材であり、噴出口側方向R1の端部には断面が噴出口側方向R1に向かって小さくなるテーパ部19aが形成されている。さらに、高圧空間18の軸線方向Rと垂直な断面に対応した形状を有し、高圧空間18を噴出口側空間18aと噴出口と反対側空間18bとに仕切るピストン部19bが、ニードル弁19と一体に形成されている。なお、本実施形態ではニードル弁19を変位させる手段の一例として、電磁エネルギーを機械的直線運動に変換するソレノイドを使用している。図中20がソレノイドのコイル部である。   The needle valve 19 is a substantially needle-shaped rod-like member, and a tapered portion 19a whose cross section becomes smaller toward the ejection port side direction R1 is formed at the end of the ejection port side direction R1. Further, a piston portion 19b having a shape corresponding to a cross section perpendicular to the axial direction R of the high-pressure space 18 and partitioning the high-pressure space 18 into a jet outlet side space 18a and a jet outlet opposite space 18b It is integrally formed. In this embodiment, as an example of means for displacing the needle valve 19, a solenoid that converts electromagnetic energy into mechanical linear motion is used. In the figure, reference numeral 20 denotes a solenoid coil.

また、噴出口17bの冷媒流れ下流側には略一定断面の通路断面を有する混合部20が形成されており、さらに混合部21の冷媒流れ下流側には冷媒流れ下流側方向に向かって徐々に断面積が増えていくディフューザ部22が形成されている。なお、噴出口17bの図中下方には、蒸発器16からの気相冷媒がエジェクタ13に流入する気相冷媒流入口23が配置されている。   Further, a mixing portion 20 having a substantially constant cross-sectional passage cross section is formed on the refrigerant flow downstream side of the jet port 17b, and further, the refrigerant flow downstream side of the mixing portion 21 gradually decreases in the refrigerant flow downstream direction. A diffuser portion 22 having an increased cross-sectional area is formed. A gas-phase refrigerant inlet 23 through which the gas-phase refrigerant from the evaporator 16 flows into the ejector 13 is disposed below the jet port 17b in the drawing.

次に、冷凍サイクルおよびエジェクタ13の作動を図1および図2を使用して述べる。圧縮機11が起動すると、気液分離器14から気相冷媒が圧縮機11に吸入され、圧縮された冷媒が放熱器12に吐出される。そして、放熱器12にて冷却された冷媒は、エジェクタ13のノズル17の流入口17aから噴出口側空間18aに流入する。その後、冷媒は噴出口17bへ向かって流れる(図2中矢印A)。   Next, the operation of the refrigeration cycle and the ejector 13 will be described with reference to FIGS. When the compressor 11 is started, gas-phase refrigerant is sucked into the compressor 11 from the gas-liquid separator 14, and the compressed refrigerant is discharged to the radiator 12. And the refrigerant | coolant cooled with the heat radiator 12 flows in into the jet outlet side space 18a from the inflow port 17a of the nozzle 17 of the ejector 13. FIG. Thereafter, the refrigerant flows toward the jet port 17b (arrow A in FIG. 2).

この時、冷媒は絞り部17cにより通路面積を絞られることにより減圧膨張される。言い換えると、その圧力エネルギーが速度エネルギーに変換されている。なお、連通路17dにより、絞り部17cと噴出口と反対側空間18bの圧力はほぼ同一となっている。冷媒は絞り部17cで徐々に減圧されているため、反対側空間18bの冷媒圧力は噴出口側空間18aの圧力よりも低くなる。   At this time, the refrigerant is decompressed and expanded by restricting the passage area by the restricting portion 17c. In other words, the pressure energy is converted to velocity energy. Note that the pressure in the space 18b on the opposite side of the throttle portion 17c and the ejection port is substantially the same by the communication passage 17d. Since the refrigerant is gradually depressurized by the throttle portion 17c, the refrigerant pressure in the opposite side space 18b is lower than the pressure in the jet outlet side space 18a.

また、絞り部17cを通過する冷媒量は、ニードル弁19がソレノイド20により、ノズル17の軸線方向Rに変位することにより調整される。ニードル弁19が噴出口側方向R1に変位するとテーパ部19aが絞り部17cに徐々にはまる状態となって冷媒の通路面積を小さく(冷媒流量を少なく)し、一方ニードル弁19が噴出口と反対方向R2に変位するとテーパ部19aが絞り部17cから離れて冷媒の通路面積を大きく(冷媒流量を多く)する。   Further, the amount of refrigerant passing through the throttle portion 17 c is adjusted by the needle valve 19 being displaced in the axial direction R of the nozzle 17 by the solenoid 20. When the needle valve 19 is displaced in the jet outlet side direction R1, the tapered portion 19a gradually fits into the throttle portion 17c, reducing the passage area of the refrigerant (reducing the refrigerant flow rate), while the needle valve 19 is opposite to the jet port. When displaced in the direction R2, the taper portion 19a is separated from the throttle portion 17c to increase the refrigerant passage area (increase the refrigerant flow rate).

