JP2005232267A - Epoxy resin molding material for sealing and electronic part device - Google Patents

Epoxy resin molding material for sealing and electronic part device Download PDF

Info

Publication number
JP2005232267A
JP2005232267A JP2004041366A JP2004041366A JP2005232267A JP 2005232267 A JP2005232267 A JP 2005232267A JP 2004041366 A JP2004041366 A JP 2004041366A JP 2004041366 A JP2004041366 A JP 2004041366A JP 2005232267 A JP2005232267 A JP 2005232267A
Authority
JP
Japan
Prior art keywords
epoxy resin
general formula
component
sealing
molding material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004041366A
Other languages
Japanese (ja)
Inventor
Hisanori Watanabe
尚紀 渡辺
Takayuki Akimoto
孝幸 秋元
Hironori Tamate
博則 玉手
Akira Jinbo
明 仁保
Yoshihiro Mizukami
義裕 水上
Toshihiro Hayashi
智弘 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2004041366A priority Critical patent/JP2005232267A/en
Publication of JP2005232267A publication Critical patent/JP2005232267A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an epoxy resin molding material for sealing which imparts good mold-releasability and good package appearances particularly to a thin package, and an electronic part device equipped with an element sealed with the same. <P>SOLUTION: The epoxy resin molding material for sealing comprises, as essential ingredients, (A) an epoxy resin, (B) a curing agent, (C) a polyolefin release agent, and (D) a mixture of a compound represented by general formula (I) with a compound represented by general formula (II). The electronic part device is equipped with the element sealed with the same. In general formula (I), l, n and m are each 0 or a positive integer and R is a monovalent saturated or unsaturated hydrocarbon group. In general formula (II), l, n and m are each 0 or a positive integer and R is a monovalent saturated or unsaturated hydrocarbon group. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、良好な成形性と良好なパッケージ外観を与える封止用エポキシ樹脂成形材料、及びこの封止用エポキシ樹脂成形材料で封止した素子を備えた電子部品装置に関する。   The present invention relates to an epoxy resin molding material for sealing that provides good moldability and a good package appearance, and an electronic component device including an element sealed with the epoxy resin molding material for sealing.

従来から、トランジスタ、IC、LSI等の電子部品装置の素子封止の分野では生産性、コスト等の面から樹脂封止が主流となり、エポキシ樹脂成形材料が広く用いられている。この理由としては、エポキシ樹脂が電気特性、耐湿性、耐熱性、機械特性、インサート品との接着性などの諸特性にバランスがとれているためである。   Conventionally, in the field of element sealing of electronic component devices such as transistors, ICs, and LSIs, resin sealing has been the mainstream in terms of productivity and cost, and epoxy resin molding materials have been widely used. This is because epoxy resins are balanced in various properties such as electrical properties, moisture resistance, heat resistance, mechanical properties, and adhesiveness with inserts.

近年は、電子部品装置の小型・軽量化、高性能・高機能化を図るために素子の高密度実装化、配線の微細化、多層化、多ピン化、素子のパッケージに対する占有面積増大化等が進んでおり、同時に、従来のDIP(Dual Inline Package)、PGA(Pin Grid Aray)等から、QFP(Quad Flat Package)、SOP(Small Outline Package)、SOJ(Small Outline J-lead package)、さらにはTSOP(Thin Small Outline Package)、TQFP(Thin Quad Flat Package)等へと、電子部品装置の薄型化が進んでいる。
近年は又、従来のピン挿入型から表面実装型へと、パッケージの実装方法も変化している。表面実装型パッケージは、半田バスやIRリフロー、VPSリフロー等のリフロー装置などにより、直接半田付け温度(リフロー温度)の高温にさらされる。この結果、ICパッケージが吸湿した場合、吸湿水分が気化して発生した蒸気圧が剥離応力として働き、パッケージに用いられる封止用成形材料の接着力が弱いと、素子、リードフレーム等のインサート品と封止用成形材料との間で剥離が発生し、パッケージクラックや半田付け不良の原因となるという問題がクローズアップされるようになった。最近は、いわゆる環境問題から、脱鉛半田への移行が急速に進んでおり、半田温度の上昇に伴って、前記問題がますますクローズアップされる状況となっている。
封止材には、金型からの円滑な脱型を目的に離型剤を内部添加することが多いが、離型剤には、基本的に封止用エポキシ樹脂成形材料を構成するエポキシ樹脂、硬化剤等とは相溶しない化合物が用いられる為、樹脂への分散不具合等に起因するパッケージの外観不良の原因となり易いという本質的な問題を抱える。パッケージの薄型化は、金型内での樹脂の流動挙動を、その充填位置によって大きく変動させる要因ともなっており、離型剤の樹脂への分散不具合と併せ、パッケージの外観不良を助長させる一因となっている。実装方法の変化は、封止用エポキシ樹脂成形材料を、半導体インサートとの高接着性が得られるビフェニル型エポキシ樹脂等の低分子系エポキシ樹脂を原材料に用い、同時に無機充填剤を増量することによる低吸湿化を進める方向へとシフトさせているが、これら低分子系エポキシ樹脂を原材料とした封止用成形材料を薄型パッケージに適用した場合、パッケージ汚れを含め、必ずしも充分な成形性を得られていないのが現状である。パッケージの外観不良防止に対しては、例えば特許文献1等の報告がある。
特開2003−213088公報
In recent years, in order to reduce the size, weight, performance, and functionality of electronic component devices, high-density mounting of elements, miniaturization of wiring, multilayering, increase in the number of pins, increase in the occupied area of the element package, etc. At the same time, from conventional DIP (Dual Inline Package), PGA (Pin Grid Aray), etc., QFP (Quad Flat Package), SOP (Small Outline Package), SOJ (Small Outline J-lead package), and more Are thinning electronic component devices to TSOP (Thin Small Outline Package), TQFP (Thin Quad Flat Package), and the like.
In recent years, the package mounting method has also changed from the conventional pin insertion type to the surface mounting type. The surface-mount package is directly exposed to a high soldering temperature (reflow temperature) by a reflow apparatus such as a solder bath, IR reflow, or VPS reflow. As a result, when the IC package absorbs moisture, the vapor pressure generated by vaporization of the moisture absorption works as a peeling stress, and if the adhesive strength of the sealing molding material used for the package is weak, inserts such as elements and lead frames The problem that peeling occurs between the molding material and the sealing molding material, which causes package cracks and poor soldering, has been highlighted. Recently, due to so-called environmental problems, the shift to lead-free solder is rapidly progressing, and the above problems are becoming more and more close-up as the solder temperature rises.
In many cases, a release agent is internally added to the sealing material for the purpose of smooth demolding from the mold, but the release resin basically contains an epoxy resin that constitutes an epoxy resin molding material for sealing. Since a compound that is incompatible with a curing agent or the like is used, it has an essential problem that it tends to cause a defective appearance of the package due to a dispersion failure in a resin or the like. Thinning the package is a factor that causes the flow behavior of the resin in the mold to fluctuate greatly depending on the filling position, and this contributes to the poor appearance of the package, along with the failure to disperse the release agent in the resin. It has become. The change in the mounting method is due to the fact that the epoxy resin molding material for sealing is a low-molecular epoxy resin such as a biphenyl type epoxy resin that provides high adhesion to the semiconductor insert as a raw material, and the inorganic filler is increased at the same time. Although shifting to the direction of promoting low moisture absorption, when molding materials for sealing using these low molecular weight epoxy resins as raw materials are applied to thin packages, sufficient moldability is not necessarily obtained, including package contamination. The current situation is not. For example, there is a report in Patent Document 1 regarding prevention of defective appearance of a package.
JP 2003-213088 A

しかし、特に低分子系エポキシ樹脂を原材料とした封止用成形材料を薄型パッケージに適用した場合の金型離型性と良好なパッケージ外観の両立といった点で、特許文献1記載の樹脂組成物では、その効果は必ずしも充分ではない。
本発明はかかる状況に鑑みなされたもので、特に低分子系エポキシ樹脂を原材料とした封止用成形材料において、良好な成形性と良好なパッケージ外観を与える封止用エポキシ樹脂成形材料、及びこれにより封止した素子を備えた電子部品装置を提供しようとするものである。
However, the resin composition described in Patent Document 1 is particularly suitable in terms of both mold releasability and good package appearance when a sealing molding material made of a low molecular weight epoxy resin is used as a raw material. The effect is not always sufficient.
The present invention has been made in view of such a situation, and in particular, a sealing epoxy resin molding material that provides good moldability and good package appearance in a sealing molding material made of a low molecular weight epoxy resin as a raw material, and this It is an object of the present invention to provide an electronic component device including an element sealed by the above.

本発明者らは上記の課題を解決するために鋭意検討を重ねた結果、封止用エポキシ樹脂成形材料に、特定の離型剤と特定の分散剤を併用することにより上記の目的を達成しうることを見い出し、本発明を完成するに至った。   As a result of intensive studies in order to solve the above problems, the present inventors have achieved the above object by using a specific release agent and a specific dispersant in combination in the epoxy resin molding material for sealing. As a result, the present invention has been completed.

すなわち、本発明は、
(1) (A)エポキシ樹脂、(B)硬化剤、(C)ポリオレフィン系離型剤、(D)下記一般式(I)、下記一般式(II)で表される化合物の混合物、を必須成分とする封止用エポキシ樹脂成形材料、

Figure 2005232267
(l、n、mは、それぞれ0又は正の整数を表す。Rは、一価の飽和又は不飽和炭化水素基である。)
Figure 2005232267
(l、n、mは、それぞれ0又は正の整数を表す。Rは、一価の飽和又は不飽和炭化水素基である。)
(2) (C)成分のポリオレフィン系離型剤と、(D)成分の前記混合物との少なくとも一方が、(A)成分のエポキシ樹脂の一部又は全部と予備混合された前記(1)に記載の封止用エポキシ樹脂成形材料、
(3) (C)成分のポリオレフィン系離型剤の一部又は全部が酸化型ポリオレフィンである前記(1)又は(2)に記載の封止用エポキシ樹脂成形材料、
(4) (D)成分の一般式(I)及び一般式(II)のRが、炭素数10〜30である前記(1)〜(3)のいずれかに記載の封止用エポキシ樹脂成形材料、
(5) (D)成分が、一般式(I)及び一般式(II)でl=n=m=0である化合物の混合物、及び、一般式(I)及び一般式(II)でl>9、かつ、n>9、かつ、m>9である化合物の混合物の両者からなる前記(1)〜(4)のいずれかに記載の封止用エポキシ樹脂成形材料、
(6) (D)成分が、一般式(I)及び一般式(II)でH.L.B.が1〜5である化合物の混合物、及び、一般式(I)及び一般式(II)でH.L.B.が10〜20である化合物の混合物の両者からなる前記(1)〜(5)のいずれかに記載の封止用エポキシ樹脂成形材料、
(7) 前記(1)〜(6)のいずれかに記載の封止用エポキシ樹脂成形材料により封止された素子を備えた電子部品装置、
に関する。 That is, the present invention
(1) (A) epoxy resin, (B) curing agent, (C) polyolefin-based mold release agent, (D) a mixture of compounds represented by the following general formula (I) and the following general formula (II) are essential. Epoxy resin molding material for sealing as a component,
Figure 2005232267
(L, n and m each represents 0 or a positive integer. R represents a monovalent saturated or unsaturated hydrocarbon group.)
Figure 2005232267
(L, n and m each represents 0 or a positive integer. R represents a monovalent saturated or unsaturated hydrocarbon group.)
(2) In (1), at least one of the polyolefin-based mold release agent of component (C) and the mixture of component (D) is premixed with part or all of the epoxy resin of component (A). The epoxy resin molding material for sealing,
(3) The epoxy resin molding material for sealing according to the above (1) or (2), wherein a part or all of the polyolefin-based mold release agent of component (C) is an oxidized polyolefin,
(4) The epoxy resin molding for sealing according to any one of (1) to (3), wherein R in the general formula (I) and the general formula (II) of the component (D) has 10 to 30 carbon atoms. material,
(5) The component (D) is a mixture of compounds of the general formula (I) and the general formula (II) in which l = n = m = 0, and in the general formula (I) and the general formula (II), l> 9 and the epoxy resin molding material for sealing according to any one of the above (1) to (4), comprising both a mixture of compounds wherein n> 9 and m> 9,
(6) The component (D) is a mixture of the compounds represented by the general formula (I) and the general formula (II) and HLB is 1 to 5, and the general formula (I) and the general formula (II). And the epoxy resin molding material for sealing according to any one of the above (1) to (5), comprising both of a mixture of compounds having a HLB of 10 to 20.
(7) An electronic component device including an element sealed with the sealing epoxy resin molding material according to any one of (1) to (6),
About.

