JP2005230678A - Exhaust gas treatment apparatus and exhaust gas treatment method - Google Patents

Exhaust gas treatment apparatus and exhaust gas treatment method Download PDF

Info

Publication number
JP2005230678A
JP2005230678A JP2004042548A JP2004042548A JP2005230678A JP 2005230678 A JP2005230678 A JP 2005230678A JP 2004042548 A JP2004042548 A JP 2004042548A JP 2004042548 A JP2004042548 A JP 2004042548A JP 2005230678 A JP2005230678 A JP 2005230678A
Authority
JP
Japan
Prior art keywords
exhaust gas
sox
gas treatment
absorption tower
absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004042548A
Other languages
Japanese (ja)
Inventor
Kenji Nakajima
健次 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2004042548A priority Critical patent/JP2005230678A/en
Publication of JP2005230678A publication Critical patent/JP2005230678A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Treating Waste Gases (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust gas treatment apparatus that is capable of being loaded on a ship and of efficiently removing toxic substances in a high temperature exhaust gas. <P>SOLUTION: The exhaust gas treatment apparatus has an exhaust gas intake 2a, a dust collecting device 2 to remove the toxic substances in the exhaust gas taken in and discharging means 2b, 6 to discharge the exhaust gas from which the toxic substances have been removed. The dust collecting device 2 is characterized in that a pretreatment device having a number of ceramic filters 10 and a tubular wire gauze 11 accounting for 1-4% of the total number of these ceramic filters 10 arranged therein is connected with a SOx removing device at the downstream side of the pretreatment device, which is provided with an absorption tower 13 to contact an absorption liquid comprised of polyethylene glycol dimethyl ether as a main component, which is able to absorb the SOx in the exhaust gas, with the exhaust gas, an evaporating means 17 to evaporate the SOx in the absorption liquid which has absorbed the SOx sent from the absorption tower 13 and a recovering means of the SOx as H<SB>2</SB>SO<SB>4</SB>by oxidizing the evaporated SOx and causing the SOx to react with water. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は排ガス処理装置と排ガス処理方法に関し、詳しくは、船舶などに搭載可能で、高温の排ガス中の煤塵などの有害物を効率よく除去可能な排ガス処理装置と排ガス処理方法に関する。   The present invention relates to an exhaust gas treatment apparatus and an exhaust gas treatment method, and more particularly to an exhaust gas treatment apparatus and an exhaust gas treatment method that can be mounted on a ship and the like and can efficiently remove harmful substances such as dust in high-temperature exhaust gas.

排ガス中のNOx、SOxや煤塵といった有害物質を吸収式で浄化する方法としては、全体的な設備コストが低く、その装置も設置面積は比較的小さく、コンパクトであるため多用されている。この方法を用いて、比較的大量かつ低濃度の有機溶剤を含む排ガスの除去や、高濃度の溶剤ガスの除去(特許文献1)などが知られている。   As a method for purifying harmful substances such as NOx, SOx and dust in the exhaust gas by an absorption method, the overall equipment cost is low, the apparatus is also relatively small in installation area, and is often used. Using this method, removal of exhaust gas containing a relatively large amount of organic solvent having a low concentration, removal of high concentration solvent gas (Patent Document 1), and the like are known.

もっとも、高温に加熱されている排ガス中の煤塵などの有害物質は、耐熱性フィルターを用いた乾式法が採用されている。乾式法は、一般に大掛かりな装置を必要とするが、船舶などから排出される有害物質の除去には、できるだけコンパクトで、かつ効率良く除去する装置の開発が望まれており、既存の耐熱性フィルターは使用し難い。   However, a dry method using a heat-resistant filter is adopted for harmful substances such as dust in the exhaust gas heated to a high temperature. The dry method generally requires a large-scale device, but the removal of harmful substances discharged from ships and the like requires the development of a device that is as compact and efficient as possible. Is difficult to use.

通常、船舶機関の燃料としては、一般的に粗悪で安価なC重油を用いることが多い。また、その機関からの排ガスが500℃程度の高温になる場合がある他、多くの有害物を含み、そのまま空気中に放出されているのが現状である。しかし、環境的な観点からは、このような排ガスに含まれる有害物を除去することが必要である。
特開平7−171335公報
In general, as a fuel for marine engines, in general, poor and inexpensive C heavy oil is often used. In addition, the exhaust gas from the engine may reach a high temperature of about 500 ° C., and it contains many harmful substances and is released into the air as it is. However, from an environmental viewpoint, it is necessary to remove harmful substances contained in such exhaust gas.
JP-A-7-171335

かかる高温の排ガスを除去するには、集塵内に耐熱性のあるセラミックフィルターを配置した有害物除去装置を考えたが、排気ガス中の煤塵などの存在により目詰まりを起こし易く、保守作業を頻繁に行う必要があり、除去効率が悪かった。しかも、船舶内に設置される以上、大掛かりな装置にすることはできず、できるだけ除去装置自体をコンパクトなものにしながら、効率的に排ガス中の有害物を除去する装置の開発が強く望まれている。   In order to remove such high-temperature exhaust gas, we considered a hazardous substance removal device with a heat-resistant ceramic filter in the dust collection, but it is prone to clogging due to the presence of soot in the exhaust gas, and maintenance work is required. It was necessary to perform it frequently and the removal efficiency was poor. Moreover, as long as it is installed in a ship, it cannot be a large-scale device, and development of a device that efficiently removes harmful substances in exhaust gas is strongly desired while making the removal device as compact as possible. Yes.