絞り部17cを通過した冷媒は噴出口17bから高速度で噴出する。この時、蒸発器16で気相となった冷媒が、高速度の噴出流により気相冷媒流入口23から吸引される。噴出口17bから噴出した冷媒と気相冷媒流入口23から吸引された気相冷媒は混合部21で混合しながらディフューザ部22へ流れる。そして、ディフューザ部22で冷媒の動圧が静圧に変換されて気液分離器14に戻る。一方、エジェクタ13により蒸発器16内の冷媒が吸引されるため、蒸発器16には気液分離器14から液相冷媒が流入し、その流入した冷媒は、室内に吹き出す空気から吸熱して蒸発する。   The refrigerant that has passed through the throttle portion 17c is ejected from the ejection port 17b at a high speed. At this time, the refrigerant that has become a gas phase in the evaporator 16 is sucked from the gas phase refrigerant inlet 23 by the high-speed jet flow. The refrigerant jetted from the jet port 17 b and the gas phase refrigerant sucked from the gas phase refrigerant inlet 23 flow to the diffuser part 22 while being mixed in the mixing part 21. Then, the dynamic pressure of the refrigerant is converted into a static pressure by the diffuser unit 22 and returns to the gas-liquid separator 14. On the other hand, since the refrigerant in the evaporator 16 is sucked by the ejector 13, the liquid-phase refrigerant flows from the gas-liquid separator 14 into the evaporator 16, and the refrigerant that flows in absorbs heat from the air blown into the room and evaporates. To do.

次に、第1実施形態による作用効果を述べると、流入口17aから流入する冷媒の圧力が急に高くなった場合には、ニードル弁19が絞り部17cの冷媒流量を増やすように変位するため、異常高圧による配管などの部材の破損を防止することができる。   Next, the operation and effect of the first embodiment will be described. When the pressure of the refrigerant flowing in from the inlet 17a suddenly increases, the needle valve 19 is displaced so as to increase the refrigerant flow rate of the throttle portion 17c. It is possible to prevent damage to members such as piping due to abnormally high pressure.

本実施形態では、ニードル弁19にピストン部19bを配置して、高圧空間18を噴出口側の空間18aと、噴出口と反対側の空間18bとに仕切っている。さらに、絞り部17cと反対側空間18bを連通する連通路17dが配置されている。これによると、噴出口と反対側空間18bは、冷媒の圧力エネルギーが速度エネルギーに変換されているために冷媒圧力が低くなる絞り部17cと連通している。したがって、ニードル弁19のピストン部19bの両側の空間では噴出口と反対側空間18bの圧力が小、噴出口側空間18aの圧力が大という状態になっている。   In this embodiment, the piston part 19b is arrange | positioned at the needle valve 19, and the high voltage | pressure space 18 is divided into the space 18a by the side of a jet nozzle, and the space 18b on the opposite side to a jet nozzle. Further, a communication path 17d that communicates with the space 18b opposite to the throttle portion 17c is disposed. According to this, the space 18b opposite to the jet port communicates with the throttle portion 17c where the refrigerant pressure becomes low because the pressure energy of the refrigerant is converted into velocity energy. Therefore, in the space on both sides of the piston portion 19b of the needle valve 19, the pressure in the space 18b opposite to the jet port is small and the pressure in the jet port side space 18a is large.

流入口17aから噴出口側空間18aに流入して噴出口17bへ向かう冷媒の圧力が急に高くなった場合には、噴出口と反対側空間18bの圧力が小、噴出口側空間18aの圧力が大という圧力差が大きくなるため、両空間18a、18bを仕切っているピストン部19bは、噴出口と反対側方向R2に圧力を受ける、つまりニードル弁19が絞り部17cの開度を大きくする。   When the pressure of the refrigerant flowing into the jet outlet side space 18a from the inlet 17a toward the jet outlet 17b suddenly increases, the pressure in the space 18b opposite to the jet outlet is small, and the pressure in the jet outlet side space 18a is small. Therefore, the piston portion 19b that partitions both spaces 18a and 18b receives pressure in the direction R2 opposite to the jet port, that is, the needle valve 19 increases the opening of the throttle portion 17c. .