本発明になる封止用エポキシ樹脂成形材料は、実施例で示したように、特に薄型パッケージのパッケージ汚れに優れ、この封止用エポキシ樹脂成形材料を用いてIC、LSI等の電子部品を封止すれば信頼性に優れた電子部品装置を得ることができるので、その工業的価値は大である。   As shown in the examples, the epoxy resin molding material for sealing according to the present invention is particularly excellent in package contamination of a thin package, and this sealing epoxy resin molding material is used to seal electronic components such as ICs and LSIs. If stopped, an electronic component device having excellent reliability can be obtained, and its industrial value is great.

本発明において用いられる(A)成分のエポキシ樹脂は、封止用エポキシ樹脂成形材料に一般に使用されているもので特に制限はないが、例えば、フェノールノボラック型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂をはじめとするフェノール、クレゾール、キシレノール、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF等のフェノール類及び/又はα−ナフトール、β−ナフトール、ジヒドロキシナフタレン等のナフトール類とホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、ベンズアルデヒド、サリチルアルデヒド等のアルデヒド基を有する化合物とを酸性触媒下で縮合又は共縮合させて得られるノボラック樹脂をエポキシ化したもの、ビスフェノールA、ビスフェノールF、ビスフェノールS、ビスフェノールA/D等のジグリシジルエーテル、アルキル置換又は非置換のビフェノールのジグリシジルエーテルであるビフェニル型エポキシ樹脂、フェノール類及び/又はナフトール類とジメトキシパラキシレン又はビス(メトキシメチル)ビフェニルから合成されるフェノール・アラルキル樹脂や、ビフェニル・アラルキル樹脂のエポキシ化物、スチルベン型エポキシ樹脂、ハイドロキノン型エポキシ樹脂、フタル酸、ダイマー酸等の多塩基酸とエピクロルヒドリンの反応により得られるグリシジルエステル型エポキシ樹脂、ジアミノジフェニルメタン、イソシアヌル酸等のポリアミンとエピクロルヒドリンの反応により得られるグリシジルアミン型エポキシ樹脂、ジシクロペンタジエンとフェノール類の共縮合樹脂のエポキシ化物であるジシクロペンタジエン型エポキシ樹脂、ナフタレン環を有するエポキシ樹脂、トリフェノールメタン型エポキシ樹脂、トリメチロールプロパン型エポキシ樹脂、テルペン変性エポキシ樹脂、硫黄原子含有エポキシ樹脂、オレフィン結合を過酢酸等の過酸で酸化して得られる線状脂肪族エポキシ樹脂、脂環族エポキシ樹脂、及びこれらのエポキシ樹脂をシリコーン、アクリロニトリル、ブタジエン、イソプレン系ゴム、ポリアミド系樹脂等により変性したエポキシ樹脂などが挙げられ、これらを単独で用いても2種以上を組み合わせて用いてもよい。
なかでも、薄型パッケージへの適用を考えた場合、流動性、信頼性等の観点から、ビフェニル型エポキシ樹脂、ビフェニル・アラルキル型エポキシ樹脂、ビスフェノール型エポキシ樹脂、及び硫黄原子含有エポキシ樹脂が好ましく、これらの樹脂の少なくとも1種を含有していることが好ましい。
The epoxy resin of the component (A) used in the present invention is generally used for an epoxy resin molding material for sealing and is not particularly limited. For example, a phenol novolac epoxy resin or an orthocresol novolac epoxy resin is used. Phenols such as phenol, cresol, xylenol, resorcin, catechol, bisphenol A, bisphenol F and / or naphthols such as α-naphthol, β-naphthol, dihydroxynaphthalene and formaldehyde, acetaldehyde, propionaldehyde, benzaldehyde, salicyl Epoxidized novolak resin obtained by condensing or co-condensing a compound having an aldehyde group such as aldehyde under an acidic catalyst, bisphenol A, bisphenol F, bisphenol S, diglycidyl ether such as bisphenol A / D, biphenyl type epoxy resin which is diglycidyl ether of alkyl-substituted or unsubstituted biphenol, phenols and / or naphthols and dimethoxyparaxylene or bis (methoxymethyl) biphenyl Synthesized phenol aralkyl resin, epoxidized biphenyl aralkyl resin, stilbene type epoxy resin, hydroquinone type epoxy resin, glycidyl ester type epoxy resin obtained by reaction of polybasic acid such as phthalic acid and dimer acid and epichlorohydrin, Glycidylamine type epoxy resin obtained by reaction of polyamine such as diaminodiphenylmethane and isocyanuric acid with epichlorohydrin, epoxy of co-condensation resin of dicyclopentadiene and phenols Dicyclopentadiene type epoxy resin, epoxy resin having a naphthalene ring, triphenolmethane type epoxy resin, trimethylolpropane type epoxy resin, terpene modified epoxy resin, sulfur atom-containing epoxy resin, olefinic bonds such as peracetic acid. Examples include linear aliphatic epoxy resins obtained by oxidation with acids, alicyclic epoxy resins, and epoxy resins obtained by modifying these epoxy resins with silicone, acrylonitrile, butadiene, isoprene rubber, polyamide resins, and the like. These may be used alone or in combination of two or more.
Among these, when considering application to thin packages, from the viewpoint of fluidity and reliability, biphenyl type epoxy resins, biphenyl aralkyl type epoxy resins, bisphenol type epoxy resins, and sulfur atom-containing epoxy resins are preferable. It is preferable to contain at least one of these resins.

ビフェニル型エポキシ樹脂としてはたとえば下記一般式(III)で示されるエポキシ樹脂等が挙げられる。

Figure 2005232267
(ここで、R1〜R8は水素原子及び炭素数1〜10の置換又は非置換の一価の炭化水素基から選ばれ、全てが同一でも異なっていてもよい。nは0〜3の整数を示す。)
上記一般式(III)で示されるビフェニル型エポキシ樹脂としては、たとえば、4,4´−ビス(2,3−エポキシプロポキシ)ビフェニル又は4,4´−ビス(2,3−エポキシプロポキシ)−3,3´,5,5´−テトラメチルビフェニルを主成分とするエポキシ樹脂、エピクロルヒドリンと4,4´−ビフェノール又は4,4´−(3,3´,5,5´−テトラメチル)ビフェノールとを反応させて得られるエポキシ樹脂等が挙げられる。なかでも4,4´−ビス(2,3−エポキシプロポキシ)−3,3´,5,5´−テトラメチルビフェニルを主成分とするエポキシ樹脂が好ましい。 Examples of the biphenyl type epoxy resin include an epoxy resin represented by the following general formula (III).
Figure 2005232267
(Here, R 1 to R 8 are selected from a hydrogen atom and a substituted or unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms, and all may be the same or different. N is 0 to 3. Indicates an integer.)
Examples of the biphenyl type epoxy resin represented by the general formula (III) include 4,4′-bis (2,3-epoxypropoxy) biphenyl or 4,4′-bis (2,3-epoxypropoxy) -3. , 3 ', 5,5'-tetramethylbiphenyl as the main component, epichlorohydrin and 4,4'-biphenol or 4,4'-(3,3 ', 5,5'-tetramethyl) biphenol An epoxy resin obtained by reacting is used. Among these, an epoxy resin mainly composed of 4,4′-bis (2,3-epoxypropoxy) -3,3 ′, 5,5′-tetramethylbiphenyl is preferable.

ビフェニル・アラルキル型エポキシ樹脂としてはたとえば下記一般式(IV)で示されるエポキシ樹脂等が挙げられる。

Figure 2005232267
(ここで、R1〜R8は水素原子、置換又は非置換の炭素数1〜10の一価の炭化水素基から選ばれ、全てが同一でも異なっていてもよい。R9は炭素数1〜6のアルキル基を示し、i個全てが同一でも異なっていてもよい。n及びiは0又は1〜3の整数を示す。)
上記一般式(IV)で示されるビフェニル・アラルキル型エポキシ樹脂は、ビフェニル・アラルキル型フェノール樹脂にエピクロルヒドリンを公知の方法で反応させることによって得られる。一般式(IV)中のR1〜Rとしては、たとえば、水素原子、メチル基、エチル基、プロピル基、ブチル基、イソプロピル基、イソブチル基、t−ブチル基等の炭素数1〜10のアルキル基、ビニル基、アリル基、ブテニル基等の炭素数1〜10のアルケニル基などが挙げられ、なかでも水素原子又はメチル基が好ましい。このような化合物としては、R〜Rのすべてが水素原子であるCER-3000L(日本化薬社製商品名)等が市販品として入手可能である。 Examples of the biphenyl-aralkyl type epoxy resin include an epoxy resin represented by the following general formula (IV).
Figure 2005232267
(Here, R 1 to R 8 are selected from a hydrogen atom, a substituted or unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms, and all may be the same or different. R 9 has 1 carbon atom. -Represents an alkyl group of -6, and all i may be the same or different. N and i represent 0 or an integer of 1-3.)
The biphenyl aralkyl type epoxy resin represented by the general formula (IV) can be obtained by reacting a biphenyl aralkyl type phenol resin with epichlorohydrin by a known method. As R < 1 > -R < 9 > in general formula (IV), C1-C10, such as a hydrogen atom, a methyl group, an ethyl group, a propyl group, a butyl group, an isopropyl group, an isobutyl group, t-butyl group etc., for example C1-C10 alkenyl groups, such as an alkyl group, a vinyl group, an allyl group, a butenyl group, etc. are mentioned, Especially, a hydrogen atom or a methyl group is preferable. As such a compound, CER-3000L (trade name, manufactured by Nippon Kayaku Co., Ltd.) in which all of R 1 to R 9 are hydrogen atoms is commercially available.

ビスフェノール型エポキシ樹脂としてはたとえば下記一般式(V)で示されるエポキシ樹脂等が挙げられる。

Figure 2005232267
(ここで、R1〜R10は水素原子及び炭素数1〜10の置換又は非置換の一価の炭化水素基から選ばれ、全てが同一でも異なっていてもよい。nは0又は1〜3の整数を示す。)
上記一般式(V)で示されるビスフェノール型エポキシ樹脂は、ビスフェノール化合物にエピクロルヒドリンを公知の方法で反応させることによって得られる。一般式(V)中のR1〜R10としては、たとえば、水素原子、メチル基、エチル基、プロピル基、ブチル基、イソプロピル基、イソブチル基、t−ブチル基等の炭素数1〜10のアルキル基、ビニル基、アリル基、ブテニル基等の炭素数1〜10のアルケニル基などが挙げられ、なかでも水素原子又はメチル基が好ましい。 Examples of the bisphenol type epoxy resin include an epoxy resin represented by the following general formula (V).
Figure 2005232267
(Here, R 1 to R 10 are selected from a hydrogen atom and a substituted or unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms, and all may be the same or different. N is 0 or 1 to 1) Indicates an integer of 3.)
The bisphenol type epoxy resin represented by the general formula (V) can be obtained by reacting a bisphenol compound with epichlorohydrin by a known method. As R < 1 > -R < 10 > in general formula (V), C1-C10, such as a hydrogen atom, a methyl group, an ethyl group, a propyl group, a butyl group, an isopropyl group, an isobutyl group, t-butyl group, is mentioned, for example. C1-C10 alkenyl groups, such as an alkyl group, a vinyl group, an allyl group, a butenyl group, etc. are mentioned, Especially, a hydrogen atom or a methyl group is preferable.