そこで、上記従来技術の有する問題点に鑑みて、本発明者は鋭意研究した結果、耐熱性のあるセラミックフィルターを用いると共に、セラミックフィルターの一部を通気性のある多孔性材料に置き換えて、これらを微妙にバランスすることにより、比較的安価な方式で、排ガス中の有害物を効率よく除去でき、保守頻度を確実に低減可能な排ガス処理装置と排ガス処理方法を開発することに成功した。   Therefore, in view of the above-mentioned problems of the prior art, the present inventor has intensively studied and as a result, used a heat-resistant ceramic filter and replaced a part of the ceramic filter with a porous material having air permeability. We have succeeded in developing an exhaust gas treatment device and an exhaust gas treatment method that can remove harmful substances in exhaust gas efficiently and reduce the maintenance frequency with a relatively inexpensive method.

本発明の課題は、船舶などに搭載可能で、高温の排ガス中の煤塵などの有害物を効率よく除去可能な排ガス処理装置と排ガス処理方法を提供することにある。   An object of the present invention is to provide an exhaust gas treatment apparatus and an exhaust gas treatment method that can be mounted on a ship or the like and can efficiently remove harmful substances such as dust in high-temperature exhaust gas.

上記課題は請求項記載の発明により達成される。すなわち、本発明に係る排ガス処理装置の特徴構成は、排ガス取入口と、取り入れた排ガス中の有害物を除去する集塵装置と、有害物を除去された排ガスを排出する排出手段とを有していて、前記集塵装置が、多数のセラミックフィルターと、このセラミックフィルターの総数の1〜4%を占める多孔体とを、内部に配置している前処理装置と、この前処理装置の下流側に、前記排ガス中のSOxを吸収可能な、ポリエチレングリコールジメチルエーテルを主成分とする吸収液を前記排ガスに接触させる吸収塔と、この吸収塔から送られSOxを吸収した吸収液中のSOxを蒸発させる蒸発手段と、蒸発したSOxを酸化すると共に水と反応させてH2 SO4 として回収する手段とを有するSOx除去装置が接続されていることにある。 The above object can be achieved by the invention described in the claims. That is, the characteristic configuration of the exhaust gas treatment apparatus according to the present invention includes an exhaust gas inlet, a dust collector that removes harmful substances in the incorporated exhaust gas, and a discharge means that discharges the exhaust gas from which harmful substances have been removed. The precipitator in which the dust collector is arranged with a large number of ceramic filters and a porous body occupying 1 to 4% of the total number of the ceramic filters, and the downstream side of the pretreatment apparatus In addition, an absorption tower capable of absorbing SOx in the exhaust gas and contacting an absorption liquid mainly composed of polyethylene glycol dimethyl ether with the exhaust gas, and SOx in the absorption liquid sent from the absorption tower and absorbing SOx are evaporated. The SOx removal device having the evaporation means and the means for oxidizing the evaporated SOx and reacting with water to recover it as H 2 SO 4 is connected.

この構成によれば、単位時間あたりの排ガス送給量を多くして集塵装置による処理量を多くしても、安価な装置構成により、機関排気出口側にかかる圧力(以下、背圧)もしくはセラミックフィルター前後間の圧力差(以下、差圧)を低くできると共に、排ガス中の有害物である煤塵などを効率よく確実に除去できる。従って、全体の装置構成をコンパクトにできると共に、保守回数を低減できる。多孔体の配置数がセラミックフィルターの総数の1%未満であれば背圧を効果的に低くすることが難しいため、保守回数を確実に低減することはできず、逆に、多孔体の配置数がセラミックフィルターの総数の4%を越えると背圧を低くできても、煤塵除去効果が十分とはならず、好ましくない。より好ましくは、多孔体の配置数はセラミックフィルターの総数の2〜3%である。   According to this configuration, even if the exhaust gas supply amount per unit time is increased and the processing amount by the dust collector is increased, the pressure applied to the engine exhaust outlet side (hereinafter, back pressure) or The pressure difference between the front and back of the ceramic filter (hereinafter referred to as differential pressure) can be reduced, and dust and other harmful substances in the exhaust gas can be efficiently and reliably removed. Therefore, the overall apparatus configuration can be made compact and the number of maintenance can be reduced. If the number of porous bodies arranged is less than 1% of the total number of ceramic filters, it is difficult to effectively reduce the back pressure, so the number of maintenance can not be reduced reliably. Conversely, the number of porous bodies arranged However, if it exceeds 4% of the total number of ceramic filters, the dust removal effect is not sufficient even if the back pressure can be lowered, which is not preferable. More preferably, the number of disposed porous bodies is 2-3% of the total number of ceramic filters.

しかも、上記構成によれば、殊更大掛かりな設備を必要とすることなく、排ガス中のSOxを効果的に吸収・除去することができ、清浄な排ガスとして大気に放出できるのみならず、船舶のようなコンパクト化が強く要請される場合にも、極めて有効に適用でき、実用性の高いものとなる。しかも、H2 SO4 として回収する手段により、回収したH2 SO4 を再利用可能になり、設備のランニングコストを低減することができる。 Moreover, according to the above-described configuration, SOx in the exhaust gas can be effectively absorbed and removed without requiring particularly large equipment, and not only can it be released into the atmosphere as clean exhaust gas, but also like a ship. Even when there is a strong demand for compactness, it can be applied very effectively and has high practicality. Moreover, the means for recovering the H 2 SO 4, enables reuse the recovered H 2 SO 4, it is possible to reduce the running cost of the equipment.