これにより、噴出口17bへ向かう冷媒の圧力が急に高くなった場合であってもニードル弁19が絞り部17cを閉塞して高圧空間18の圧力が異常に高くなり、配管部材などが破損することを防止できる。   Thereby, even when the pressure of the refrigerant toward the jet port 17b suddenly increases, the needle valve 19 closes the throttle portion 17c, the pressure in the high-pressure space 18 becomes abnormally high, and the piping member or the like is damaged. Can be prevented.

なお、ニードル弁19の変位を機械的に制御しているため、異常高圧に対するソフト的な制御は不要である。   In addition, since the displacement of the needle valve 19 is mechanically controlled, software control for abnormally high pressure is unnecessary.

(第2実施形態)
第1実施形態では、絞り部17cと噴出口と反対側空間18bとを連通する連通路17dにより、ピストン部19bの両側に圧力差を作ったが、図3に示す本実施形態ではピストン部19bに噴出側空間17aと噴出口と反対側空間18bとを連通するピストン連通路19cが形成されている。さらに、ノズル17内には反対側空間18bから噴出口17bへ通じる通路18cが配置されている。そして、流入口17aからノズル17内に流入した高圧冷媒は図中矢印B方向に流れる。その後、冷媒はピストン連通路19cを通って噴出口と反対側空間18bに流れる。さらにその後、噴出口と反対側空間18bから矢印Cのように噴出口17bへ向かって流れる。
(Second Embodiment)
In the first embodiment, the pressure difference is created on both sides of the piston portion 19b by the communication passage 17d that communicates the throttle portion 17c with the ejection port and the opposite space 18b. However, in the present embodiment shown in FIG. In addition, a piston communication passage 19c is formed to communicate the ejection side space 17a and the ejection space opposite to the ejection space 18b. Further, a passage 18c that communicates from the opposite space 18b to the ejection port 17b is disposed in the nozzle 17. The high-pressure refrigerant that has flowed into the nozzle 17 from the inlet 17a flows in the direction of arrow B in the figure. Thereafter, the refrigerant flows through the piston communication passage 19c to the space 18b opposite to the jet outlet. After that, it flows from the space 18b opposite to the jet port toward the jet port 17b as indicated by an arrow C.

ここで、ピストン連通路19cの通路面積は当然に噴出口側空間18aでの冷媒の通路面積よりも小さい。そのため、ピストン連通路19cにおいても冷媒の圧力エネルギーが速度エネルギーに変換される。つまり、ピストン連通路19cの冷媒流れ上流側の噴出口側空間18aでの冷媒圧力よりも、ピストン連通路19cの冷媒流れ下流側の噴出口と反対側空間18bでの冷媒圧力のほうが低い値となる。   Here, the passage area of the piston communication passage 19c is naturally smaller than the passage area of the refrigerant in the outlet side space 18a. Therefore, the pressure energy of the refrigerant is also converted into velocity energy in the piston communication path 19c. That is, the refrigerant pressure in the space 18b opposite to the refrigerant outlet downstream of the refrigerant flow in the piston communication passage 19c is lower than the refrigerant pressure in the jet outlet side space 18a upstream of the refrigerant flow in the piston communication passage 19c. Become.

これによっても、第1実施形態と同様に噴出口側空間18aの圧力が急に高くなると、ピストン部19bと一体のニードル弁19が噴出口とは反対側方向R2に変位、つまりニードル弁19が絞り部17cの開度を大きくすることができる。   Also by this, when the pressure in the ejection port side space 18a suddenly increases as in the first embodiment, the needle valve 19 integral with the piston portion 19b is displaced in the direction R2 opposite to the ejection port, that is, the needle valve 19 is The opening degree of the throttle portion 17c can be increased.

(他の実施形態)
上述の第1、第2実施形態では、ノズル17内に高圧空間18が形成されている例を示したが高圧空間18は、図4の従来例のようにエジェクタ13本体の内部に形成されていてもよい。この時、流入口は当然にノズル17にではなくエジェクタ13本体部に形成される。
(Other embodiments)
In the first and second embodiments described above, an example in which the high-pressure space 18 is formed in the nozzle 17 has been shown. However, the high-pressure space 18 is formed inside the ejector 13 body as in the conventional example of FIG. May be. At this time, the inlet is naturally formed not in the nozzle 17 but in the main body of the ejector 13.

上述の第1、第2実施形態では、ニードル弁19をソレノイドにより変位させる例を示したが、ニードル弁19を絞り部17cの軸線方向Rに変位できるものであればよく、例えばステッピングモータの回転力を軸線方向Rの直線的変位に変換するものであってもよい。   In the first and second embodiments described above, the example in which the needle valve 19 is displaced by the solenoid has been shown. However, any needle valve 19 may be used as long as the needle valve 19 can be displaced in the axial direction R of the throttle portion 17c. The force may be converted into a linear displacement in the axial direction R.