硫黄原子含有エポキシ樹脂としてはたとえば下記一般式(VI)で示されるエポキシ樹脂等が挙げられる。

Figure 2005232267

(ここで、R1〜R8は水素原子、置換又は非置換の炭素数1〜10の一価の炭化水素基から選ばれ、全てが同一でも異なっていてもよい。nは0〜3の整数を示す。)
上記一般式(VI)で示される硫黄原子含有エポキシ樹脂のなかでも、R1〜R8が水素原子、置換又は非置換の炭素数1〜10のアルキル基及び置換又は非置換の炭素数1〜10のアルコキシ基から選ばれるエポキシ樹脂が好ましく、R1、R4、R5及びR8が水素原子で、R2、R3、R6及びR7がアルキル基であるエポキシ樹脂がより好ましく、R1、R4、R5及びR8が水素原子で、R2及びR7がメチル基で、R3及びR6がt−ブチル基であるエポキシ樹脂がさらに好ましい。このような化合物としては、YSLV−120TE(新日鐵化学社製商品名)等が市販品として入手可能である。 Examples of the sulfur atom-containing epoxy resin include an epoxy resin represented by the following general formula (VI).
Figure 2005232267

(Here, R 1 to R 8 are selected from a hydrogen atom, a substituted or unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms, and all may be the same or different. N is 0 to 3. Indicates an integer.)
Among the sulfur atom-containing epoxy resins represented by the general formula (VI), R 1 to R 8 are a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, and a substituted or unsubstituted carbon number 1 to 1; An epoxy resin selected from 10 alkoxy groups is preferable, and an epoxy resin in which R 1 , R 4 , R 5 and R 8 are hydrogen atoms and R 2 , R 3 , R 6 and R 7 are alkyl groups is more preferable. More preferred is an epoxy resin in which R 1 , R 4 , R 5 and R 8 are hydrogen atoms, R 2 and R 7 are methyl groups, and R 3 and R 6 are t-butyl groups. As such a compound, YSLV-120TE (trade name, manufactured by Nippon Steel Chemical Co., Ltd.) and the like are available as commercial products.

上記4種のエポキシ樹脂はいずれか1種を単独で用いても2種以上を組合わせて用いてもよいが、その配合量は、その性能を発揮するためにエポキシ樹脂全量に対して合わせて20重量%以上とすることが好ましく、30重量%以上がより好ましく、50重量%以上とすることがさらに好ましい。  The above four types of epoxy resins may be used alone or in combination of two or more, but the blending amount is adjusted to the total amount of the epoxy resin in order to exhibit its performance. It is preferably 20% by weight or more, more preferably 30% by weight or more, and further preferably 50% by weight or more.

本発明において用いられる(B)硬化剤は、封止用エポキシ樹脂成形材料に一般に使用されているもので特に制限はないが、たとえば、フェノール、クレゾール、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF、フェニルフェノール、アミノフェノール等のフェノール類及び/又はα−ナフトール、β−ナフトール、ジヒドロキシナフタレン等のナフトール類とホルムアルデヒド、ベンズアルデヒド、サリチルアルデヒド等のアルデヒド基を有する化合物とを酸性触媒下で縮合又は共縮合させて得られるノボラック型フェノール樹脂、フェノール類及び/又はナフトール類とジメトキシパラキシレン又はビス(メトキシメチル)ビフェニルから合成されるフェノール・アラルキル樹脂、ナフトール・アラルキル樹脂、ビフェニル・アラルキル樹脂等のアラルキル型フェノール樹脂、フェノール類及び/又はナフトール類とジシクロペンタジエンから共重合により合成される、ジシクロペンタジエン型フェノールノボラック樹脂、ナフトールノボラック樹脂等のジシクロペンタジエン型フェノール樹脂、テルペン変性フェノール樹脂などが挙げられ、これらを単独で用いても2種以上を組み合わせて用いてもよい。
なかでも、薄型パッケージへの適用を考えた場合、特に信頼性等の観点から、下記一般式(VII)で表されるフェノール・アラルキル樹脂、ビフェニル・アラルキル樹脂及びナフトール・アラルキル樹脂が好ましく、これらのフェノール樹脂の少なくとも1種を含有していることが好ましい。

Figure 2005232267
(ここで、nは0又は1〜10の整数を示す。) The (B) curing agent used in the present invention is generally used for an epoxy resin molding material for sealing and is not particularly limited. For example, phenol, cresol, resorcin, catechol, bisphenol A, bisphenol F, phenyl Phenols such as phenol and aminophenol and / or naphthols such as α-naphthol, β-naphthol and dihydroxynaphthalene and compounds having an aldehyde group such as formaldehyde, benzaldehyde and salicylaldehyde are condensed or co-condensed in an acidic catalyst. Novolak-type phenolic resin, phenol and / or naphthol and dimethoxyparaxylene or bis (methoxymethyl) biphenyl synthesized from phenol / aralkyl resin, naphthol / aralkyl resin, biphenyl Dicyclopentadiene type phenol resins such as dicyclopentadiene type phenol novolac resin and naphthol novolac resin, synthesized by copolymerization from aralkyl type phenol resin such as aralkyl resin, phenol and / or naphthol and dicyclopentadiene, A terpene modified phenol resin etc. are mentioned, These may be used independently or may be used in combination of 2 or more type.
Among them, when considering application to a thin package, particularly from the viewpoint of reliability, a phenol-aralkyl resin, a biphenyl-aralkyl resin, and a naphthol-aralkyl resin represented by the following general formula (VII) are preferable. It is preferable to contain at least one phenol resin.
Figure 2005232267
(Here, n represents 0 or an integer of 1 to 10.)

上記一般式(VII)で示されるフェノール樹脂としては、たとえば、下記一般式(VIII)及び(IX)で示されるフェノール樹脂等が挙げられる。

Figure 2005232267
(ここで、nは0又は1〜10の整数を示す。)
Figure 2005232267
(ここで、nは0又は1〜10の整数を示す。)
上記一般式(VIII)で示されるフェノール・アラルキル樹脂としては、市販品として三井化学株式会社製商品名XLCが挙げられ、上記一般式(IX)で示されるビフェニル・アラルキル樹脂としては、市販品として明和化成株式会社製商品名MEH−7851が挙げられる。 Examples of the phenol resin represented by the general formula (VII) include phenol resins represented by the following general formulas (VIII) and (IX).
Figure 2005232267
(Here, n represents 0 or an integer of 1 to 10.)
Figure 2005232267
(Here, n represents 0 or an integer of 1 to 10.)
As a phenol aralkyl resin represented by the above general formula (VIII), trade name XLC manufactured by Mitsui Chemicals, Inc. can be mentioned as a commercially available product. As a biphenyl aralkyl resin represented by the above general formula (IX), A trade name MEH-7851 manufactured by Meiwa Kasei Co., Ltd. may be mentioned.

上記一般式(VII)で示されるナフトール・アラルキル樹脂としては、たとえば、下記一般式(X)及び(XI)で示される樹脂等が挙げられる。

Figure 2005232267
(ここで、nは0又は1〜10の整数を示す。)
Figure 2005232267
(ここで、nは0又は1〜10の整数を示す。)
上記一般式(X)で示されるナフトール・アラルキル樹脂としては、市販品として新日鐵化学株式会社製商品名SN−170が挙げられ、上記一般式(XI)で示されるナフトール・アラルキル樹脂としては、市販品として新日鐵化学株式会社製商品名SN−475が挙げられる。 Examples of the naphthol / aralkyl resin represented by the general formula (VII) include resins represented by the following general formulas (X) and (XI).
Figure 2005232267
(Here, n represents 0 or an integer of 1 to 10.)
Figure 2005232267
(Here, n represents 0 or an integer of 1 to 10.)
As a naphthol aralkyl resin represented by the general formula (X), a commercial product SN-170 manufactured by Nippon Steel Chemical Co., Ltd. may be mentioned, and as a naphthol aralkyl resin represented by the general formula (XI), Moreover, Nippon Steel Chemical Co., Ltd. brand name SN-475 is mentioned as a commercial item.

上記フェノール・アラルキル樹脂、ビフェニル・アラルキル樹脂及びナフトール・アラルキル樹脂は、いずれか1種を単独で用いても2種以上を組合わせて用いてもよいが、その配合量は硬化剤全量に対して合わせて60重量%以上とすることが好ましく、80重量%以上がより好ましい。   The above-mentioned phenol-aralkyl resin, biphenyl-aralkyl resin and naphthol-aralkyl resin may be used alone or in combination of two or more, but the blending amount is based on the total amount of the curing agent. The total content is preferably 60% by weight or more, and more preferably 80% by weight or more.

(A)成分のエポキシ樹脂と(B)成分の硬化剤との当量比、すなわち、エポキシ樹脂中のエポキシ基数/硬化剤中の水酸基数の比は、特に制限はないが、それぞれの未反応分を少なく抑えるために0.5〜2の範囲に設定されることが好ましく、0.6〜1.5がより好ましい。成形性、耐リフロー性に優れる封止用エポキシ樹脂成形材料を得るためには0.8〜1.2の範囲に設定されることがさらに好ましい。   The equivalent ratio of the (A) component epoxy resin and the (B) component curing agent, that is, the ratio of the number of epoxy groups in the epoxy resin / the number of hydroxyl groups in the curing agent is not particularly limited. Is preferably set in the range of 0.5 to 2, more preferably 0.6 to 1.5. In order to obtain a sealing epoxy resin molding material excellent in moldability and reflow resistance, it is more preferably set in the range of 0.8 to 1.2.

本発明において用いられる(C)成分のポリオレフィン系離型剤は、エチレン重合体、プロピレン重合体、エチレン/プロピレン共重合体等を主成分とした化合物であり、これらを部分酸化したもの、及びスチレンや無水マレイン酸等の不飽和結合を有する化合物を一部共重合させた化合物であっても良い。これらの化合物が封止用エポキシ樹脂成形材料の離型剤としての効果を発揮する為には、例えばエチレン重合体を例に取った場合、重量平均分子量1000以上であることが好ましく、2000以上であることがより好ましく、更にはこれらの一部または全部を酸化型としたものを用いることが好ましい。ここで、酸化型とは、−COOH基を有することを示す。パッケージ汚れと金型離型性とのバランスの点から、酸価は5〜50mgKOH/gであることが好ましく、10〜40mgKOH/gであることがより好ましく、15〜30mgKOH/gであることが特に好ましい。酸価が5mgKOH/g未満ではパッケージ汚れが、50mgKOH/gを超えると金型離型性が、それぞれ不充分となる可能性がある。
ポリオレフィンの一部に、例えば無水マレイン酸を共重合させて得られる化合物の例として、一般式(XII)で表される化合物等を挙げることができる。

Figure 2005232267
(R1は、一価の脂肪族炭化水素基を表す。n、mは正の整数を示す。)
さらに、一般式(XII)で、無水マレイン酸部分を、水、又は一価のアルコールでモノエステル化及び/又はジエステル化した化合物等として、一般式(XIII)〜(XV)で表される化合物を挙げることも可能である。
Figure 2005232267
Figure 2005232267
Figure 2005232267