その結果、船舶などのようにコンパクト化を要する場合にも、これに搭載して、高温の排ガス中の煤塵などの有害物を効率よく除去可能な排ガス処理装置を提供することができた。   As a result, it is possible to provide an exhaust gas treatment apparatus that can be efficiently mounted on a high-temperature exhaust gas and can remove harmful substances such as dust in a case where downsizing is required, such as a ship.

前記多孔体が、400〜800メッシュの略筒状金網からなることが好ましい。   It is preferable that the porous body is formed of a substantially cylindrical wire net having a size of 400 to 800 mesh.

この構成によれば、より安価な装置構成で確実に有害物を効率よく除去可能となる。   According to this configuration, harmful substances can be reliably removed efficiently and reliably with a cheaper device configuration.

前記集塵装置に、自動逆洗機構が設けられていることが好ましい。   The dust collector is preferably provided with an automatic backwash mechanism.

この構成によれば、集塵装置内に配置されているセラミックフィルターが所定の差圧に達した際には、自動的に洗浄するので、短時間に能力を回復でき、処理効率を高くできる。   According to this configuration, when the ceramic filter disposed in the dust collector reaches a predetermined differential pressure, the ceramic filter is automatically cleaned, so that the capacity can be recovered in a short time and the processing efficiency can be increased.

また、本発明に係る排ガス処理方法の特徴構成は、請求項1の排ガス処理装置を用いて、排ガス中の煤塵を除去処理した後、前記排ガスを吸収塔に導入して、前記排ガス中のSOxを吸収可能な、ポリエチレングリコールジメチルエーテルを主成分とする吸収液に前記排ガスを接触させ、SOxを吸収した吸収液中のSOxを蒸発手段により蒸発させ、蒸発したSOxを酸化し、その後水と反応させてH2 SO4 として回収する工程を有することにある。 Further, the exhaust gas treatment method according to the present invention is characterized in that the exhaust gas treatment apparatus according to claim 1 is used to remove soot and dust in the exhaust gas, and then the exhaust gas is introduced into an absorption tower so that the SOx in the exhaust gas is removed. The exhaust gas is brought into contact with an absorption liquid containing polyethylene glycol dimethyl ether as a main component, and SOx in the absorption liquid that has absorbed SOx is evaporated by an evaporation means, and the evaporated SOx is oxidized and then reacted with water. And a step of recovering as H 2 SO 4 .

この構成によれば、船舶などに搭載可能で、高温の排ガス中の煤塵などの有害物を効率よく除去可能な排ガス処理方法を提供することができる。   According to this configuration, it is possible to provide an exhaust gas treatment method that can be mounted on a ship or the like and can efficiently remove harmful substances such as dust in high-temperature exhaust gas.

本発明の実施形態を、図面を参照して詳細に説明する。図1は、本実施形態に係る排ガス処理装置であり、主として煤塵処理を行う概略全体構造を示す。この排ガス処理装置は、船舶に搭載したものを例として挙げてある。   Embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is an exhaust gas treatment apparatus according to the present embodiment, and shows a schematic overall structure that mainly performs dust treatment. As this exhaust gas treatment apparatus, an apparatus mounted on a ship is cited as an example.

図1において、Dは重油焚きの補助機関であり、これらから発生する排ガスは、開閉制御可能なダンパー装置1を経由して、内部に計100本以上のセラミックフィルターと、このセラミックフィルターの総数の1〜4%を占める多孔体とが上下3段にわたり配置された前処理手段である集塵装置2へ送給される。セラミックフィルターと多孔体については、後述する。   In FIG. 1, D is a heavy oil-fired auxiliary engine, and exhaust gas generated therefrom passes through a damper device 1 that can be controlled to open and close, and a total of 100 or more ceramic filters and the total number of these ceramic filters. A porous body occupying 1 to 4% is fed to a dust collector 2 which is a pretreatment means arranged in three upper and lower stages. The ceramic filter and the porous body will be described later.

集塵装置2で集塵された煤塵などの有害物は、下部のスクリュー式搬出機3により開閉ダンパー装置4を経由して、ダスト回収缶5に排出されるようになっている。更に、この集塵装置2には、自動逆洗機構が設けられている。すなわち、集塵装置2内に配置されているセラミックフィルター及び多孔体の洗浄のための圧縮空気導入機構が取り付けられており、圧縮空気がバルブ8を介して、適宜な回数だけセラミックフィルター及び多孔体に逆向きに送給されて、セラミックフィルター内を洗浄するようになっている。図番9は、圧縮空気の送給を制御する、差圧計を備えたパルスコントロールボックスである。例えば、集塵装置2内での差圧が一定以上になった時に、自動的にバルブ8を開いて圧縮空気を導入する。もっとも、かかる操作を手動で行うようにしてもよい。   Hazardous substances such as dust collected by the dust collector 2 are discharged to the dust collecting can 5 by the screw type unloader 3 via the open / close damper device 4. Further, the dust collector 2 is provided with an automatic backwashing mechanism. That is, a ceramic filter disposed in the dust collector 2 and a compressed air introduction mechanism for cleaning the porous body are attached, and the compressed air is passed through the valve 8 and the ceramic filter and the porous body are appropriately returned. The ceramic filter is fed in the opposite direction to clean the inside of the ceramic filter. Reference numeral 9 is a pulse control box equipped with a differential pressure gauge for controlling the supply of compressed air. For example, when the differential pressure in the dust collector 2 becomes a certain level or higher, the valve 8 is automatically opened to introduce compressed air. However, this operation may be performed manually.