本発明のエジェクタを適用した第1実施形態に係る車両用空調装置の冷凍サイクルを示す模式図である。It is a schematic diagram which shows the refrigerating cycle of the vehicle air conditioner which concerns on 1st Embodiment to which the ejector of this invention is applied. 本発明の第1実施形態に係るエジェクタの断面図である。It is sectional drawing of the ejector which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係るエジェクタのノズルを示す断面図である。It is sectional drawing which shows the nozzle of the ejector which concerns on 2nd Embodiment of this invention. 特許文献1(従来例)のエジェクタを示す断面図である。It is sectional drawing which shows the ejector of patent document 1 (conventional example).

符号の説明Explanation of symbols

17…絞り手段(ノズル)、17a…流入口、17b…流体噴出口(噴出口)、
17c…絞り部、17d…連通路、18…高圧空間、
18a…流体噴出口側の空間(噴出口側空間)、
18b…流体噴出口とは反対側空間(反対側空間)、19…ニードル弁、
19b…ピストン部、19c…ピストン連通路、R…絞り部の軸線方向、
R1…流体噴出口側方向、R2…流体噴出口とは反対側方向。
17 ... throttle means (nozzle), 17a ... inflow port, 17b ... fluid ejection port (ejection port),
17c ... throttle part, 17d ... communication path, 18 ... high pressure space,
18a: Fluid ejection port side space (ejection port side space),
18b ... Space opposite to the fluid jet (opposite space), 19 ... Needle valve,
19b ... Piston part, 19c ... Piston communication path, R ... Axial direction of throttle part,
R1... Direction of fluid outlet side, R2... Direction opposite to fluid outlet.

Claims (3)

流入口(17a)から高圧流体が流入する高圧空間(18)と、前記高圧空間(18)から流体噴出口(17b)へ向かって前記高圧流体の通路面積を縮小する絞り部(17c)を有する絞り手段(17)と、前記高圧空間(18)内において、前記絞り部(17c)の軸線方向(R)に変位することにより、前記絞り部(17c)の開度を変化させるニードル弁(19)とを備え、前記流体噴出口(17b)から高速で噴出する作動流体の巻き込み作用によって流体輸送を行う運動量輸送式ポンプであるエジェクタであって、
前記ニードル弁(19)は、前記軸線方向(R)の流体噴出口側方向(R1)に変位すると前記絞り部(17c)の開度を小さくし、一方前記軸線方向(R)の前記流体噴出口とは反対側方向(R2)に変位すると前記絞り部(17c)の開度を大きくするようになっており、
前記ニードル弁(19)には、前記高圧空間(18)を前記流体噴出口(17b)側の空間(18a)と、前記流体噴出口(17b)とは反対側空間(18b)とに仕切るピストン部(19b)が一体に形成されており、
前記流体噴出口(17b)へ向かう流体が前記ニードル弁(19)を前記流体噴出口側方向(R1)に変位させる場合には、前記ピストン部(19b)が前記流体噴出口とは反対側方向(R2)に圧力を受けるようになっていることを特徴とするエジェクタ。
A high-pressure space (18) into which a high-pressure fluid flows from an inflow port (17a); and a throttle portion (17c) that reduces the passage area of the high-pressure fluid from the high-pressure space (18) toward the fluid jet port (17b). A throttle valve (19) and a needle valve (19) that changes the opening of the throttle part (17c) by displacing in the axial direction (R) of the throttle part (17c) in the high-pressure space (18). And an ejector that is a momentum transporting pump that transports fluid by the entrainment action of the working fluid ejected at a high speed from the fluid ejection port (17b),
When the needle valve (19) is displaced in the direction (R1) of the fluid jet outlet in the axial direction (R), the opening of the throttle portion (17c) is reduced, while the fluid jet in the axial direction (R) is reduced. When it is displaced in the direction opposite to the outlet (R2), the opening of the throttle part (17c) is increased.
The needle valve (19) includes a piston that partitions the high-pressure space (18) into a space (18a) on the fluid ejection port (17b) side and a space (18b) on the opposite side to the fluid ejection port (17b). The part (19b) is integrally formed,
When the fluid toward the fluid outlet (17b) displaces the needle valve (19) in the fluid outlet side direction (R1), the piston portion (19b) is in a direction opposite to the fluid outlet. An ejector characterized by receiving pressure on (R2).
前記流入口(17a)を前記流体噴出口(17b)側の空間(18a)に配置し、
前記絞り部(17c)と、前記流体噴出口(17b)とは反対側空間(18b)とを連通する連通路(17d)を配置したことを特徴とする請求項1に記載のエジェクタ。
The inlet (17a) is disposed in the space (18a) on the fluid outlet (17b) side,
2. The ejector according to claim 1, wherein a communication passage (17 d) that communicates the throttle portion (17 c) and the space (18 b) opposite to the fluid ejection port (17 b) is disposed.
前記流入口(17a)を前記流体噴出口(17b)側の空間(18a)に配置し、
前記ピストン部(19b)には、前記流体噴出口(17b)側の空間(18a)と、前記流体噴出口(17b)とは反対側空間(18b)とを連通するピストン連通路(19c)が形成されており、
前記高圧流体が、前記流入口(17a)→前記流体噴出口(17b)側の空間(18a)→前記ピストン連通路(19c)→前記流体噴出口(17b)とは反対側空間(18b)→前記流体噴出口(17b)の順に流れるようになっていることを特徴とする請求項1に記載のエジェクタ。
The inlet (17a) is disposed in the space (18a) on the fluid outlet (17b) side,
The piston portion (19b) has a piston communication passage (19c) that communicates the space (18a) on the fluid ejection port (17b) side and the space (18b) opposite to the fluid ejection port (17b). Formed,
The high-pressure fluid flows into the inlet (17a) → the space (18a) on the fluid outlet (17b) side → the piston communication path (19c) → the space (18b) opposite to the fluid outlet (17b) → The ejector according to claim 1, wherein the ejector flows in the order of the fluid ejection port (17 b).
JP2004041177A 2004-02-18 2004-02-18 Ejector Expired - Fee Related JP4134918B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004041177A JP4134918B2 (en) 2004-02-18 2004-02-18 Ejector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004041177A JP4134918B2 (en) 2004-02-18 2004-02-18 Ejector