(R1、R、R、Rは、一価の脂肪族炭化水素基を表す。m、nは正の整数を示す。)
一般式(XII)や一般式(XIII)で表される化合物は、単独で離型剤とすることも充分可能であるが、パッケージ汚れと金型離型性の両立の観点からは、一般式(XIV)や一般式(XV)で表される化合物を用いることがより好ましい。一般式(XIV)で表される化合物を離型剤として用いる場合、0.1<m/n<5とすることが好ましく、0.3<m/n<3とすることがより好ましく、0.5<m/n<2とすることが特に好ましい。また、Rの炭素数は、3〜30が好ましく、10〜25がより好ましく、15〜22とすることが特に好ましい。R、R、Rの炭素数は、5〜30が好ましく、5〜25がより好ましく、15〜22が特に好ましい。 The polyolefin-based mold release agent of component (C) used in the present invention is a compound mainly composed of an ethylene polymer, a propylene polymer, an ethylene / propylene copolymer, etc., and those obtained by partially oxidizing these and styrene Or a compound obtained by partially copolymerizing a compound having an unsaturated bond such as maleic anhydride. In order for these compounds to exert an effect as a release agent for the epoxy resin molding material for sealing, for example, when an ethylene polymer is taken as an example, the weight average molecular weight is preferably 1000 or more, and 2000 or more. More preferably, some or all of these are in an oxidized form. Here, the oxidized type means having a —COOH group. From the viewpoint of balance between package dirt and mold releasability, the acid value is preferably 5 to 50 mgKOH / g, more preferably 10 to 40 mgKOH / g, and 15 to 30 mgKOH / g. Particularly preferred. If the acid value is less than 5 mg KOH / g, the package soiling may be insufficient, and if it exceeds 50 mg KOH / g, the mold releasability may be insufficient.
As an example of a compound obtained by copolymerizing maleic anhydride with a part of polyolefin, for example, a compound represented by the general formula (XII) can be exemplified.
Figure 2005232267
(R 1 represents a monovalent aliphatic hydrocarbon group. N and m represent positive integers.)
Furthermore, the compound represented by the general formulas (XIII) to (XV) as a compound in which the maleic anhydride moiety is monoesterified and / or diesterified with water or a monohydric alcohol in the general formula (XII) It is also possible to mention.
Figure 2005232267
Figure 2005232267
Figure 2005232267

(R 1 , R 2 , R 3 and R 4 represent a monovalent aliphatic hydrocarbon group. M and n represent a positive integer.)
The compounds represented by general formula (XII) and general formula (XIII) can be used alone as a release agent, but from the viewpoint of compatibility between package dirt and mold releasability, the general formula It is more preferable to use a compound represented by (XIV) or general formula (XV). When the compound represented by the general formula (XIV) is used as a release agent, 0.1 <m / n <5 is preferable, 0.3 <m / n <3 is more preferable, and 0 It is particularly preferable that 5 <m / n <2. The number of carbon atoms of R 1 is preferably 3 to 30, more preferably from 10 to 25, particularly preferably in the 15 to 22. R 2, R 3, the carbon number of R 4 is preferably 5 to 30, more preferably from 5 to 25, particularly preferably 15 to 22.

前述したポリオレフィン系離型剤は、単独で用いても、2種以上を併用して用いても構わないが、酸化型ポリエチレンと一般式(XIV)で表される化合物を併用して用いると、パッケージ汚れの点で効果的である。その際、ポリエチレンの分子量、酸価に合わせ、一般式(XIV)のR、R、及び m/nを適宜選択することが好ましい。もちろん、必要に応じて前記以外のポリオレフィン系離型剤を単独又は併用して用いることも可能である。例えば、ポリオレフィンと共重合する、不飽和結合を有する化合物が、メチルマレイン酸無水物、ジメチルマレイン酸無水物等の無水マレイン酸誘導体であってもよい。 The above-mentioned polyolefin release agents may be used alone or in combination of two or more, but when used in combination with oxidized polyethylene and a compound represented by the general formula (XIV), It is effective in terms of package contamination. At that time, it is preferable to appropriately select R 1 , R 2 and m / n of the general formula (XIV) according to the molecular weight and acid value of polyethylene. Of course, if necessary, other polyolefin-based mold release agents may be used alone or in combination. For example, the compound having an unsaturated bond that is copolymerized with polyolefin may be a maleic anhydride derivative such as methylmaleic anhydride or dimethylmaleic anhydride.

(C)成分の配合量は、特に制限はないが、本発明の効果を得る為には、ポリオレフィン系離型剤の合計として、エポキシ樹脂に対し0.5〜10重量%とすることが好ましく、1〜5重量%とするのがより好ましく、2〜4重量%とすることが特に好ましい。0.5重量%未満では金型離型性の点で不充分であり、10重量%を超えるとパッケージ汚れの点で不充分となる傾向がある。  The blending amount of the component (C) is not particularly limited, but in order to obtain the effects of the present invention, the total amount of the polyolefin-based release agents is preferably 0.5 to 10% by weight with respect to the epoxy resin. 1 to 5% by weight is more preferable, and 2 to 4% by weight is particularly preferable. If it is less than 0.5% by weight, it is insufficient in terms of mold releasability, and if it exceeds 10% by weight, it tends to be insufficient in terms of package contamination.

本発明において用いられる(D)成分、すなわち一般式(I)、一般式(II)で表される化合物の混合物は、(C)成分のポリオレフィン系離型剤の分散剤として働くものである。

Figure 2005232267
(l、n、mは、それぞれ0又は正の整数を表す。Rは、一価の飽和又は不飽和炭化水素基である。)
Figure 2005232267
(l、m、nは、それぞれ0又は正の整数を表す。Rは、一価の飽和又は不飽和炭化水素基である。)
一般式(I)でl=m=n=0で表される化合物と、一般式(II)でl=m=n=0で表される化合物との混合物は、グルコースの糖アルコールであるソルビットの分子内脱水によって生じた化合物を、一価の脂肪酸でエステル化することにより得られる。一般式(I)、一般式(II)の化合物の混合物は、前記l=m=n=0の化合物の混合物に、さらにエチレングリコールを付加重合するなどして得ることができ、前記した一価の脂肪酸の炭素数と、付加するエチレングリコールのモル数とにより、その親/疎水性のバランスをコントロールすることが可能である。
(D)成分の親/疎水性のバランスを決定する、一般式(I)及び一般式(II)のR、l、m、n等は、(C)成分のポリオレフィン系離型剤の分子量・酸価等により、適宜選択されることが望ましいが、パッケージ汚れの防止といった観点からは、Rの炭素数が10〜30であることが好ましい。Rの炭素数が10より小さいとポリオレフィンとの親和性が失われ、30より大きいとベース樹脂との親和性が失われる為、ともに分散剤としての役割が不充分となる傾向がある。l、m、n等に特に制限はないが、一般式(I)及び一般式(II)でいずれもl=m=n=0の化合物の混合物(以下、(D−1)成分という。)と、一般式(I)及び一般式(II)でいずれもl>9、かつ、m>9、かつ、n>9である化合物の混合物(以下、(D−2)成分という。)とを併用すると特に効果的である。 The component (D) used in the present invention, that is, the mixture of the compounds represented by the general formula (I) and the general formula (II) serves as a dispersant for the polyolefin-based mold release agent of the (C) component.
Figure 2005232267
(L, n and m each represents 0 or a positive integer. R represents a monovalent saturated or unsaturated hydrocarbon group.)
Figure 2005232267
(L, m and n are each 0 or a positive integer. R is a monovalent saturated or unsaturated hydrocarbon group.)
A mixture of a compound represented by the general formula (I) represented by l = m = n = 0 and a compound represented by the general formula (II) represented by l = m = n = 0 is sorbit, which is a sugar alcohol of glucose. It can be obtained by esterifying a compound produced by intramolecular dehydration with monovalent fatty acid. The mixture of the compounds of general formula (I) and general formula (II) can be obtained by addition polymerization of ethylene glycol to the above mixture of compounds of l = m = n = 0. The parent / hydrophobic balance can be controlled by the number of carbon atoms of the fatty acid and the number of moles of ethylene glycol to be added.
(D) R / l, m, n, etc. of the general formula (I) and the general formula (II) that determine the balance between the hydrophilicity / hydrophobicity of the component are the molecular weight of the polyolefin-based mold release agent of the (C) component. Although it is desirable to select appropriately depending on the acid value or the like, it is preferable that the carbon number of R is 10 to 30 from the viewpoint of preventing package contamination. If the carbon number of R is less than 10, the affinity with polyolefin is lost, and if it is more than 30, the affinity with the base resin is lost, so that the role as a dispersant tends to be insufficient. Although there is no restriction | limiting in particular in l, m, n, etc., all are a mixture of the compound of general formula (I) and general formula (II) of l = m = n = 0 (henceforth (D-1) component). And a mixture of compounds represented by general formula (I) and general formula (II) where l> 9, m> 9, and n> 9 (hereinafter referred to as component (D-2)). It is particularly effective when used in combination.

このように(D)成分として混合物を複数種併用する場合、一般式(I)及び一般式(II)でH.L.B.が1〜5である化合物の混合物と、一般式(I)及び一般式(II)でH.L.B.が10〜20である化合物の混合物とを併用することが好ましい。これにより、併用成分のどちらか一方、又は両者が前記H.L.B.の範囲より外れた場合よりも、分散効果が充分に得られる。特に、上記(D−1)成分と(D−2)成分とを併用する場合、(D−1)成分のH.L.B.を1〜5とし、(D−2)成分のH.L.B.を10〜20とすることが好ましい。
なお、H.L.B.は、アメリカのAtlas Powder社のW.C.Griffinが、HLB(hydrophil Lyophile Balance)と名付け、分子中に含まれる親水基と親油基(疎水基)のバランスを特性値として利用した数字である。例えば、非イオン界面活性剤のうちH.L.B.=10〜20のものは水溶性で、5〜9は水分散性、1〜4は油溶性のように分類できる。なお、H.L.B.の計算法には、Griffinの式を用いることができる。
(D)成分の配合量は、特に制限はないが、(C)成分のポリオレフィン系離型剤との配合比率を重量比で(D)/(C)=0.05〜3とすることが好ましく、0.1〜2とすることがより好ましく、0.2〜1とすることが特に好ましい。(C)成分との配合比率が(D)/(C)=0.05未満では分散効果が不充分となる可能性があり、3を超えると金型離型性が不充分となる可能性がある。また、一般式(I)及び一般式(II)で、l=m=n=0の化合物の混合物((D−1)成分)と、l>9、かつ、m>9、かつ、n>9である化合物の混合物((D−2)成分)とを併用する場合、その併用比率は(C)成分の分子量、酸価、(D)成分のR等により適宜選択可能であるが、(D−1)成分/(D−2)成分がモル比で1/5〜5/1が好ましく、1/3〜3/1がより好ましく、1/2〜2/1が特に好ましい。
Thus, when using multiple types of mixture as (D) component, the mixture of the compound which is HLB. 1-5 in General formula (I) and General formula (II), and General formula (I) In addition, it is preferable to use in combination with a mixture of compounds having a HLB of 10 to 20 in the general formula (II). Thereby, the dispersion effect is sufficiently obtained as compared with the case where either one or both of the combined components are out of the HLB range. In particular, when the component (D-1) and the component (D-2) are used in combination, the HLB of the component (D-1) is set to 1 to 5, and the component H. LB is preferably 10-20.
H.L.B., named by WCGriffin of Atlas Powder, USA, is named HLB (hydrophil Lyophile Balance) and uses the balance between hydrophilic groups and lipophilic groups (hydrophobic groups) contained in the molecule as characteristic values. It is a number. For example, among nonionic surfactants, those having HLB = 10 to 20 can be classified as being water-soluble, 5 to 9 being water-dispersible, and 1 to 4 being oil-soluble. It should be noted that Griffin's formula can be used for the calculation method of HLB.
The blending amount of the component (D) is not particularly limited, but the blending ratio of the component (C) with the polyolefin-based mold release agent may be (D) / (C) = 0.05-3 by weight ratio. Preferably, it is more preferably 0.1-2, and particularly preferably 0.2-1. If the blending ratio with the component (C) is less than (D) / (C) = 0.05, the dispersion effect may be insufficient, and if it exceeds 3, the mold releasability may be insufficient. There is. Further, in the general formula (I) and the general formula (II), a mixture of compounds of l = m = n = 0 (component (D-1)), l> 9, m> 9, and n> 9 is used together with the compound mixture (component (D-2)), the molecular weight of the component (C), acid value, R of component (D) can be selected as appropriate. D-1) component / (D-2) component is preferably 1/5 to 5/1, more preferably 1/3 to 3/1, and particularly preferably 1/2 to 2/1 in terms of molar ratio.

本発明の(C)成分及び(D)成分は、金型・パッケージ汚れの防止の観点から、少なくとも一方を、エポキシ樹脂(A)の一部又は全部と予備混合されていることが好ましい。(C)成分及び/又は(D)成分をエポキシ樹脂(A)と予備混合すると、これらのベース樹脂中での分散性が上がり、金型・パッケージ汚れを防ぐ効果がある。
予備混合の方法は特に制限するものではなく、(C)成分及び/又は(D)成分の離型剤がエポキシ樹脂中に分散されればよく、例えば、室温〜220℃で0.5〜20時間攪拌する等の方法が挙げられる。分散性、効率性の観点からは、温度を100〜200℃、より好ましくは150〜170℃、攪拌時間を1〜10時間、より好ましくは3〜6時間とすることが好ましい。(C)成分及び/又は(D)成分は、(A)成分のエポキシ樹脂全量と予備混合してもかまわないが、エポキシ樹脂(A)の一部と予備混合することでも十分な効果が得られる。その場合、予備混合するエポキシ樹脂の量は(A)成分全量の10〜50重量%とすることが好ましい。
また、(C)成分又は(D)成分のいずれか一方をエポキシ樹脂(A)と予備混合することで、分散性向上の効果が得られるが、(C)成分及び(D)成分の両者をエポキシ樹脂と予備混合した方がより効果が高く好ましい。予備混合する場合の3成分の添加順序は、特に制限はなく、全てを同時に添加混合しても、(C)成分又は(D)成分のいずれか一方とエポキシ樹脂を添加混合した後に、もう一方の成分を添加混合してもよい。
It is preferable that at least one of the component (C) and the component (D) of the present invention is premixed with part or all of the epoxy resin (A) from the viewpoint of preventing mold / package contamination. When the component (C) and / or the component (D) are premixed with the epoxy resin (A), the dispersibility in these base resins is increased, and there is an effect of preventing mold / package contamination.
The premixing method is not particularly limited, and the release agent of the component (C) and / or the component (D) may be dispersed in the epoxy resin, for example, 0.5 to 20 at room temperature to 220 ° C. Examples of the method include stirring for a period of time. From the viewpoint of dispersibility and efficiency, the temperature is preferably 100 to 200 ° C, more preferably 150 to 170 ° C, and the stirring time is preferably 1 to 10 hours, more preferably 3 to 6 hours. The component (C) and / or the component (D) may be premixed with the total amount of the epoxy resin of the component (A), but a sufficient effect can be obtained by premixing with a part of the epoxy resin (A). It is done. In that case, the amount of the epoxy resin to be premixed is preferably 10 to 50% by weight of the total amount of the component (A).
Moreover, although either (C) component or (D) component is premixed with an epoxy resin (A), the effect of a dispersibility improvement is acquired, but both (C) component and (D) component are combined. Premixing with an epoxy resin is more effective and preferable. The order of addition of the three components in the case of premixing is not particularly limited, and even if all of them are added and mixed at the same time, after the addition and mixing of either (C) component or (D) component and the epoxy resin, These components may be added and mixed.

本発明には、(A)成分、(B)成分、(C)成分、及び(D)成分以外にも、封止用エポキシ樹脂成形材料において通常使用される硬化促進剤を、特に制限なく用いることができる。硬化促進剤の例を挙げれば、例えば、1,8−ジアザ−ビシクロ(5,4,0)ウンデセン−7、1,5−ジアザ−ビシクロ(4,3,0)ノネン、5、6−ジブチルアミノ−1,8−ジアザ−ビシクロ(5,4,0)ウンデセン−7等のシクロアミジン化合物及びこれらの化合物に無水マレイン酸、1,4−ベンゾキノン、2,5−トルキノン、1,4−ナフトキノン、2,3−ジメチルベンゾキノン、2,6−ジメチルベンゾキノン、2,3−ジメトキシ−5−メチル−1,4−ベンゾキノン、2,3−ジメトキシ−1,4−ベンゾキノン、フェニル−1,4−ベンゾキノン等のキノン化合物、ジアゾフェニルメタン、フェノール樹脂等のπ結合をもつ化合物を付加してなる分子内分極を有する化合物、ベンジルジメチルアミン、トリエタノールアミン、ジメチルアミノエタノール、トリス(ジメチルアミノメチル)フェノール等の3級アミン化合物及びこれらの誘導体、2−メチルイミダゾール、2−フェニルイミダゾール、2−フェニル−4−メチルイミダゾール等のイミダゾール化合物及びこれらの誘導体、トリブチルホスフィン、メチルジフェニルホスフィン、トリフェニルホスフィン、トリス(4−メチルフェニル)ホスフィン、ジフェニルホスフィン、フェニルホスフィン等の有機ホスフィン、及びこれらの有機ホスフィンに無水マレイン酸、上記キノン化合物、ジアゾフェニルメタン、フェノール樹脂等のπ結合をもつ化合物を付加してなる分子内分極を有する化合物等の有機リン化合物、テトラフェニルホスホニウムテトラフェニルボレート、トリフェニルホスフィンテトラフェニルボレート、2−エチル−4−メチルイミダゾールテトラフェニルボレート、N−メチルモルホリンテトラフェニルボレート等のテトラフェニルボロン塩及びこれらの誘導体などが挙げられ、これらを単独で用いても2種以上を組み合わせて用いてもよい。中でも成形性の観点から、有機リン化合物が好ましく、有機ホスフィン及び有機ホスフィンとキノン化合物との付加物がより好ましく、トリフェニルホスフィン、及び、トリフェニルホスフィン、トリス(4−メチルフェニル)ホスフィン、トリス(4−メトキシフェニル)ホスフィン等の第三ホスフィンとp−ベンゾキノン、1,4−ナフトキノン等のキノン化合物との付加物がさらに好ましい。   In the present invention, in addition to the component (A), the component (B), the component (C), and the component (D), a curing accelerator that is usually used in an epoxy resin molding material for sealing is used without particular limitation. be able to. Examples of curing accelerators include, for example, 1,8-diaza-bicyclo (5,4,0) undecene-7, 1,5-diaza-bicyclo (4,3,0) nonene, 5,6-dibutyl. Cycloamidine compounds such as amino-1,8-diaza-bicyclo (5,4,0) undecene-7 and these compounds, maleic anhydride, 1,4-benzoquinone, 2,5-toluquinone, 1,4-naphthoquinone 2,3-dimethylbenzoquinone, 2,6-dimethylbenzoquinone, 2,3-dimethoxy-5-methyl-1,4-benzoquinone, 2,3-dimethoxy-1,4-benzoquinone, phenyl-1,4-benzoquinone Quinone compounds such as diazophenylmethane, phenolic resins and other compounds having an intramolecular polarization formed by adding a compound having a π bond, such as benzyldimethylamine, trie Tertiary amine compounds such as noramine, dimethylaminoethanol, tris (dimethylaminomethyl) phenol and their derivatives, imidazole compounds such as 2-methylimidazole, 2-phenylimidazole and 2-phenyl-4-methylimidazole and their derivatives , Tributylphosphine, methyldiphenylphosphine, triphenylphosphine, tris (4-methylphenyl) phosphine, diphenylphosphine, phenylphosphine, and other organic phosphines, and maleic anhydride, quinone compounds, diazophenylmethane, phenol Organic phosphorus compounds such as compounds with intramolecular polarization formed by adding compounds with π bonds such as resins, tetraphenylphosphonium tetraphenylborate, triphenylphosphine And tetraphenylboron salts such as tin tetraphenyl borate, 2-ethyl-4-methylimidazole tetraphenyl borate, N-methylmorpholine tetraphenyl borate, and derivatives thereof, and two or more of these may be used alone. May be used in combination. Among these, from the viewpoint of moldability, an organic phosphorus compound is preferable, an organic phosphine and an adduct of an organic phosphine and a quinone compound are more preferable, and triphenylphosphine, triphenylphosphine, tris (4-methylphenyl) phosphine, tris ( More preferred are adducts of tertiary phosphines such as 4-methoxyphenyl) phosphine and quinone compounds such as p-benzoquinone and 1,4-naphthoquinone.

硬化促進剤の配合量は、硬化促進効果が達成される量であれば特に制限されるものではないが、エポキシ樹脂(A)に対して0.1〜10重量%が好ましく、より好ましくは1〜5重量%である。0.1重量%未満では短時間での硬化性に劣る傾向があり、10重量%を超えると硬化速度が速すぎて未充填等により良好な成形品を得ることが困難になる傾向がある。  The blending amount of the curing accelerator is not particularly limited as long as the curing acceleration effect is achieved, but is preferably 0.1 to 10% by weight, more preferably 1 with respect to the epoxy resin (A). ~ 5% by weight. If it is less than 0.1% by weight, the curability in a short time tends to be inferior. If it exceeds 10% by weight, the curing rate tends to be too fast, and it tends to be difficult to obtain a good molded product due to unfilling or the like.

本発明では又、吸湿性、線膨張係数低減、熱伝導性向上及び強度向上のために、無機充填剤を配合することが可能である。無機充填剤としては、例えば、溶融シリカ、結晶シリカ、アルミナ、ジルコン、珪酸カルシウム、炭酸カルシウム、チタン酸カリウム、炭化珪素、窒化珪素、窒化アルミ、窒化ホウ素、ベリリア、ジルコニア、ジルコン、フォステライト、ステアタイト、スピネル、ムライト、チタニア等の粉体、又はこれらを球形化したビーズ、ガラス繊維などが挙げられる。さらに、難燃効果のある無機充填剤としては水酸化アルミニウム、水酸化マグネシウム、硼酸亜鉛、モリブデン酸亜鉛等が挙げられる。これらの無機充填剤は単独で用いても2種以上を組み合わせて用いてもよい。上記の無機充填剤の中で、線膨張係数低減の観点からは溶融シリカが、高熱伝導性の観点からはアルミナが好ましく、充填剤形状は成形時の流動性及び金型摩耗性の点から球形が好ましい。
無機質充填剤の配合量は、成形性、吸湿性、線膨張係数の低減及び強度向上の観点から、封止用エポキシ樹脂成形材料に対して80重量%以上が好ましく、84〜96重量%の範囲がより好ましく、88〜92重量%がさらに好ましい。80重量%未満では信頼性が低下する傾向があり、96重量%を超えると成形性が低下する傾向がある。
本発明の封止用エポキシ樹脂成形材料には、本発明の効果が達成できる範囲内で、ステアリン酸、モンタン酸等の高級脂肪酸系ワックス、ステアリン酸エステル、モンタン酸エステル等の高級脂肪酸エステル系ワックス、ステアリン酸アミド、モンタン酸アミド等の高級脂肪酸アミド等系ワックス等、従来公知の離型剤を、(C)成分、(D)成分以外に併用することができる。
In the present invention, it is also possible to add an inorganic filler for hygroscopicity, reduction of linear expansion coefficient, improvement of thermal conductivity and improvement of strength. Examples of the inorganic filler include fused silica, crystalline silica, alumina, zircon, calcium silicate, calcium carbonate, potassium titanate, silicon carbide, silicon nitride, aluminum nitride, boron nitride, beryllia, zirconia, zircon, fosterite, steer. Examples thereof include powders such as tight, spinel, mullite, and titania, or beads and glass fibers obtained by spheroidizing these. Furthermore, examples of the inorganic filler having a flame retardant effect include aluminum hydroxide, magnesium hydroxide, zinc borate, and zinc molybdate. These inorganic fillers may be used alone or in combination of two or more. Among the above inorganic fillers, fused silica is preferable from the viewpoint of reducing the linear expansion coefficient, and alumina is preferable from the viewpoint of high thermal conductivity, and the filler shape is spherical from the viewpoint of fluidity during molding and mold wear. Is preferred.
The blending amount of the inorganic filler is preferably 80% by weight or more with respect to the epoxy resin molding material for sealing, from the viewpoint of moldability, hygroscopicity, reduction of linear expansion coefficient and strength improvement, and is in the range of 84 to 96% by weight. Is more preferable, and 88 to 92% by weight is further preferable. If it is less than 80% by weight, the reliability tends to decrease, and if it exceeds 96% by weight, the moldability tends to decrease.
The sealing epoxy resin molding material of the present invention includes higher fatty acid waxes such as stearic acid and montanic acid, and higher fatty acid ester waxes such as stearic acid ester and montanic acid ester, as long as the effects of the present invention can be achieved. Conventionally known release agents such as higher fatty acid amide waxes such as stearamide and montanamide can be used in addition to the components (C) and (D).

本発明の封止用エポキシ樹脂成形材料には、IC等の半導体素子の耐湿性、高温放置特性を向上させる観点から陰イオン交換体を添加することもできる。陰イオン交換体としては特に制限はなく、従来公知のものを用いることができるが、例えば、ハイドロタルサイトや、アンチモン、ビスマス、ジルコニウム、チタン、スズ、マグネシウム、アルミニウムから選ばれる元素の含水酸化物等が挙げられ、これらを単独で又は2種以上を組み合わせて用いることができる。中でも、下記一般式(XVI)で示されるハイドロタルサイト及びビスマスの含水酸化物が好ましい。
(化18)
Mg1−XAl(OH)(COX/2・mHO ……(XVI)
(0<X≦0.5、mは正の整数)
陰イオン交換体の配合量は、ハロゲンイオン等のイオン性不純物を捕捉できる十分な量であれば特に制限はないが、(A)成分のエポキシ樹脂に対して0.1〜30重量%が好ましく、1〜10重量%がより好ましく、2〜5重量%がさらに好ましい。配合量が0.1重量%未満ではイオン性不純物の捕捉が不十分になる傾向があり、30重量%を超えた場合それ以下に比べて効果に大差がないため経済的に不利である。
An anion exchanger can be added to the sealing epoxy resin molding material of the present invention from the viewpoint of improving the moisture resistance and high temperature storage characteristics of a semiconductor element such as an IC. The anion exchanger is not particularly limited and conventionally known anion exchangers can be used. For example, hydrotalcite, hydrous oxide of an element selected from antimony, bismuth, zirconium, titanium, tin, magnesium, and aluminum These can be used, and these can be used alone or in combination of two or more. Of these, hydrotalcite and bismuth hydrous oxide represented by the following general formula (XVI) are preferable.
(Chemical formula 18)
Mg 1-X Al X (OH) 2 (CO 3 ) X / 2 · mH 2 O (XVI)
(0 <X ≦ 0.5, m is a positive integer)
The amount of the anion exchanger is not particularly limited as long as it is sufficient to capture ionic impurities such as halogen ions, but is preferably 0.1 to 30% by weight with respect to the epoxy resin of component (A). 1-10 weight% is more preferable, and 2-5 weight% is further more preferable. If the blending amount is less than 0.1% by weight, trapping of ionic impurities tends to be insufficient, and if it exceeds 30% by weight, there is no significant difference in the effect compared to the amount less than that, which is economically disadvantageous.

本発明の封止用エポキシ樹脂成形材料には、樹脂成分と無機充填剤との接着性を高めるために、必要に応じて、エポキシシラン、メルカプトシラン、アミノシラン、アルキルシラン、ウレイドシラン、ビニルシラン等の各種シラン系化合物、チタン系化合物、アルミニウムキレート類、アルミニウム/ジルコニウム系化合物等の公知のカップリング剤を添加することができる。これらを例示すると、ビニルトリクロロシラン、ビニルトリエトキシシラン、ビニルトリス(β−メトキシエトキシ)シラン、γ−メタクリロキシプロピルトリメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルメチルジメトキシシラン、ビニルトリアセトキシシラン、γ−メルカプトプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、γ-アニリノプロピルトリメトキシシラン、γ-アニリノプロピルメチルジメトキシシラン、γ−[ビス(β−ヒドロキシエチル)]アミノプロピルトリエトキシシラン、N−β−(アミノエチル)−γ−アミノプロピルトリメトキシシラン、γ−(β−アミノエチル)アミノプロピルジメトキシメチルシラン、N−(トリメトキシシリルプロピル)エチレンジアミン、N−(ジメトキシメチルシリルイソプロピル)エチレンジアミン、メチルトリメトキシシラン、ジメチルジメトキシシラン、メチルトリエトキシシラン、N−β−(N−ビニルベンジルアミノエチル)−γ−アミノプロピルトリメトキシシラン、γ−クロロプロピルトリメトキシシラン、ヘキサメチルジシラン、ビニルトリメトキシシラン、γ−メルカプトプロピルメチルジメトキシシラン等のシラン系カップリング剤、イソプロピルトリイソステアロイルチタネート、イソプロピルトリス(ジオクチルパイロホスフェート)チタネート、イソプロピルトリ(N−アミノエチル−アミノエチル)チタネート、テトラオクチルビス(ジトリデシルホスファイト)チタネート、テトラ(2,2−ジアリルオキシメチル−1−ブチル)ビス(ジトリデシル)ホスファイトチタネート、ビス(ジオクチルパイロホスフェート)オキシアセテートチタネート、ビス(ジオクチルパイロホスフェート)エチレンチタネート、イソプロピルトリオクタノイルチタネート、イソプロピルジメタクリルイソステアロイルチタネート、イソプロピルトリドデシルベンゼンスルホニルチタネート、イソプロピルイソステアロイルジアクリルチタネート、イソプロピルトリ(ジオクチルホスフェート)チタネート、イソプロピルトリクミルフェニルチタネート、テトライソプロピルビス(ジオクチルホスファイト)チタネート等のチタネート系カップリング剤などが挙げられ、これらを単独で用いても2種以上を組み合わせて用いてもよい。
上記カップリング剤の配合量は、無機充填剤に対して0.05〜5重量%であることが好ましく、0.1〜2.5重量%がより好ましい。0.05重量%未満では耐湿性が低下する傾向があり、5重量%を超えるとパッケージの成形性が低下する傾向がある。
In the epoxy resin molding material for sealing of the present invention, epoxy silane, mercapto silane, amino silane, alkyl silane, ureido silane, vinyl silane, etc. are used as necessary to enhance the adhesion between the resin component and the inorganic filler. Various known coupling agents such as various silane compounds, titanium compounds, aluminum chelates, and aluminum / zirconium compounds can be added. Examples of these are vinyltrichlorosilane, vinyltriethoxysilane, vinyltris (β-methoxyethoxy) silane, γ-methacryloxypropyltrimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, γ-glycol. Sidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldimethoxysilane, vinyltriacetoxysilane, γ-mercaptopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, γ-anilinopropyltrimethoxysilane, γ-ani Linopropylmethyldimethoxysilane, γ- [bis (β-hydroxyethyl)] aminopropyltriethoxysilane, N-β- (aminoethyl) -γ-aminopropyltrimethoxysilane, γ- (β-aminoethyl) aminopropi Dimethoxymethylsilane, N- (trimethoxysilylpropyl) ethylenediamine, N- (dimethoxymethylsilylisopropyl) ethylenediamine, methyltrimethoxysilane, dimethyldimethoxysilane, methyltriethoxysilane, N-β- (N-vinylbenzylaminoethyl) Silane coupling agents such as γ-aminopropyltrimethoxysilane, γ-chloropropyltrimethoxysilane, hexamethyldisilane, vinyltrimethoxysilane, γ-mercaptopropylmethyldimethoxysilane, isopropyltriisostearoyl titanate, isopropyltris ( Dioctyl pyrophosphate) titanate, isopropyl tri (N-aminoethyl-aminoethyl) titanate, tetraoctyl bis (ditridecyl phosphite) Titanate, tetra (2,2-diallyloxymethyl-1-butyl) bis (ditridecyl) phosphite titanate, bis (dioctylpyrophosphate) oxyacetate titanate, bis (dioctylpyrophosphate) ethylene titanate, isopropyltrioctanoyl titanate, isopropyl Titanate coupling agents such as dimethacrylisostearoyl titanate, isopropyl tridodecylbenzenesulfonyl titanate, isopropyl isostearoyl diacryl titanate, isopropyl tri (dioctyl phosphate) titanate, isopropyl tricumyl phenyl titanate, tetraisopropyl bis (dioctyl phosphite) titanate Even if these are used alone, two or more are combined. It can have.
The blending amount of the coupling agent is preferably 0.05 to 5% by weight and more preferably 0.1 to 2.5% by weight with respect to the inorganic filler. If it is less than 0.05% by weight, the moisture resistance tends to decrease, and if it exceeds 5% by weight, the moldability of the package tends to decrease.

さらに、本発明の封止用エポキシ樹脂成形材料には、その他の添加剤として、シリコーンオイルやシリコーンゴム粉末等の可撓化剤、臭素化エポキシ樹脂、三酸化アンチモン、四酸化アンチモン、五酸化アンチモン等のハロゲン原子、アンチモン原子、窒素原子又はリン原子を含む公知の有機又は無機の化合物、金属水酸化物などの難燃剤、カーボンブラック、有機染料、有機顔料、酸化チタン、鉛丹、ベンガラ等の着色剤、イミダゾール、トリアゾール、テトラゾール、トリアジン等及びこれらの誘導体、アントラニル酸、没食子酸、マロン酸、リンゴ酸、マレイン酸、アミノフェノール、キノリン等及びこれらの誘導体、脂肪族酸アミド化合物、ジチオカルバミン酸塩、チアジアゾール誘導体等の接着促進剤などを必要に応じて配合することができる。   Further, in the epoxy resin molding material for sealing of the present invention, as other additives, flexible agents such as silicone oil and silicone rubber powder, brominated epoxy resin, antimony trioxide, antimony tetraoxide, antimony pentoxide Known organic or inorganic compounds containing halogen atoms such as antimony atoms, nitrogen atoms or phosphorus atoms, flame retardants such as metal hydroxides, carbon black, organic dyes, organic pigments, titanium oxide, red lead, bengara, etc. Colorants, imidazole, triazole, tetrazole, triazine, etc. and their derivatives, anthranilic acid, gallic acid, malonic acid, malic acid, maleic acid, aminophenol, quinoline and their derivatives, aliphatic acid amide compounds, dithiocarbamates Add adhesion promoters such as thiadiazole derivatives as necessary Door can be.

本発明の封止用エポキシ樹脂成形材料は、各種原材料を均一に分散混合できるのであれば、いかなる手法を用いても調製できるが、一般的な手法として、所定の配合量の原材料をミキサー等によって十分混合した後、ミキシングロール、ニーダ、押出機等によって溶融混練した後、冷却、粉砕する方法を挙げることができる。成形条件に合うような寸法及び重量でタブレット化すると使いやすい。
また、本発明の封止用エポキシ樹脂成形材料は、各種有機溶剤に溶かして液状封止用エポキシ樹脂成形材料として使用することもでき、この液状封止用エポキシ樹脂成形材料を板又はフィルム上に薄く塗布し、樹脂の硬化反応が余り進まないような条件で有機溶剤を飛散させることによって得られるシートあるいはフィルム状の封止用エポキシ樹脂成形材料として使用することもできる。
The epoxy resin molding material for sealing of the present invention can be prepared by any method as long as various raw materials can be uniformly dispersed and mixed. However, as a general method, a raw material having a predetermined blending amount is mixed with a mixer or the like. A method of sufficiently cooling and pulverizing after mixing and melting and kneading with a mixing roll, a kneader, an extruder or the like can be mentioned. It is easy to use if it is tableted with dimensions and weight that match the molding conditions.
Moreover, the epoxy resin molding material for sealing of the present invention can be dissolved in various organic solvents and used as a liquid epoxy resin molding material for liquid sealing. This liquid epoxy resin molding material for liquid sealing can be used on a plate or a film. It can also be used as an epoxy resin molding material for sealing in the form of a sheet or film obtained by coating thinly and scattering the organic solvent under conditions that do not allow the resin curing reaction to proceed so much.

本発明で得られる封止用エポキシ樹脂成形材料により素子を封止して得られる電子部品装置としては、リードフレーム、配線済みのテープキャリア、配線板、ガラス、シリコンウエハ等の支持部材に、半導体チップ、トランジスタ、ダイオード、サイリスタ等の能動素子、コンデンサ、抵抗体、コイル等の受動素子等の素子を搭載し、必要な部分を本発明の封止用エポキシ樹脂成形材料で封止した、電子部品装置などが挙げられる。このような電子部品装置としては、例えば、リードフレーム上に半導体素子を固定し、ボンディングパッド等の素子の端子部とリード部をワイヤボンディングやバンプで接続した後、本発明の封止用エポキシ樹脂成形材料を用いてトランスファ成形などにより封止してなる、DIP(Dual Inline Package)、PLCC(Plastic Leaded Chip Carrier)、QFP(Quad Flat Package)、SOP(Small Outline Package)、SOJ(Small Outline J-lead package)、TSOP(Thin Small Outline Package)、TQFP(Thin Quad Flat Package)等の一般的な樹脂封止型IC、テープキャリアにバンプで接続した半導体チップを、本発明の封止用エポキシ樹脂成形材料で封止したTCP(Tape Carrier Package)、配線板やガラス上に形成した配線に、ワイヤボンディング、フリップチップボンディング、はんだ等で接続した半導体チップ、トランジスタ、ダイオード、サイリスタ等の能動素子及び/又はコンデンサ、抵抗体、コイル等の受動素子を、本発明の封止用エポキシ樹脂成形材料で封止したCOB(Chip On Board)モジュール、ハイブリッドIC、マルチチップモジュール、配線板接続用の端子を形成した有機基板に素子を搭載し、バンプまたはワイヤボンディングにより素子と有機基板に形成された配線を接続した後、本発明の封止用エポキシ樹脂成形材料で素子を封止したBGA(Ball Grid Array)、CSP(Chip Size Package)などが挙げられる。また、プリント回路板にも本発明の封止用エポキシ樹脂成形材料は有効に使用できる。   As an electronic component device obtained by sealing an element with the sealing epoxy resin molding material obtained in the present invention, a lead frame, a wired tape carrier, a wiring board, glass, a silicon wafer, a support member such as a semiconductor Electronic components equipped with active elements such as chips, transistors, diodes, thyristors, etc., and passive elements such as capacitors, resistors, coils, etc., and the necessary parts are sealed with the sealing epoxy resin molding material of the present invention Examples thereof include devices. As such an electronic component device, for example, a semiconductor element is fixed on a lead frame, and a terminal portion and a lead portion of an element such as a bonding pad are connected by wire bonding or bump, and then the epoxy resin for sealing of the present invention is used. DIP (Dual Inline Package), PLCC (Plastic Leaded Chip Carrier), QFP (Quad Flat Package), SOP (Small Outline Package), SOJ (Small Outline J-) General resin-encapsulated ICs such as lead package (TSP), TSOP (Thin Small Outline Package), and TQFP (Thin Quad Flat Package), and semiconductor chips connected to the tape carrier by bumps are molded with epoxy resin for sealing. TCP (Tape Carrier Package) sealed with material, wire bonding, flip chip bonding to wiring formed on wiring boards and glass COB (Chip On) in which active elements such as semiconductor chips, transistors, diodes, thyristors and / or passive elements such as capacitors, resistors, coils, etc., which are connected by solder or the like, are sealed with the sealing epoxy resin molding material of the present invention. Board) module, hybrid IC, multi-chip module, an element mounted on an organic substrate on which a wiring board connection terminal is formed, and after connecting the element and the wiring formed on the organic substrate by bump or wire bonding, Examples thereof include BGA (Ball Grid Array) and CSP (Chip Size Package) in which the element is sealed with an epoxy resin molding material for sealing. Moreover, the epoxy resin molding material for sealing of the present invention can also be used effectively for printed circuit boards.

本発明の封止用エポキシ樹脂成形材料を用いて素子を封止する方法としては、低圧トランスファ成形法が最も一般的であるが、インジェクション成形法、圧縮成形法等を用いてもよい。封止用エポキシ樹脂成形材料が常温で液状又はペースト状の場合は、ディスペンス方式、注型方式、印刷方式等が挙げられる。
また、素子を直接樹脂封止する一般的な封止方法ばかりではなく、素子に直接電子部品封止用エポキシ樹脂成形材料が接触しない形態である中空パッケージの方式もあり、中空パッケージ用の封止用エポキシ樹脂成形材料としても好適に使用できる。
As a method for sealing an element using the epoxy resin molding material for sealing of the present invention, a low-pressure transfer molding method is the most common, but an injection molding method, a compression molding method, or the like may be used. When the sealing epoxy resin molding material is liquid or pasty at normal temperature, a dispensing method, a casting method, a printing method, and the like can be given.
Also, not only a general sealing method for directly sealing an element with a resin, but also a hollow package system in which an epoxy resin molding material for sealing an electronic component is not in direct contact with the element, sealing for a hollow package Also suitable for use as an epoxy resin molding material.

実施例1〜11、及び比較例1〜4
以下の原材料を用意した。
(A)成分のエポキシ樹脂としてエポキシ当量196、融点106℃のビフェニル型エポキシ樹脂(ジャパンエポキシレジン株式会社製商品名エピコートYX−4000H)、(B)成分の硬化剤として軟化点70℃のフェノール・アラルキル樹脂(三井化学株式会社製商品名ミレックスXL−225)、
(C)成分の離型剤として酸化型ポリエチレン1(クラリアント社製商品名PED522)、酸化型ポリエチレン2(クラリアント社製商品名PED153)、下記一般式(XIV)で、R=炭素数18、20、22のアルキル基の混合物、R=炭素数18のアルキル基、m/n=1である化合物1(日本油脂社製商品名ニッサンエレクトールD121-41)、非酸化型ポリエチレン(クラリアント社製商品名PED520)、
(D)成分の分散剤として、下記一般式(I)、及び一般式(II)でR=炭素数25の飽和脂肪族炭化水素基、l=m=n=0である化合物の混合物(分散剤1、H.L.B.=2.0、第一製薬工業社製商品名ソルゲン20V)、下記一般式(I)、及び一般式(II)でR=炭素数18の飽和脂肪族炭化水素基、l=m=n=0である化合物の混合物(分散剤2、H.L.B.=4.7、第一製薬工業社製商品名ソルゲン50)、下記一般式(I)、及び一般式(II)でR=炭素数12の飽和脂肪族炭化水素基、l=m=n=20である化合物の混合物(分散剤3、H.L.B.=16.7、第一製薬工業社製商品名ソルゲンTW-20)、下記一般式(I)、及び一般式(II)でR=炭素数12の飽和脂肪族炭化水素基、l=m=n=0である化合物の混合物(分散剤4、H.L.B.=8.6、第一製薬工業社製商品名ソルゲン90)、
硬化促進剤としてトリフェニルホスフィンとp−ベンゾキノンとの付加物、無機充填剤として平均粒径17.5μm、比表面積3.8m/gの球状溶融シリカ、カップリング剤としてγ−グリシドキシプロピルトリメトキシシラン(エポキシシラン)、難燃剤として三酸化アンチモン及びエポキシ当量375、軟化点80℃、臭素含量48重量%のビスフェノールA型ブロム化エポキシ樹脂(住友化学工業株式会社製商品名ESB−400T)、着色剤としてカーボンブラック(三菱化学株式会社製商品名MA−100)。
Examples 1-11 and Comparative Examples 1-4
The following raw materials were prepared.
(A) epoxy equivalent of 196, biphenyl type epoxy resin having a melting point of 106 ° C. (trade name: Epicoat YX-4000H, manufactured by Japan Epoxy Resin Co., Ltd.) Aralkyl resin (trade name: Millex XL-225 manufactured by Mitsui Chemicals, Inc.)
As a mold release agent for component (C), oxidized polyethylene 1 (trade name PED522 manufactured by Clariant), oxidized polyethylene 2 (trade name PED153 manufactured by Clariant), the following general formula (XIV), R 1 = 18 carbon atoms, A mixture of alkyl groups of 20 and 22, R 2 = alkyl group having 18 carbon atoms, compound 1 in which m / n = 1 (trade name Nissan Electol D121-41 manufactured by NOF Corporation), non-oxidized polyethylene (Clariant) Product name PED520),
As a dispersant for the component (D), a mixture of compounds represented by the following general formula (I) and general formula (II) where R = saturated aliphatic hydrocarbon group having 25 carbon atoms and l = m = n = 0 (dispersion) Agent 1, HLB = 2.0, trade name Sorgen 20V manufactured by Daiichi Pharmaceutical Co., Ltd., the following general formula (I), and general formula (II): R = saturated aliphatic carbonization having 18 carbon atoms A hydrogen group, a mixture of compounds in which l = m = n = 0 (dispersant 2, HLB = 4.7, trade name Sorgen 50, manufactured by Daiichi Pharmaceutical Co., Ltd.), the following general formula (I), And a mixture of compounds of general formula (II) where R = saturated aliphatic hydrocarbon group having 12 carbon atoms and l = m = n = 20 (dispersant 3, HLB = 16.7, first A product name of Sorgen TW-20 manufactured by Pharmaceutical Industries Ltd., R = saturated aliphatic hydrocarbon group having 12 carbon atoms, and l = m = n = 0 in the following general formula (I) and general formula (II) mixture( Powders 4, H.L.B. = 8.6, Daiichi Pharmaceutical Co., Ltd. trade name Sorgen 90),
Addition product of triphenylphosphine and p-benzoquinone as a curing accelerator, spherical fused silica having an average particle size of 17.5 μm and a specific surface area of 3.8 m 2 / g as an inorganic filler, and γ-glycidoxypropyl as a coupling agent Trimethoxysilane (epoxysilane), antimony trioxide as a flame retardant, epoxy equivalent 375, softening point 80 ° C., bromine content 48% by weight bisphenol A brominated epoxy resin (trade name ESB-400T manufactured by Sumitomo Chemical Co., Ltd.) Carbon black as a colorant (trade name MA-100 manufactured by Mitsubishi Chemical Corporation).

これらを、それぞれ表1及び表2に示す重量部で配合し、混練温度80℃、混練時間10分の条件でロール混練を行い、実施例及び比較例の封止用エポキシ樹脂成形材料を作製した。なお、(A)成分のビフェニル型エポキシ樹脂と(C)成分の離型剤、並びに(D)成分の分散剤は、170℃、6時間の条件で予備混合して用いた。

Figure 2005232267
(R1、Rは、一価の脂肪族炭化水素基を表す。m、nは正の整数を示す。)
Figure 2005232267
(l、m、nは、それぞれ0又は正の整数を表す。Rは、一価の飽和又は不飽和炭化水素基である。)
Figure 2005232267
(l、m、nは、それぞれ0又は正の整数を表す。Rは、一価の飽和又は不飽和炭化水素基である。) These were blended in parts by weight shown in Table 1 and Table 2, respectively, and roll kneading was carried out under conditions of a kneading temperature of 80 ° C. and a kneading time of 10 minutes to produce epoxy resin molding materials for sealing of Examples and Comparative Examples. . The biphenyl type epoxy resin of component (A), the release agent of component (C), and the dispersant of component (D) were premixed at 170 ° C. for 6 hours.
Figure 2005232267
(R 1 and R 2 represent a monovalent aliphatic hydrocarbon group. M and n represent positive integers.)
Figure 2005232267
(L, m and n are each 0 or a positive integer. R is a monovalent saturated or unsaturated hydrocarbon group.)
Figure 2005232267
(L, m and n are each 0 or a positive integer. R is a monovalent saturated or unsaturated hydrocarbon group.)

Figure 2005232267
Figure 2005232267

Figure 2005232267
Figure 2005232267

作製した実施例及び比較例の封止用エポキシ樹脂成形材料を、次の各試験により評価した。評価結果を表3及び表4に示す。
(1)パッケージ汚れ、エアベントバリ付着(LQFP)
封止用エポキシ樹脂成形材料をTOWAプレス(藤和精機株式会社製Yシリーズ、LQFP144p用 パッケージ厚み1.4mm)を用いて、180℃、6.9MPa、60秒の条件で300ショットの連続成形を行い、50ショット毎にサンプリングした成形品を目視により観察することで、パッケージ汚れの有無を確認した。併せて、300ショット後の、ゲート口対角のエアベントのバリ付着の有無を確認し、離型性の良否を判断した。
パッケージ汚れについては、上記300ショットからのパッケージサンプルを観察し、ゲート口からの汚れの広がりの有無と程度から、次の5段階に評価した。
◎:汚れなし
○:汚れの広がりがパッケージ表面の10面積%以下
△:汚れの広がりがパッケージ表面の10面積%超〜20面積%以下
×:汚れの広がりがパッケージ表面の20面積%超〜50面積%以下
××:汚れの広がりがパッケージ表面の50面積%超
The produced epoxy resin molding materials for sealing of Examples and Comparative Examples were evaluated by the following tests. The evaluation results are shown in Tables 3 and 4.
(1) Package dirt, air vent burr adhesion (LQFP)
Using a TOWA press (Y series manufactured by Towa Seiki Co., Ltd., package thickness 1.4 mm for LQFP144p), 300 shots are continuously molded under conditions of 180 ° C, 6.9 MPa, 60 seconds. The presence or absence of package contamination was confirmed by visually observing the molded product sampled every 50 shots. In addition, after 300 shots, the presence or absence of burrs attached to the air vent on the diagonal of the gate opening was confirmed to determine whether the releasability was good.
Regarding package contamination, the package samples from the above 300 shots were observed, and evaluated according to the following five levels based on the presence / absence and extent of contamination spread from the gate opening.
◎: No dirt ○: Spread of dirt is 10 area% or less of package surface Δ: Spread of dirt is more than 10 area% to 20 area% or less of package surface ×: Spread of dirt is more than 20 area% of package surface to 50 Area% or less XX: Spread of dirt exceeds 50 area% of package surface

(2)パッケージ汚れ、エアベントバリ付着(TSOP)
封止用エポキシ樹脂成形材料をTOWAプレス(藤和精機株式会社製TPS−60H、TSOP28p用 パッケージ厚み1.0mm)を用いて、180℃、6.9MPa、60秒の条件で300ショットの連続成形を行い、50ショット毎にサンプリングした成形品を目視により観察することで、パッケージ汚れの有無を確認した。併せて、300ショット後の、エアベントのバリ付着の有無を確認し、離型性の良否を判断した。
パッケージ汚れについては、ゲート口からの汚れの広がりの有無と程度から、上記(1)と同様に5段階に評価した。
(2) Package dirt, air vent burr adhesion (TSOP)
300-shot continuous molding is performed under the conditions of 180 ° C., 6.9 MPa, 60 seconds using the sealing epoxy resin molding material using TOWA press (package thickness 1.0 mm for TPS-60H, TSOP28p manufactured by Towa Seiki Co., Ltd.). The molded product sampled every 50 shots was visually observed to check for package contamination. In addition, the presence or absence of burr adhesion on the air vent after 300 shots was confirmed to determine whether the releasability was good.
The package contamination was evaluated in five levels in the same manner as in (1) above, from the presence and extent of the contamination spreading from the gate opening.

Figure 2005232267
Figure 2005232267

Figure 2005232267
Figure 2005232267

本発明における(D)成分を含まない比較例1〜4は、いずれもパッケージ汚れが悪く、金型へのバリ付着も観られる。
これに対し、本発明における(A)〜(D)成分を全て含む実施例1〜11は、いずれも、パッケージ汚れに優れ、金型へのバリ付着等も観られない。中でも、(C)成分の一部又は全部を酸化型ポリオレフィンとし、(D)成分としてH.L.B.=1〜5の化合物の混合物とH.L.B.=10〜20の化合物の混合物とを併用した実施例1〜8は、特にパッケージ汚れの点で優れていることが示される。

In Comparative Examples 1 to 4 that do not contain the component (D) in the present invention, package contamination is poor, and burrs adhere to the mold.
On the other hand, all of Examples 1 to 11 including all the components (A) to (D) in the present invention are excellent in package contamination, and no burrs adhere to the mold. Among them, part or all of the component (C) is an oxidized polyolefin, and the component (D) is a mixture of HLB = 1-5 compounds and HLBB = 10-20 compounds. Examples 1 to 8 in combination with the mixture are shown to be particularly excellent in terms of package contamination.

Claims (7)

(A)エポキシ樹脂、(B)硬化剤、(C)ポリオレフィン系離型剤、(D)下記一般式(I)、下記一般式(II)で表される化合物の混合物、を必須成分とする封止用エポキシ樹脂成形材料。
Figure 2005232267
(l、n、mは、それぞれ0又は正の整数を表す。Rは、一価の飽和又は不飽和炭化水素基である。)
Figure 2005232267
(l、n、mは、それぞれ0又は正の整数を表す。Rは、一価の飽和又は不飽和炭化水素基である。)
An essential component is (A) an epoxy resin, (B) a curing agent, (C) a polyolefin-based release agent, (D) a mixture of compounds represented by the following general formula (I) and the following general formula (II). Epoxy resin molding material for sealing.
Figure 2005232267
(L, n and m each represents 0 or a positive integer. R represents a monovalent saturated or unsaturated hydrocarbon group.)
Figure 2005232267
(L, n and m each represents 0 or a positive integer. R represents a monovalent saturated or unsaturated hydrocarbon group.)
(C)成分のポリオレフィン系離型剤と、(D)成分の前記混合物との少なくとも一方が、(A)成分のエポキシ樹脂の一部又は全部と予備混合された請求項1に記載の封止用エポキシ樹脂成形材料。  The sealing according to claim 1, wherein at least one of the polyolefin-based mold release agent of the component (C) and the mixture of the component (D) is premixed with part or all of the epoxy resin of the component (A). Epoxy resin molding material. (C)成分のポリオレフィン系離型剤の一部又は全部が酸化型ポリオレフィンである請求項1又は請求項2に記載の封止用エポキシ樹脂成形材料。  The epoxy resin molding material for sealing according to claim 1 or 2, wherein a part or all of the polyolefin-based mold release agent of component (C) is an oxidized polyolefin. (D)成分の一般式(I)及び一般式(II)のRが、炭素数10〜30である請求項1〜3のいずれかに記載の封止用エポキシ樹脂成形材料。   The epoxy resin molding material for sealing according to any one of claims 1 to 3, wherein R in the general formula (I) and the general formula (II) of the component (D) has 10 to 30 carbon atoms. (D)成分が、一般式(I)及び一般式(II)でl=n=m=0である化合物の混合物、及び、一般式(I)及び一般式(II)でl>9、かつ、n>9、かつ、m>9である化合物の混合物の両者からなる請求項1〜4のいずれかに記載の封止用エポキシ樹脂成形材料。  (D) the component is a mixture of compounds of general formula (I) and general formula (II) where l = n = m = 0, and in general formula (I) and general formula (II) l> 9, and N> 9 and m> 9. The sealing epoxy resin molding material according to any one of claims 1 to 4, which comprises both a mixture of compounds. (D)成分が、一般式(I)及び一般式(II)でH.L.B.が1〜5である化合物の混合物、及び、一般式(I)及び一般式(II)でH.L.B.が10〜20である化合物の混合物の両者からなる請求項1〜5のいずれかに記載の封止用エポキシ樹脂成形材料。  The component (D) is a mixture of compounds of the general formula (I) and the general formula (II) in which H.L.B. is 1 to 5, and the general formula (I) and the general formula (II). The epoxy resin molding material for sealing according to any one of claims 1 to 5, comprising both a mixture of compounds having L.B. of 10 to 20. 請求項1〜6のいずれかに記載の封止用エポキシ樹脂成形材料により封止された素子を備えた電子部品装置。

The electronic component apparatus provided with the element sealed with the epoxy resin molding material for sealing in any one of Claims 1-6.

JP2004041366A 2004-02-18 2004-02-18 Epoxy resin molding material for sealing and electronic part device Pending JP2005232267A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004041366A JP2005232267A (en) 2004-02-18 2004-02-18 Epoxy resin molding material for sealing and electronic part device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004041366A JP2005232267A (en) 2004-02-18 2004-02-18 Epoxy resin molding material for sealing and electronic part device

Publications (1)

Publication Number Publication Date
JP2005232267A true JP2005232267A (en) 2005-09-02

Family

ID=35015552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004041366A Pending JP2005232267A (en) 2004-02-18 2004-02-18 Epoxy resin molding material for sealing and electronic part device

Country Status (1)

Country Link
JP (1) JP2005232267A (en)

Similar Documents

Publication Publication Date Title
WO2011048765A1 (en) Epoxy resin composition for semiconductor encapsulation, semiconductor device, and release agent
JP4010176B2 (en) Epoxy resin molding material for sealing and electronic component device
JP3975386B2 (en) Epoxy resin molding material for sealing and electronic component device
JP4792768B2 (en) Epoxy resin composition for sealing and electronic component device
JP2023030182A (en) Epoxy resin composition and electronic component device
JP2004175842A (en) Epoxy resin molding material for sealing and electronic part device
JP2001151867A (en) Epoxy resin molding compound for sealing use and electronic part device
JP4265187B2 (en) Electronic component apparatus provided with epoxy resin molding material and element for sealing
WO2011118157A1 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device using same
JP2006016576A (en) Epoxy resin composition for sealing and electronic part apparatus
JP2006028264A (en) Epoxy resin molding material for encapsulation and electronic component device
JP5309415B2 (en) Epoxy resin molding material for sealing and electronic component device
JP2005325159A (en) Sealing epoxy resin molding material and electronic component device
JP4849290B2 (en) Epoxy resin molding material for sealing and electronic component device
JP2005350500A (en) Epoxy resin molding material for sealing and electronic part apparatus
JP2006316263A (en) Epoxy resin composition for sealing, and electronic component device
JP2004027169A (en) Epoxy resin composition and electronic component device
JP2002212392A (en) Epoxy resin molding material for sealing and electronic part device
JP2006182913A (en) Sealing epoxy resin molding material and electronic component device
JP2006104416A (en) Epoxy resin molding material for sealing and electronic part device
JP2006077096A (en) Epoxy resin-molding material for sealing and electronic part device
JP3736408B2 (en) Epoxy resin composition for sealing and electronic component device
JP2005232267A (en) Epoxy resin molding material for sealing and electronic part device
JP2006104415A (en) Epoxy resin molding material for sealing and electronic part device
JP2008115364A (en) Epoxy resin composition and electronic component device