一方、集塵装置2により有害物質が除去された排ガスは、排ガス排出手段である排ガス排出路2bを経由してブロワー6により、図2に示すSOx処理装置に排出されるようになっている。もっとも、SOx排出量の少ない燃料を使用する場合には、このSOx処理装置を使用することは必ずしも必要ないが、環境浄化を強化するために、SOx処理装置を使用することが好ましい。尚、図番7は、排気ガス中のダスト濃度を測定する測定口を表す。   On the other hand, the exhaust gas from which harmful substances have been removed by the dust collector 2 is discharged to the SOx treatment apparatus shown in FIG. 2 by the blower 6 via the exhaust gas discharge path 2b which is an exhaust gas discharge means. However, when using a fuel with a small amount of SOx emission, it is not always necessary to use this SOx processing apparatus, but it is preferable to use the SOx processing apparatus in order to enhance environmental purification. Reference numeral 7 represents a measurement port for measuring the dust concentration in the exhaust gas.

図2は、吸収式のSOx処理装置の概略全体構成を示す。この装置は、送給された排ガス中のSOxのような有害物質を吸収し除去する吸収塔13と、この吸収塔13から送られSOxを吸収した吸収液を揮発させる蒸発手段である蒸発塔17と、蒸発したSOxを酸化して回収する手段である酸化触媒槽18、水反応槽22などとからなり、水反応槽22から濃度の高いH2 SO4 を得るようになっている。 FIG. 2 shows a schematic overall configuration of an absorption-type SOx processing apparatus. This apparatus absorbs and removes harmful substances such as SOx in the supplied exhaust gas, and an evaporation tower 17 which is an evaporation means for volatilizing an absorption liquid sent from the absorption tower 13 and absorbing SOx. And an oxidation catalyst tank 18 which is a means for oxidizing and recovering the evaporated SOx, a water reaction tank 22 and the like, and high concentration H 2 SO 4 is obtained from the water reaction tank 22.

すなわち、排ガスは、略円筒状をしたスクラバー方式の吸収塔13の下部に送り込まれる。吸収塔13では、吸収塔上部に設けられたスプレー21によって吸収液20が散布されるようになっている。吸収液20が吸収塔充填材14を濡らして下方に流れると、排ガスが、吸収塔充填材14表面に形成される液膜に接触することにより、排ガス中のSOxは吸収液に吸収されると共に、SOxを吸収・除去された排ガス(処理ガス)は、吸収塔13の頂部より排出される。吸収塔13の頂部に、ミストキャッチャーや活性炭充填層などを設けてもよい。   That is, the exhaust gas is fed into the lower portion of the substantially cylindrical scrubber type absorption tower 13. In the absorption tower 13, the absorption liquid 20 is sprayed by a spray 21 provided in the upper part of the absorption tower. When the absorption liquid 20 wets the absorption tower packing 14 and flows downward, the exhaust gas comes into contact with the liquid film formed on the surface of the absorption tower packing 14 so that SOx in the exhaust gas is absorbed by the absorption liquid. The exhaust gas (process gas) from which SOx has been absorbed and removed is discharged from the top of the absorption tower 13. A mist catcher or an activated carbon packed bed may be provided on the top of the absorption tower 13.

排ガスと接触してSOxを吸収した吸収液は、ポンプPにより熱交換器15に送られ加熱されて、蒸発搭17の上部から散布され、蒸発搭充填材層23を通じて流れ落ち、その際SOx成分が蒸発させられ、蒸発搭17の下部に貯留され再生吸収液20とされる。貯留された再生吸収液は、冷却器16によって冷却された後、ポンプ(表記せず)等により吸収塔13に供給される。   The absorbing liquid that has absorbed SOx in contact with the exhaust gas is sent to the heat exchanger 15 by the pump P, heated, sprayed from the upper part of the evaporating tower 17, and flows down through the evaporating tower filler layer 23. Evaporated and stored in the lower part of the evaporating tower 17 to form the regenerated absorbent 20. The stored regenerated absorbent is cooled by the cooler 16 and then supplied to the absorption tower 13 by a pump (not shown) or the like.

再生吸収液20を吸収塔13へ供給する際、流量計や供給量調節手段を設けて、供給量を制御するように構成してもよい。   When supplying the regenerated absorbent 20 to the absorption tower 13, a flow meter and a supply amount adjusting means may be provided to control the supply amount.

蒸発搭17にて吸収液から追い出された排ガスは、酸化触媒槽18に送られる。この酸化触媒槽18は酸化触媒層18aを有して構成されていて、この酸化触媒層18aを通して排ガス中に含まれているSO2 は酸化されてSO3 とされる。更に、SO3 は水反応槽22に送られて、スプレー21等により少量の水を噴霧され、SO3 はH2 SO4 に酸化される。水反応槽22には、SO3 はH2 SO4 にする触媒層22aが設けられていて効率向上が図られている。触媒層22aで用いられる触媒は、活性炭などを使用できる。 The exhaust gas expelled from the absorbent in the evaporating tower 17 is sent to the oxidation catalyst tank 18. The oxidation catalyst tank 18 includes an oxidation catalyst layer 18a, and SO 2 contained in the exhaust gas is oxidized to SO 3 through the oxidation catalyst layer 18a. Further, SO 3 is sent to the water reaction tank 22 and a small amount of water is sprayed by the spray 21 or the like, and SO 3 is oxidized to H 2 SO 4 . The water reaction tank 22 is provided with a catalyst layer 22a in which SO 3 is changed to H 2 SO 4 to improve efficiency. As the catalyst used in the catalyst layer 22a, activated carbon or the like can be used.

その後、生成されたH2 SO4 は受槽19に貯留・濃縮される。濃縮され回収されたH2 SO4 は、濃度が高いため再利用される。受槽19に送られた排ガス中の残りのガス成分は、排気ファン33により排出される。もっとも、受槽19は必ずしも必要ではなく、水反応槽22から直接回収してもよい。 Thereafter, the generated H 2 SO 4 is stored and concentrated in the receiving tank 19. The concentrated and recovered H 2 SO 4 is recycled because of its high concentration. The remaining gas components in the exhaust gas sent to the receiving tank 19 are exhausted by the exhaust fan 33. But the receiving tank 19 is not necessarily required and may be directly recovered from the water reaction tank 22.

なお、酸化触媒槽18中の酸化触媒としては、V25 などを使用できるが、これ以外でもよく、要はSO2 を酸化してSO3 にできるのであれば、これらに限定されるものではない。 As the oxidation catalyst in the oxidation catalyst tank 18, V 2 O 5 or the like can be used, but other oxidation catalysts may be used. In short, as long as SO 2 can be oxidized to SO 3 , it is limited to these. is not.

吸収塔13にて排ガスに接触させる吸収液20は、下記化1で表されるポリエチレングリコールジメチルエーテルを主成分とするSOx吸収液(例えば、クラリアントジャパン(株)、クラリアント・ゲーエムベーハー社販売の商品名:ゲノソルブ1900)を用いる。   The absorption liquid 20 brought into contact with the exhaust gas in the absorption tower 13 is an SOx absorption liquid mainly composed of polyethylene glycol dimethyl ether represented by the following chemical formula 1 (for example, trade names sold by Clariant Japan Co., Ltd., Clariant GmbH). Genosolve 1900) is used.

[化1]
CH3 (OCH2 CH2n OCH3
n=4〜6
このSOx吸収液を排ガスに接触させることにより、排ガス中のSO2 、SO3 その他SOx成分の90%以上を吸収・除去可能となる。
[Chemical 1]
CH 3 (OCH 2 CH 2 ) n OCH 3
n = 4-6
By contacting this SOx absorbent with exhaust gas, 90% or more of SO 2 , SO 3 and other SOx components in the exhaust gas can be absorbed and removed.

スクラバー方式の吸収塔に充填される充填材としては、公知の各種充填材を使用できる。特に、鞍形フラップとその鞍形フラップの両面に立設された流体が通過自在な空隙を有する中空筒体、及びリブを備え、表面積が75m2 /m3 以上で空間率が95%以上の樹脂成形物(例えば、商品名ハイレックス(東洋ゴム工業(株)製)を使用できる。特に、この充填材は、表面積が広く、表面に吸収液の薄い膜が形成されるので、本発明の吸収効率の高い吸収液との組合せにより高い除去効率が達成可能である。 Various known fillers can be used as the filler filled in the scrubber type absorption tower. In particular, a hollow cylinder having ribs and voids that can pass through the fluid standing upright on both sides of the bowl-shaped flap, and ribs, having a surface area of 75 m 2 / m 3 or more and a space ratio of 95% or more. A resin molded product (for example, trade name HI-LEX (manufactured by Toyo Tire & Rubber Co., Ltd.) can be used. In particular, since this filler has a large surface area and a thin film of absorbing liquid is formed on the surface, High removal efficiency can be achieved by combination with an absorbing solution having high absorption efficiency.

次に、集塵装置2内に多数配置されているセラミックフィルター(以下、単にフィルターということがある)及び多孔体を、図3、4を参照して説明する。   Next, a number of ceramic filters (hereinafter sometimes simply referred to as filters) and porous bodies arranged in the dust collector 2 will be described with reference to FIGS.

このフィルター10は、一端部に開口部10aを有すると共に、他端が閉鎖された略円筒状をしており、開口部10aには集塵装置2内に装着するための鍔10bが形成されている。このフィルター10が、集塵装置2内に稠密に多数配置され、集塵装置2の排ガス取入口2aから導入された排ガスは、フィルター10内を通過して、排ガス排出路2bを経由して集塵装置2の外部に排出されるようになっている。   The filter 10 has an opening 10a at one end and has a substantially cylindrical shape with the other end closed. The opening 10a is formed with a gutter 10b for mounting in the dust collector 2. Yes. A large number of these filters 10 are densely arranged in the dust collector 2, and the exhaust gas introduced from the exhaust gas inlet 2a of the dust collector 2 passes through the filter 10 and is collected via the exhaust gas discharge path 2b. It is discharged to the outside of the dust device 2.

これら多数のフィルター10に混って、フィルター10と略同形をした多孔体の1種である略円筒状をした400メッシュの金網11が、円筒状をした60mm径、孔径1mmのパンチングメタル12に外嵌され、フィルター10の総数の1〜4%に相当する数だけ配置されていて、この金網11の配置により、差圧の高まりを回避すると共に、煤塵をも除去するようになっている。従って、金網11のメッシュが小さく、孔径の大きいものは、煤塵除去能が低く、好ましくなく、逆に孔径が微細すぎると、差圧が高まり、好ましくない。結局、金網11の粗さは、400〜1200メッシュ程度が好ましく、より好ましくは400〜800メッシュである。尚、パンチングメタル12は必ずしも必要ではないが、比較的大径の煤塵粒子を除去できるため、金網11がその機能を長時間にわたって維持できると共に、金網11を補強することもできて都合がよい。   A 400-mesh metal mesh 11 having a substantially cylindrical shape, which is a kind of porous body having substantially the same shape as that of the filter 10, is mixed with a large number of these filters 10 into a punching metal 12 having a cylindrical shape having a diameter of 60 mm and a hole diameter of 1 mm. The external fitting and the number corresponding to 1 to 4% of the total number of the filters 10 are arranged. By the arrangement of the wire mesh 11, an increase in the differential pressure is avoided and dust is also removed. Accordingly, a metal mesh 11 with a small mesh and a large hole diameter is not preferable because the dust removal ability is low, and conversely, if the hole diameter is too fine, the differential pressure increases, which is not preferable. After all, the roughness of the wire mesh 11 is preferably about 400 to 1200 mesh, more preferably 400 to 800 mesh. Although the punching metal 12 is not always necessary, the metal mesh 11 can maintain its function for a long time and can be reinforced because the relatively large diameter dust particles can be removed.

(実施例1)
図1に示す集塵装置内に、内径約60mm、長さ約1000mmのコージライト質セラミックフィルター(市販品)を計211本、上下3段に配置すると共に、これら上下3段に配置したセラミックフィルターの略中央位置に、上から2本、1本、2本の計5本の略円筒状をした400メッシュの金網を、その内周に円筒状のパンチングメタル板を内挿させて配置した。この集塵装置に、800kWの補助機関1基から排出される約380℃の排ガスを、流速約64m/s、約3000m3 N/h通流させた。集塵装置出口側の圧力を測定したところ、0.30kPaであり、差圧の増加は大きくなく、洗浄に要する頻度は多くない。また、集塵装置に投入される排ガス中の煤塵は、約0.1g/m3 Nであったところ、出口側では、煤塵量は0.033g/m3 Nに減少しており、この程度にまで低減できれば、実質的に排出に支障はなく、次工程の処理にも問題を生じない。
(実施例2)
多孔体として、5本の略円筒状をした800メッシュの金網を装着した以外は、実施例1と同様にして排ガスを通流させた。その結果、フィルター出口側の圧圧を測定したところ、0.28kPaであり、バグフィルターに投入される排ガス中の煤塵量は0.030g/m3 Nであった。
(比較例1)
実施例1と同様に、集塵装置内にフィルター216本を配置したが、多孔体を配置せずに排ガスを通流させた。その結果、煤塵量は0.032g/m3 Nであったが、フィルター出口側の圧力は0.53kPaと高くなり、目詰まりが大きく、好ましいものではなかった。
(比較例2)
集塵装置内に、実施例1の円筒状をした400メッシュの金網を10本装着した以外は、実施例1と同様にして排ガスを通流させた。その結果、フィルター出口側の圧力を測定したところ、0.28kPaであったが、煤塵量は0.060g/m3 Nであり、十分とは言えず、しかも金網表面が黒ずみ、特に粒子の大きい煤塵の除去が十分でないことが判明した。
(比較例3)
集塵装置内に、円筒状をした200メッシュの金網を5本装着した以外は、実施例1と同様にして排ガスを通流させた。その結果、フィルター出側の静圧を測定したところ、0.16kPaであったが、煤塵量は0.060g/m3 Nと高くなり、十分とは言えず、しかも金網表面が黒ずみ、特に粒子の大きい煤塵の除去が十分でないことが判明した。
(Example 1)
In the dust collector shown in FIG. 1, a total of 211 cordierite ceramic filters (commercially available) with an inner diameter of about 60 mm and a length of about 1000 mm are arranged in three upper and lower stages, and the ceramic filters arranged in these three upper and lower stages. A 400-mesh metal mesh having a total of two, one, two, and a total of five from the top is arranged at a substantially central position of the above-mentioned by inserting a cylindrical punching metal plate on the inner periphery thereof. An exhaust gas of about 380 ° C. discharged from one auxiliary engine of 800 kW was passed through this dust collector at a flow rate of about 64 m / s and about 3000 m 3 N / h. When the pressure on the dust collector outlet side was measured, it was 0.30 kPa, the increase in the differential pressure was not large, and the frequency required for cleaning was not high. In addition, the dust in the exhaust gas input to the dust collector was about 0.1 g / m 3 N. On the outlet side, the amount of dust was reduced to 0.033 g / m 3 N. If it can be reduced to the above, there is substantially no problem in discharging, and no problem occurs in the processing of the next process.
(Example 2)
Exhaust gas was allowed to flow in the same manner as in Example 1 except that five substantially cylindrical 800 mesh metal nets were attached as the porous body. As a result, when the pressure on the filter outlet side was measured, it was 0.28 kPa, and the amount of dust in the exhaust gas charged into the bag filter was 0.030 g / m 3 N.
(Comparative Example 1)
Similarly to Example 1, 216 filters were arranged in the dust collector, but exhaust gas was allowed to flow without arranging a porous body. As a result, the amount of dust was 0.032 g / m 3 N, but the pressure on the filter outlet side was as high as 0.53 kPa, and clogging was large, which was not preferable.
(Comparative Example 2)
Exhaust gas was allowed to flow in the same manner as in Example 1 except that 10 cylindrical 400-mesh wire meshes of Example 1 were installed in the dust collector. As a result, when the pressure on the filter outlet side was measured, it was 0.28 kPa, but the amount of dust was 0.060 g / m 3 N, which was not sufficient, and the wire mesh surface was darkened, especially with large particles. It was found that dust removal was not sufficient.
(Comparative Example 3)
Exhaust gas was allowed to flow in the same manner as in Example 1 except that five cylindrical 200-mesh wire meshes were installed in the dust collector. As a result, the static pressure on the outlet side of the filter was measured and found to be 0.16 kPa. However, the amount of dust was as high as 0.060 g / m 3 N, which was not sufficient, and the wire mesh surface was darkened. It was found that the removal of large soot was not sufficient.

以上の結果を表1にまとめる。   The results are summarized in Table 1.

Figure 2005230678
〔別実施の形態〕
(1)集塵装置内に配置されるセラミックフィルターの数は上記した例に限定されるものではなく、装着される船舶などの規模に応じて適宜変更可能である。また、セラミックフィルターのサイズ、仕様なども適宜選択できる。
(2)上記実施形態では、多孔体として略円筒状をした金網とパンチングメタルの組み合わせを用いた例を示したが、金網あるいはパンチングメタルのみから構成されていてもよく、更に、他の耐熱材料で400〜800メッシュ金網相当程度の通気性を有している多孔体を使用してもよい。
(3)上記実施形態では、吸収塔において吸収液を上部から散布し、排ガスを下部から充填材層を通過させて吸収塔上部から排出する、いわゆるスクラバー方式のものを例に挙げて説明したが、吸収塔の構成としてはこれに限定されるものではなく、同じ縦型でも、吸収液を充填した筒状吸収塔であって、下部から排ガスをバブリングさせる方式や、横方向に移動する横型方式、例えばミキシングパイプ方式のような構成であってもよい。
(4)上記実施形態SOx処理装置に接続して、排ガス中の他の有害成分を除去する吸収塔あるいは除去装置などを組み合わせて使用してもよい。
Figure 2005230678
[Another embodiment]
(1) The number of ceramic filters arranged in the dust collector is not limited to the above-described example, and can be appropriately changed according to the scale of a ship to be installed. In addition, the size and specifications of the ceramic filter can be appropriately selected.
(2) In the above embodiment, an example using a combination of a substantially cylindrical wire mesh and punching metal as a porous body has been shown, but it may be composed only of a wire mesh or punching metal, and other heat resistant materials. Alternatively, a porous body having air permeability equivalent to 400 to 800 mesh wire net may be used.
(3) In the above embodiment, the absorption liquid is sprayed from the upper part in the absorption tower and the exhaust gas is passed through the filler layer from the lower part and discharged from the upper part of the absorption tower. The structure of the absorption tower is not limited to this, and even in the same vertical type, it is a cylindrical absorption tower filled with an absorption liquid, and a method of bubbling exhaust gas from the lower part or a horizontal type that moves in the horizontal direction For example, a configuration such as a mixing pipe system may be used.
(4) An absorption tower or a removal device that removes other harmful components in the exhaust gas may be used in combination with the SOx treatment device of the above embodiment.

上記実施形態では、船舶の搭載する例を示したが、これに限定されるものではなく、各種車両などにも搭載して利用することができる。   In the said embodiment, although the example mounted in a ship was shown, it is not limited to this, It can mount and utilize for various vehicles.

本発明に係る排ガス処理装置の概略全体構成図Schematic overall configuration diagram of an exhaust gas treatment apparatus according to the present invention SOx処理装置の概略全体構成図Schematic overall configuration diagram of SOx processing equipment 図1のバグフィルターの排ガス取入口箇所を表す部分拡大構成図Partial enlarged configuration diagram showing the exhaust gas intake location of the bag filter of FIG. 多孔体の斜視図Perspective view of porous body

符号の説明Explanation of symbols

2 集塵装置
2a 排ガス取入口
2b,6 排ガス排出手段
10 セラミックフィルター
11 多孔体
13 吸収塔
17 蒸発手段
2 Dust collector 2a Exhaust gas inlet 2b, 6 Exhaust gas discharge means 10 Ceramic filter 11 Porous body 13 Absorption tower 17 Evaporation means

Claims (2)

排ガス取入口と、取り入れた排ガス中の有害物を除去する集塵装置と、有害物を除去された排ガスを排出する排出手段とを有していて、前記集塵装置が、多数のセラミックフィルターと、このセラミックフィルターの総数の1〜4%を占める多孔体とを、内部に配置している前処理装置と、この前処理装置の下流側に、前記排ガス中のSOxを吸収可能な、ポリエチレングリコールジメチルエーテルを主成分とする吸収液を前記排ガスに接触させる吸収塔と、この吸収塔から送られSOxを吸収した吸収液中のSOxを蒸発させる蒸発手段と、蒸発したSOxを酸化すると共に水と反応させてH2 SO4 として回収する手段とを有するSOx除去装置が接続されている排ガス処理装置。 An exhaust gas inlet, a dust collector for removing harmful substances in the taken-in exhaust gas, and a discharge means for discharging the exhaust gas from which harmful substances have been removed, wherein the dust collector includes a number of ceramic filters, A pretreatment device in which a porous body occupying 1 to 4% of the total number of ceramic filters is disposed, and polyethylene glycol capable of absorbing SOx in the exhaust gas downstream of the pretreatment device An absorption tower in which an absorption liquid mainly composed of dimethyl ether is brought into contact with the exhaust gas, an evaporation means for evaporating SOx in the absorption liquid sent from the absorption tower and absorbing SOx, and reacting with water while oxidizing the evaporated SOx An exhaust gas treatment apparatus to which an SOx removal apparatus having a means for recovering as H 2 SO 4 is connected. 請求項1の排ガス処理装置を用いて、排ガス中の煤塵を除去処理した後、前記排ガスを吸収塔に導入して、前記排ガス中のSOxを吸収可能な、ポリエチレングリコールジメチルエーテルを主成分とする吸収液に前記排ガスを接触させ、SOxを吸収した吸収液中のSOxを蒸発手段により蒸発させ、蒸発したSOxを酸化し、その後水と反応させてH2 SO4 として回収する工程を有する排ガス処理方法。 Absorption mainly composed of polyethylene glycol dimethyl ether capable of absorbing SOx in the exhaust gas by introducing the exhaust gas into an absorption tower after removing dust in the exhaust gas using the exhaust gas treatment device of claim 1 An exhaust gas treatment method comprising a step of bringing the exhaust gas into contact with a liquid, evaporating SOx in an absorbing solution that has absorbed SOx by an evaporation means, oxidizing the evaporated SOx, and subsequently reacting with water to recover H 2 SO 4 .
JP2004042548A 2004-02-19 2004-02-19 Exhaust gas treatment apparatus and exhaust gas treatment method Pending JP2005230678A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004042548A JP2005230678A (en) 2004-02-19 2004-02-19 Exhaust gas treatment apparatus and exhaust gas treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004042548A JP2005230678A (en) 2004-02-19 2004-02-19 Exhaust gas treatment apparatus and exhaust gas treatment method

Publications (1)

Publication Number Publication Date
JP2005230678A true JP2005230678A (en) 2005-09-02

Family

ID=35014179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004042548A Pending JP2005230678A (en) 2004-02-19 2004-02-19 Exhaust gas treatment apparatus and exhaust gas treatment method

Country Status (1)

Country Link
JP (1) JP2005230678A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150108423A (en) * 2013-01-28 2015-09-25 알파 라발 올보르 아/에스 METHOD AND CLEANING APPARATUS FOR REMOVAL OF SOx AND NOx FROM EXHAUST GAS
JP2015211959A (en) * 2014-03-28 2015-11-26 マン ディーゼル アンド ターボ フィリアル エーエフ マン ディーゼル アンド ターボ エスイー ティスクランド Internal combustion engine, and method for removing sulfur oxides from exhaust gas
KR20160067047A (en) * 2014-12-03 2016-06-13 만 트럭 운트 버스 악티엔게젤샤프트 Exhaust gas aftertreatment system for a vehicle operated by means of a combustion engine, in particular for a watercraft

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150108423A (en) * 2013-01-28 2015-09-25 알파 라발 올보르 아/에스 METHOD AND CLEANING APPARATUS FOR REMOVAL OF SOx AND NOx FROM EXHAUST GAS
JP2016511353A (en) * 2013-01-28 2016-04-14 アルファ ラヴァル オールボー アクチセルスカブ SOx and NOx removal method and purification apparatus from exhaust gas
KR102080574B1 (en) * 2013-01-28 2020-05-28 알파 라발 올보르 아/에스 METHOD AND CLEANING APPARATUS FOR REMOVAL OF SOx AND NOx FROM EXHAUST GAS
JP2015211959A (en) * 2014-03-28 2015-11-26 マン ディーゼル アンド ターボ フィリアル エーエフ マン ディーゼル アンド ターボ エスイー ティスクランド Internal combustion engine, and method for removing sulfur oxides from exhaust gas
KR20160067047A (en) * 2014-12-03 2016-06-13 만 트럭 운트 버스 악티엔게젤샤프트 Exhaust gas aftertreatment system for a vehicle operated by means of a combustion engine, in particular for a watercraft
KR102373610B1 (en) * 2014-12-03 2022-03-15 만 트럭 운트 버스 에스이 Exhaust gas aftertreatment system for a vehicle operated by means of a combustion engine, in particular for a watercraft

Similar Documents

Publication Publication Date Title
US7731781B2 (en) Method and apparatus for the enhanced removal of aerosols and vapor phase contaminants from a gas stream
KR101512459B1 (en) Air pollutants removal equipment with multifunction using high performance gas liquid contact module
JP2006289155A (en) Coating facility
CN106938173A (en) A kind of micro-nano bubble dyeing waste-water of plasma, VOCs coprocessing systems
CN206103392U (en) Humid tropical vapor recovery system and purifier
CN107297112A (en) The deodorization of biological sludge pyrolysis synthesis gas and purification processes system
KR100484563B1 (en) A scrubber apparatus for processing noxious gases and fine dusts simultaneously
CN107774063A (en) Renewable circulating liquid formula air cleaning unit and purification method
CN205461588U (en) Papermaking waste gas treatment system
CN205598839U (en) Exhaust gas purification system suitable for laboratory
JP2005147114A (en) Mechanism for composite exhaust gas cleaner
CN106422649A (en) Integrated laboratory mixed waste gas purification device and purification method
CN106705286A (en) Air purifier with automatic dust removal function
CN207871896U (en) A kind of intermediate pollution equipment for treating industrial waste gas
CN207056224U (en) Acid gas purifying processing system in a kind of biological sludge pyrolysis synthesis gas
CN206229138U (en) A kind of laboratory mix waste gas integrated purifying equipment
JP2005230678A (en) Exhaust gas treatment apparatus and exhaust gas treatment method
CN217220940U (en) Reaction system for treating rubber organic waste gas
JP2006175336A (en) Wet gas purifier
CN108607275A (en) A kind of adsorption tower with microbubble activated carbon
CN113856390A (en) Multiple treatment purifier for organic waste gas of chemical plant
CN210845883U (en) VOCs processing system suitable for methyl alcohol filling station
JP2908252B2 (en) Exhaust gas purification and discharge device
CN210740445U (en) Bubble film treatment equipment for waste incineration flue gas purification
CN202146894U (en) Workshop unorganized waste smoke collection and purification processing system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090911

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100119