Publications (2)

Publication Number Publication Date
JP2005233026A true JP2005233026A (en) 2005-09-02
JP4134918B2 JP4134918B2 (en) 2008-08-20

Family

ID=35016246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004041177A Expired - Fee Related JP4134918B2 (en) 2004-02-18 2004-02-18 Ejector

Country Status (1)

Country Link
JP (1) JP4134918B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106382761A (en) * 2016-08-26 2017-02-08 山东建筑大学 Electric adjustable throttle and jet type bubble absorption integrated device
US9771954B2 (en) 2012-11-16 2017-09-26 Denso Corporation Ejector

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4325142A1 (en) 2022-08-15 2024-02-21 Danfoss A/S Ejector having an actuation mechanism with a pilot valve and an equalization passage between two cylinder chambers

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9771954B2 (en) 2012-11-16 2017-09-26 Denso Corporation Ejector
CN106382761A (en) * 2016-08-26 2017-02-08 山东建筑大学 Electric adjustable throttle and jet type bubble absorption integrated device
CN106382761B (en) * 2016-08-26 2017-08-25 山东建筑大学 A kind of electronic adjustable throttling and injecting type bubble absorption integrated apparatus

Also Published As

Publication number Publication date
JP4134918B2 (en) 2008-08-20

Similar Documents

Publication Publication Date Title
JP4069880B2 (en) Ejector
US6966199B2 (en) Ejector with throttle controllable nozzle and ejector cycle using the same
US7334427B2 (en) Ejector with tapered nozzle and tapered needle
US6729158B2 (en) Ejector decompression device with throttle controllable nozzle
US6857286B2 (en) Vapor-compression refrigerant cycle system
US6779360B2 (en) Ejector having throttle variable nozzle and ejector cycle using the same
JP4832458B2 (en) Vapor compression refrigeration cycle
WO2013114856A1 (en) Ejector
JP4367168B2 (en) Variable flow nozzle
US9587650B2 (en) Ejector
JP2004060921A (en) Ejector cycle
JP4120605B2 (en) Ejector
JP4134931B2 (en) Ejector
JP4577365B2 (en) Cycle using ejector
US20050044881A1 (en) Ejector decompression device
US6918266B2 (en) Ejector for vapor-compression refrigerant cycle
JP4134918B2 (en) Ejector
JP2007032945A (en) Ejector type cycle, and flow control valve of same
WO2017135093A1 (en) Ejector
WO2017135092A1 (en) Ejector
JP4529954B2 (en) Vapor compression refrigeration cycle
JP2006118847A (en) Ejector cycle
JP2004340136A (en) Ejector
JP2003262413A (en) Ejector cycle
JP6481679B2 (en) Ejector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080507

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080520

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140613

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees