JP2005230648A - Fuel cell cathode catalyst - Google Patents

Fuel cell cathode catalyst Download PDF

Info

Publication number
JP2005230648A
JP2005230648A JP2004041587A JP2004041587A JP2005230648A JP 2005230648 A JP2005230648 A JP 2005230648A JP 2004041587 A JP2004041587 A JP 2004041587A JP 2004041587 A JP2004041587 A JP 2004041587A JP 2005230648 A JP2005230648 A JP 2005230648A
Authority
JP
Japan
Prior art keywords
group
porphyrin
oxygen reduction
oxygen
atom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004041587A
Other languages
Japanese (ja)
Inventor
Yukiyoshi Ueno
幸義 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2004041587A priority Critical patent/JP2005230648A/en
Publication of JP2005230648A publication Critical patent/JP2005230648A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Catalysts (AREA)
  • Inert Electrodes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a porphyrin-based oxygen reduction catalyst with a high 4-electron reduction reactivity of oxygen. <P>SOLUTION: The oxygen reduction catalyst comprises a porphyrin complex represented by formula (I) and carried by a conductive carrier. In formula (I), each R is independently a hydrogen atom, a 1-6C alkyl group, a halogen atom, or an amino, hydroxyl, nitro, or cyano group, provided that adjacent R's may be bonded to each other to form a 2-6C methylene chain or an aromatic ring; each R7' is independently an electron-attractive group capable of forming, together with a porphyrin skeleton, a resonance structure; and M is a metal atom selected from the group consisting of Cu, Zn, Fe, Co, Ni, Ru, Pb, Rh, Pd, Pt, Mn, Sn, Au, Mg, Cd, Al, In, Ge, and Ti, provided that M may be bonded to a halogen atom, an oxygen atom, -OH, or =CO. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、酸素を高効率で還元できる燃料電池用カソード電極触媒に関する。   The present invention relates to a fuel cell cathode electrode catalyst capable of reducing oxygen with high efficiency.

燃料電池は、水素又は炭化水素等の燃料と酸素等の酸化剤とを供給し、その酸化還元反応によって得られる化学エネルギーを直接電気エネルギーに変換する発電システムである。燃料電池において酸素(O)は還元されると、1電子還元ではスーパーオキシドが、2電子還元では過酸化水素が、そして4電子還元では水が生成することが知られている。このような燃料電池は従来の発電システムと比較してクリーンなエネルギー源として注目されており、実用化に向けて幅広く研究されている。 A fuel cell is a power generation system that supplies a fuel such as hydrogen or hydrocarbon and an oxidant such as oxygen and directly converts chemical energy obtained by the oxidation-reduction reaction into electric energy. It is known that when oxygen (O 2 ) is reduced in a fuel cell, superoxide is produced by 1-electron reduction, hydrogen peroxide is produced by 2-electron reduction, and water is produced by 4-electron reduction. Such fuel cells are attracting attention as a clean energy source compared to conventional power generation systems, and have been extensively studied for practical use.

酸素還元触媒としては白金(Pt)やパラジウム(Pd)等を用いる貴金属系電極触媒が広く用いられている。このような貴金属系電極触媒は一般的に酸素還元活性は高いものの、経済性の点において依然として課題が残る。   As the oxygen reduction catalyst, a noble metal electrode catalyst using platinum (Pt), palladium (Pd) or the like is widely used. Such noble metal-based electrode catalysts generally have high oxygen reduction activity, but still have problems in terms of economy.

一方、フタロシアニンやポルフィリン等の大環状有機化合物が酸素還元能を有することも知られており、近年ではこのような大環状有機化合物を用いる酸素還元触媒の開発も進められている(例えば、特開昭57-208073号公報、特開昭57-208074号公報、特開平11-253811号公報、特開2000-157871号公報及び特開2003-109614号公報等)。   On the other hand, it is also known that macrocyclic organic compounds such as phthalocyanine and porphyrin have oxygen reducing ability, and in recent years, development of oxygen reduction catalysts using such macrocyclic organic compounds has been promoted (for example, JP JP-A-57-208073, JP-A-57-208074, JP-A-11-253811, JP-A-2000-157871, and JP-A-2003-109614).

しかしながら、従来の大環状有機化合物を用いる酸素還元触媒は、前記貴金属系電極触媒と比較すると酸素還元活性が低く、4電子還元反応よりも2電子還元反応のほうに進みやすい等の問題があり、実用レベルには程遠いものであった。
特開昭57-105969号公報 特開昭57-208073号公報 特開昭57-208074号公報 特開昭58-54565号公報 特開平11-253811号公報 特開2000-157871号公報 特開2003-109614号公報
However, the conventional oxygen reduction catalyst using a macrocyclic organic compound has a problem that the oxygen reduction activity is low compared to the noble metal-based electrode catalyst, and the two-electron reduction reaction proceeds more easily than the four-electron reduction reaction. It was far from practical level.
JP-A-57-105969 JP 57-208073 A JP 57-208074 A JP 58-54565 A Japanese Patent Laid-Open No. 11-253811 JP 2000-157871 A JP2003-109614

本発明は、酸素の4電子還元反応活性の高いポルフィリン系酸素還元触媒を提供することを目的とする。   An object of the present invention is to provide a porphyrin-based oxygen reduction catalyst having a high 4-electron reduction reaction activity of oxygen.

本発明者らは上記課題を解決するために鋭意検討した結果、ポルフィリン環のメソ位を電子吸引性で且つポルフィリン環と共鳴構造を形成し得る基で置換したポルフィリン錯体を用いることにより当該課題を解決できることを見出し、本発明を完成させるに至った。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have solved the problem by using a porphyrin complex in which the meso position of the porphyrin ring is substituted with a group capable of forming an electron-withdrawing and resonant structure with the porphyrin ring. The inventors have found that this can be solved, and have completed the present invention.

即ち、本発明は以下の発明を包含する。
(1)式(I):
That is, the present invention includes the following inventions.
(1) Formula (I):

Figure 2005230648
[式中、
各Rは、互いに独立して、水素原子、炭素数1〜6のアルキル基、ハロゲン原子、アミノ基、水酸基、ニトロ基若しくはシアノ基であるか、又は隣接するRどうしが一緒になって炭素数2〜6のメチレン鎖又は芳香環を形成し;
各R'は、互いに独立して、電子吸引性で且つポルフィリン骨格と共鳴構造を形成し得る基であり;
Mは、Cu、Zn、Fe、Co、Ni、Ru、Pb、Rh、Pd、Pt、Mn、Sn、Au、Mg、Cd、Al、In、Ge及びTiからなる群より選択される金属原子であって、ここで該Mはハロゲン原子、酸素原子、−OH又は=COと結合していてもよい。]
で表されるポルフィリン系錯体を導電性担体に担持した酸素還元触媒。
(2)各R'がニトロ基、−COOR又は−C(=O)NR(ここで、R、R及びRは、互いに独立して、水素又は炭素数1〜6のアルキル基を示す)である前記(1)記載の酸素還元触媒。
(3)各Rが水素原子である前記(1)又は(2)記載の酸素還元触媒。
(4)前記(1)〜(3)のいずれか1項記載の酸素還元触媒を用いる燃料電池カソード電極触媒。
Figure 2005230648
[Where:
Each R is independently of each other a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a halogen atom, an amino group, a hydroxyl group, a nitro group, or a cyano group, or adjacent R's together Form 2-6 methylene chains or aromatic rings;
Each R ′ is independently of each other an electron-withdrawing group and can form a resonance structure with the porphyrin skeleton;
M is a metal atom selected from the group consisting of Cu, Zn, Fe, Co, Ni, Ru, Pb, Rh, Pd, Pt, Mn, Sn, Au, Mg, Cd, Al, In, Ge, and Ti. Here, the M may be bonded to a halogen atom, an oxygen atom, —OH or ═CO. ]
The oxygen reduction catalyst which carry | supported the porphyrin type complex represented by these on the electroconductive support | carrier.
(2) Each R ′ is a nitro group, —COOR 1 or —C (═O) NR 2 R 3 (wherein R 1 , R 2 and R 3 are independently of each other hydrogen or C 1-6. The oxygen reduction catalyst according to (1) above.
(3) The oxygen reduction catalyst according to (1) or (2), wherein each R is a hydrogen atom.
(4) A fuel cell cathode electrode catalyst using the oxygen reduction catalyst according to any one of (1) to (3).

本発明により、従来のポルフィリン錯体と比較して顕著に酸素還元活性が高いポルフィリン系酸素還元触媒が提供される。本発明の酸素還元触媒は燃料電池のカソード電極触媒等に有用である。   The present invention provides a porphyrin-based oxygen reduction catalyst having significantly higher oxygen reduction activity than conventional porphyrin complexes. The oxygen reduction catalyst of the present invention is useful as a cathode electrode catalyst for fuel cells.

以下に本発明について詳細に説明する。
本発明の酸素還元触媒の材料としてはメソ位が電子吸引性で且つポルフィリン骨格と共鳴構造を形成し得る基により置換されたポルフィリン錯体を用いる。具体的には、下記式(I):
The present invention is described in detail below.
As a material for the oxygen reduction catalyst of the present invention, a porphyrin complex in which the meso position is substituted with a group that is electron withdrawing and can form a resonance structure with the porphyrin skeleton is used. Specifically, the following formula (I):

Figure 2005230648
[式中、
各Rは、互いに独立して、水素原子、炭素数1〜6のアルキル基、ハロゲン原子、アミノ基、水酸基、ニトロ基若しくはシアノ基であるか、又は隣接するRどうしが一緒になって炭素数2〜6のメチレン鎖又は芳香環を形成し;
各R'は、互いに独立して、電子吸引性で且つポルフィリン骨格と共鳴構造を形成し得る基であり;
Mは、Cu、Zn、Fe、Co、Ni、Ru、Pb、Rh、Pd、Pt、Mn、Sn、Au、Mg、Cd、Al、In、Ge及びTiからなる群より選択される金属原子であって、ここで該Mはハロゲン原子、酸素原子、−OH又は=COと結合していてもよい。]
で表されるポルフィリン錯体を用いる。
Figure 2005230648
[Where:
Each R is independently of each other a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a halogen atom, an amino group, a hydroxyl group, a nitro group, or a cyano group, or adjacent R's together Form 2-6 methylene chains or aromatic rings;
Each R ′ is independently of each other an electron-withdrawing group and can form a resonance structure with the porphyrin skeleton;
M is a metal atom selected from the group consisting of Cu, Zn, Fe, Co, Ni, Ru, Pb, Rh, Pd, Pt, Mn, Sn, Au, Mg, Cd, Al, In, Ge, and Ti. Here, the M may be bonded to a halogen atom, an oxygen atom, —OH or ═CO. ]
The porphyrin complex represented by these is used.

本発明で用いられるポルフィリン錯体は、ポルフィリン骨格のメソ位が電子吸引性で且つポルフィリン骨格と共鳴構造を形成し得る基R'で置換されていることを特徴とする。ここで本明細書でいう「共鳴構造」とは電子が非局在化した状態のことを言う。このような電子吸引性で且つポルフィリン骨格と共鳴構造を形成し得る基としては、例えば、ニトロ基、−COOR又は−C(=O)NR(ここで、R、R及びRは、互いに独立して、水素又は炭素数1〜6(好ましくは、炭素数1〜3)のアルキル基を示す)等が挙げられる。前記炭素数1〜6のアルキル基としては、直鎖又は分枝鎖のいずれのものであってもよく、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、s−ブチル基、t−ブチル基、イソブチル基、n−ペンチル基、s−ペンチル基、イソペンチル基、ネオペンチル基等を例示することができる。 The porphyrin complex used in the present invention is characterized in that the meso position of the porphyrin skeleton is substituted with a group R ′ that is electron withdrawing and can form a resonance structure with the porphyrin skeleton. Here, the “resonance structure” in this specification means a state where electrons are delocalized. Examples of such an electron-withdrawing group that can form a resonance structure with the porphyrin skeleton include, for example, a nitro group, —COOR 1 or —C (═O) NR 2 R 3 (wherein R 1 , R 2 and R 3 may be independently of each other hydrogen or an alkyl group having 1 to 6 carbon atoms (preferably an alkyl group having 1 to 3 carbon atoms). The alkyl group having 1 to 6 carbon atoms may be either linear or branched, and examples thereof include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, s Examples include -butyl group, t-butyl group, isobutyl group, n-pentyl group, s-pentyl group, isopentyl group, neopentyl group and the like.

従来、カソード電極触媒に用いられていたポルフィリン錯体はそのメソ位の官能基がフェニル基等の嵩高い基であったため分子全体の形が非平面状となったり屈曲した構造をしていた。このため、従来のポルフィリン錯体は導電性担体表面と密に接触することができず、その結果、ポルフィリン錯体と導電性担体との間での電子の受け渡しの効率が悪いという問題があった(図1(a))。   Conventionally, porphyrin complexes used for cathode electrode catalysts have a structure in which the shape of the entire molecule is non-planar or bent because the functional group at the meso position is a bulky group such as a phenyl group. For this reason, the conventional porphyrin complex cannot be in intimate contact with the surface of the conductive carrier, and as a result, there is a problem that the efficiency of electron transfer between the porphyrin complex and the conductive carrier is poor (see FIG. 1 (a)).

これに対して本発明では、上記のような官能基R'、例えばニトロ基がポルフィリン骨格のメソ位に結合することにより、ポルフィリン環上の電子はR'基に引き寄せられ、且つニトロ基が共鳴構造をとることから、ポルフィリン環とニトロ基との間の結合は二重結合性を帯びるため、式(I)で表されるポルフィリン錯体は幾何学的に平面構造をとなる。その結果、本発明で用いられるポルフィリン錯体は導電性担体表面と密に接触することができ、十分な電子導電性を確保することが可能となる(図1(b))。また、本発明で用いられるポルフィリン錯体は平面構造をとることにより、その錯体どうしが重なり合って二量体を形成しやすくなり、そのため従来のものと比較して酸素の4電子還元反応が進みやすくなる。さらには、R'基は電子吸引性基であることからポルフィリン環及び中心金属での電子密度が低下し、その結果酸素イオンの乖離が促進される。これらの効果により本発明のカソード電極触媒では従来のポルフィリン系触媒と比較して酸素還元電流が顕著に増加する。   On the other hand, in the present invention, the functional group R ′ as described above, for example, the nitro group is bonded to the meso position of the porphyrin skeleton, whereby the electrons on the porphyrin ring are attracted to the R ′ group, and the nitro group is resonant. Since it takes a structure, the bond between the porphyrin ring and the nitro group is double-bonded, so that the porphyrin complex represented by the formula (I) has a planar structure geometrically. As a result, the porphyrin complex used in the present invention can be in intimate contact with the surface of the conductive carrier, and sufficient electronic conductivity can be ensured (FIG. 1 (b)). In addition, the porphyrin complex used in the present invention has a planar structure, so that the complexes are easily overlapped to form a dimer, and therefore, the 4-electron reduction reaction of oxygen is more likely to proceed as compared with the conventional one. . Furthermore, since the R ′ group is an electron-withdrawing group, the electron density at the porphyrin ring and the central metal decreases, and as a result, the dissociation of oxygen ions is promoted. These effects significantly increase the oxygen reduction current in the cathode electrode catalyst of the present invention as compared with the conventional porphyrin-based catalyst.

上述のように本発明で用いられる式(I)のポルフィリン錯体はその形状が平面であることが好ましいことから、置換基Rとしては嵩高くない基か、ポルフィリン環とほぼ(実質的に)同一平面を構成するような基か、又は分子量の小さな基が好ましい。そのようなRとしては、例えば、水素原子、炭素数1〜6のアルキル基、ハロゲン原子、アミノ基、水酸基、ニトロ基又はシアノ基等が挙げられる。或は、隣接するRどうしが一緒になって炭素数2〜6のメチレン鎖又は芳香環を形成してもよい。前記炭素数1〜6のアルキル基としては、直鎖又は分枝鎖のいずれのものであってもよく、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、s−ブチル基、t−ブチル基、イソブチル基、n−ペンチル基、s−ペンチル基、イソペンチル基、ネオペンチル基等を例示することができる。前記芳香環としては、例えば、ベンゼン環又はナフタレン環等の縮合芳香環が挙げられる。   As described above, since the porphyrin complex of the formula (I) used in the present invention is preferably flat, the substituent R is not a bulky group or substantially (substantially) identical to the porphyrin ring. A group constituting a plane or a group having a small molecular weight is preferable. Examples of such R include a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a halogen atom, an amino group, a hydroxyl group, a nitro group, and a cyano group. Alternatively, adjacent Rs may be joined together to form a methylene chain or aromatic ring having 2 to 6 carbon atoms. The alkyl group having 1 to 6 carbon atoms may be either linear or branched, and examples thereof include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, s Examples include -butyl group, t-butyl group, isobutyl group, n-pentyl group, s-pentyl group, isopentyl group, neopentyl group and the like. Examples of the aromatic ring include condensed aromatic rings such as a benzene ring or a naphthalene ring.

本発明で用いられるポルフィリン錯体は、上記のような基を有するポルフィリン骨格と金属原子MとがN4−キレート構造を形成したものである。前記中心金属原子Mとしては、例えば、Cu、Zn、Fe、Co、Ni、Ru、Pb、Rh、Pd、Pt、Mn、Sn、Au、Mg、Cd、Al、In、Ge又はTiが挙げられる。さらに、これらの金属原子Mには、ハロゲン原子、酸素原子、水酸基、又はCO等がさらに配位していてもよい。   The porphyrin complex used in the present invention is one in which a porphyrin skeleton having the above group and a metal atom M form an N 4 -chelate structure. Examples of the central metal atom M include Cu, Zn, Fe, Co, Ni, Ru, Pb, Rh, Pd, Pt, Mn, Sn, Au, Mg, Cd, Al, In, Ge, and Ti. . Further, a halogen atom, an oxygen atom, a hydroxyl group, CO, or the like may be further coordinated with these metal atoms M.

次に、本発明で用いられるポルフィリン錯体の製造方法について説明する。
メソ位が置換基R’で置換されたポルフィリン環は、ピロール化合物とアルデヒド化合物とを用いて通常の方法により製造できる。例えば、R’がニトロ基で、Rが水素原子であるポルフィリン環は以下のようにして製造できる。
Next, the manufacturing method of the porphyrin complex used by this invention is demonstrated.
The porphyrin ring in which the meso position is substituted with the substituent R ′ can be produced by a usual method using a pyrrole compound and an aldehyde compound. For example, a porphyrin ring in which R ′ is a nitro group and R is a hydrogen atom can be produced as follows.

Figure 2005230648
(式中、破線はニトロ基とポルフィリン環との間の結合が二重結合性を帯びてポルフィリン環内だけでなく官能基上まで電子が非局在化していることを示す。)
Figure 2005230648
(In the formula, the broken line indicates that the bond between the nitro group and the porphyrin ring is double-bonded and the electrons are delocalized not only within the porphyrin ring but also onto the functional group.)

まず、反応容器に溶媒及び酸を加えて加温(例えば、50℃〜100℃程度)する。そこにピロールとNO2-CHOとを添加して攪拌する。攪拌時間は反応温度にもよるが、通常1〜5時間程度である。反応終了後、反応溶液を水酸化ナトリウム水溶液等のアルカリ性水溶液、次いで水で洗浄する。有機層を分離して硫酸マグネシウム等を用いて乾燥し、溶媒を留去する。次いで残渣を通常の精製手段、例えばクロマトグラフィー又は再結晶等により精製して、メソ位にニトロ基が置換したポルフィリンを得る。 First, a solvent and an acid are added to the reaction vessel and heated (for example, about 50 ° C. to 100 ° C.). There, pyrrole and NO 2 -CHO are added and stirred. Although the stirring time depends on the reaction temperature, it is usually about 1 to 5 hours. After completion of the reaction, the reaction solution is washed with an alkaline aqueous solution such as an aqueous sodium hydroxide solution and then with water. The organic layer is separated and dried using magnesium sulfate and the solvent is distilled off. The residue is then purified by conventional purification means such as chromatography or recrystallization to obtain porphyrin having a nitro group substituted at the meso position.

次に、上記のようにして得た置換ポルフィリンと金属原子とでキレートを形成させる。キレートを形成させるには、所望の金属原子の塩又は錯体等と置換ポルフィリンとを混合することにより容易に形成される。例えば、コバルトポルフィリン錯体を得るには、DMF等の溶媒に上記のようにして合成した置換ポルフィリンを添加して十分溶解させた後、これに例えば酢酸コバルト・四水和物を添加してアルゴン雰囲気下で加熱還流し、反応混合物を通常の方法により精製することにより目的とするポルフィリン錯体が得られる。   Next, a chelate is formed by the substituted porphyrin obtained as described above and a metal atom. In order to form a chelate, it is easily formed by mixing a salt or complex of a desired metal atom and a substituted porphyrin. For example, in order to obtain a cobalt porphyrin complex, the substituted porphyrin synthesized as described above is added and sufficiently dissolved in a solvent such as DMF, and then, for example, cobalt acetate tetrahydrate is added thereto to add an argon atmosphere. The target porphyrin complex is obtained by heating under reflux and purifying the reaction mixture by a conventional method.

本発明の酸素還元触媒は上記のようなポルフィリン錯体(I)を導電性担体に通常の方法により担持することにより形成される。例えば、ポルフィリン錯体(I)を含むスラリーやペーストを調製し、それに導電性担体を浸漬するか又は前記スラリーやペーストを担体に塗布し、それを乾燥することにより本発明の酸素還元触媒を製造することができる。   The oxygen reduction catalyst of the present invention is formed by supporting the porphyrin complex (I) as described above on a conductive carrier by a usual method. For example, the oxygen reduction catalyst of the present invention is produced by preparing a slurry or paste containing the porphyrin complex (I) and immersing the conductive carrier in the slurry or paste, or applying the slurry or paste to the carrier and drying it. be able to.

導電性担体としては特に限定されるものではなく、例えば、導電性が良好で安価であるという理由から、カーボンブラック、黒鉛、炭素繊維、カーボンナノチューブ、カーボンナノファイバー等の炭素材料を用いればよい。また、導電性担体は、単位重量当たりの表面積が大きいという理由から粉末状であることが望ましい。この場合、導電性担体の粒子の粒子径は0.03μm以上0.1μm以下とすることが望ましい。さらに、導電性担体の粒子は一次粒子が連結したストラクチャー構造を形成していることが望ましい。   The conductive carrier is not particularly limited. For example, a carbon material such as carbon black, graphite, carbon fiber, carbon nanotube, or carbon nanofiber may be used because it has good conductivity and is inexpensive. The conductive carrier is preferably in the form of a powder because it has a large surface area per unit weight. In this case, it is desirable that the particle size of the conductive carrier particles be 0.03 μm or more and 0.1 μm or less. Furthermore, it is desirable that the conductive carrier particles have a structure in which primary particles are connected.

導電性担体に対するポルフィリン錯体の中心金属原子Mの担持量は通常1〜10重量%であるが、より好ましくは4〜7重量%である。   The supported amount of the central metal atom M of the porphyrin complex with respect to the conductive support is usually 1 to 10% by weight, more preferably 4 to 7% by weight.

また、本発明の酸素還元触媒にはポルフィリン錯体(I)の他に、白金やパラジウム等の貴金属を用いる他の酸素4電子還元触媒も一緒に混合して、担体に担持してもよい。   In addition to the porphyrin complex (I), the oxygen reduction catalyst of the present invention may be mixed with another oxygen 4-electron reduction catalyst using a noble metal such as platinum or palladium and supported on a carrier.

本発明の酸素還元触媒は、固体高分子型燃料電池等の燃料電池カソード電極触媒として有用である。   The oxygen reduction catalyst of the present invention is useful as a fuel cell cathode electrode catalyst for a polymer electrolyte fuel cell or the like.

以下に、本発明を実施例によりさらに具体的に示すが、本発明の範囲は本実施例により何ら限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples. However, the scope of the present invention is not limited to the examples.

実施例1:5,10,15,20-テトラニトロポルフィリンの合成Example 1: Synthesis of 5,10,15,20-tetranitroporphyrin

Figure 2005230648
Figure 2005230648

ピロール(610mg、10mmol)とニトロアルデヒド(750mg、10mmol)との混合物に酸触媒としてBF・OEt(470mg、3.3mmol)を加えて、室温で2時間攪拌して反応させ、常法により精製して脱水縮合生成物を得た(反応1)。次いで、この脱水縮合生成物の分子内環下反応を行なった(反応2)。この環化反応では分子どうしが縮合してポリマー化するのを避けるために、高希釈条件下(1000mlのクロロホルム又はジクロロメタンに溶解して0.01M溶液とした)で環化反応を行った。次に、環化生成物と酸化剤p−クロラニル(1910mg、7.7mmol)とを反応させ、粗生成物を常法により精製して標題の化合物を得た。 BF 3 · OEt 2 (470 mg, 3.3 mmol) was added as an acid catalyst to a mixture of pyrrole (610 mg, 10 mmol) and nitraldehyde (750 mg, 10 mmol), and the mixture was reacted at room temperature for 2 hours with stirring. Thus, a dehydration condensation product was obtained (reaction 1). Subsequently, an intramolecular ring-reaction of this dehydration condensation product was performed (Reaction 2). In this cyclization reaction, the cyclization reaction was carried out under high dilution conditions (dissolved in 1000 ml of chloroform or dichloromethane to make a 0.01 M solution) in order to avoid condensation of molecules and polymerization. The cyclized product was then reacted with the oxidizing agent p-chloranil (1910 mg, 7.7 mmol) and the crude product was purified by conventional methods to give the title compound.

実施例2:ポルフィリン錯体の合成Example 2: Synthesis of porphyrin complex

Figure 2005230648
Figure 2005230648

実施例1で得たテトラニトロポルフィリンからそのコバルト錯体を合成した。
実施例1で得られたテトラニトロポルフィリンをジメチルホルムアミド(DMF)に溶解し、この溶液に5等量の酢酸コバルトを加えて3時間還流した。室温になるまで放冷し、脱イオン水/エタノールを加えてテトラニトロポルフィリン錯体を析出させた。吸引ろ過して、ろ過物を脱イオン水/エタノールで洗浄し、真空乾燥して標題のテトラニトロポルフィリンのコバルト錯体を得た。
The cobalt complex was synthesized from the tetranitroporphyrin obtained in Example 1.
The tetranitroporphyrin obtained in Example 1 was dissolved in dimethylformamide (DMF), 5 equivalents of cobalt acetate was added to this solution, and the mixture was refluxed for 3 hours. The mixture was allowed to cool to room temperature, and deionized water / ethanol was added to precipitate a tetranitroporphyrin complex. Suction filtered, the filtrate was washed with deionized water / ethanol and dried in vacuo to give the title tetranitroporphyrin cobalt complex.

実施例3:ポルフィリン錯体の導電性担体への担持(ポルフィリン錯体触媒の製造)
アセトン又はクロロホルムに導電性担体(カーボン)を添加し、攪拌して分散させた。これに、実施例2で得られたテトラニトロポルフィリンのコバルト錯体を加えて2時間攪拌した。攪拌終了後、溶液を減圧留去して75℃で乾燥させ、これを不活性ガス(ヘリウム、アルゴン等)雰囲気下で熱処理してポルフィリン錯体を担持したカーボンを得た。
Example 3: Support of porphyrin complex on conductive carrier (production of porphyrin complex catalyst)
A conductive carrier (carbon) was added to acetone or chloroform and dispersed by stirring. To this, the cobalt complex of tetranitroporphyrin obtained in Example 2 was added and stirred for 2 hours. After completion of the stirring, the solution was distilled off under reduced pressure and dried at 75 ° C., and this was heat-treated in an inert gas (helium, argon, etc.) atmosphere to obtain carbon carrying a porphyrin complex.

実施例4:電気化学的測定
実施例3で得たポルフィリン錯体触媒について電気化学的測定を行った。また、比較例のポルフィリン錯体としてメソ位がメチル基であるテトラメチルポルフィリン錯体を用いた。
Example 4: Electrochemical measurement The porphyrin complex catalyst obtained in Example 3 was electrochemically measured. Moreover, the tetramethyl porphyrin complex whose meso position is a methyl group was used as a porphyrin complex of a comparative example.

GC電極(作用極)の作製
ポルフィリン錯体触媒中のカーボンとNafion(登録商標)との重量比が10:1となるようにNafion溶液を添加した。次いで、ポルフィリン錯体触媒1重量部にエタノール40重量部を添加してインクを作製した。このインクをマイクロシリンジに取り、電極上に薄く塗布し、乾燥させてGC電極を得た。
Preparation of GC electrode (working electrode) A Nafion solution was added so that the weight ratio of carbon to Nafion (registered trademark) in the porphyrin complex catalyst was 10: 1. Next, 40 parts by weight of ethanol was added to 1 part by weight of the porphyrin complex catalyst to prepare an ink. The ink was taken in a microsyringe, thinly applied onto the electrode, and dried to obtain a GC electrode.

回転ディスク電極(RDE)測定による酸素還元反応の酸素還元電流値の測定
電極を回転させることによって、その時のディスク電流により酸素還元反応の電流値を評価した。測定条件は以下のとおりである。
使用装置:セイコーEG&G
セル容器:パイレックス(登録商標)ガラス
セル溶液:0.1N HClO
作用電極:GC電極
参照電極:Ag/AgCl(sat. KCl)
対 極 :白金電極
掃引速度:15mV/s
掃引範囲:−150〜1000mV
電極回転速度:400,625,900,1225,1600,2025rpm
測定温度:27℃
By rotating the measuring electrode of the oxygen reduction current value of the oxygen reduction reaction by rotating disk electrode (RDE) measurement, the current value of the oxygen reduction reaction was evaluated by the disk current at that time. The measurement conditions are as follows.
Equipment used: Seiko EG & G
Cell container: Pyrex (registered trademark) glass cell solution: 0.1 N HClO 4
Working electrode: GC electrode Reference electrode: Ag / AgCl (sat. KCl)
Counter electrode: Platinum electrode sweep speed: 15 mV / s
Sweep range: -150 to 1000 mV
Electrode rotation speed: 400, 625, 900, 1225, 1600, 2025 rpm
Measurement temperature: 27 ° C

上記のRDE測定により求められたポルフィリン錯体修飾電極についてのピーク電位及び反応電子数の結果を以下の表に示す。   The results of the peak potential and the number of reaction electrons for the porphyrin complex-modified electrode determined by the above RDE measurement are shown in the following table.

Figure 2005230648
Figure 2005230648

上記の結果に示されるとおり、本発明の酸素還元触媒を用いた場合の酸素還元電流は比較例のそれと比べると明らかに増加し、本発明の酸素還元触媒は高い導電性及び酸素還元活性を有することが示された。   As shown in the above results, the oxygen reduction current when using the oxygen reduction catalyst of the present invention is clearly increased compared to that of the comparative example, and the oxygen reduction catalyst of the present invention has high conductivity and oxygen reduction activity. It was shown that.

本発明で用いられるポルフィリン錯体は高い導電性及び酸素還元活性を有し、例えば、燃料電池カソード電極触媒等として有用である。   The porphyrin complex used in the present invention has high conductivity and oxygen reduction activity, and is useful, for example, as a fuel cell cathode electrode catalyst.

ポルフィリン錯体触媒と導電性担体との密着性について示した図である。(a)は嵩高い官能基を有するポルフィリン錯体の場合を、(b)は本発明で使用するポルフィリン錯体の場合を示す。It is the figure shown about the adhesiveness of a porphyrin complex catalyst and an electroconductive support | carrier. (A) shows the case of a porphyrin complex having a bulky functional group, and (b) shows the case of a porphyrin complex used in the present invention. 実施例4のRDEの測定結果(酸素還元電流値)を示す図である。It is a figure which shows the measurement result (oxygen reduction current value) of RDE of Example 4.

Claims (4)

式(I):
Figure 2005230648
[式中、
各Rは、互いに独立して、水素原子、炭素数1〜6のアルキル基、ハロゲン原子、アミノ基、水酸基、ニトロ基若しくはシアノ基であるか、又は隣接するRどうしが一緒になって炭素数2〜6のメチレン鎖又は芳香環を形成し;
各R'は、互いに独立して、電子吸引性で且つポルフィリン骨格と共鳴構造を形成し得る基であり;
Mは、Cu、Zn、Fe、Co、Ni、Ru、Pb、Rh、Pd、Pt、Mn、Sn、Au、Mg、Cd、Al、In、Ge及びTiからなる群より選択される金属原子であって、ここで該Mはハロゲン原子、酸素原子、−OH又は=COと結合していてもよい。]
で表されるポルフィリン系錯体を導電性担体に担持した酸素還元触媒。
Formula (I):
Figure 2005230648
[Where:
Each R is independently of each other a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a halogen atom, an amino group, a hydroxyl group, a nitro group, or a cyano group, or adjacent R's together Form 2-6 methylene chains or aromatic rings;
Each R ′ is independently of each other an electron-withdrawing group and can form a resonance structure with the porphyrin skeleton;
M is a metal atom selected from the group consisting of Cu, Zn, Fe, Co, Ni, Ru, Pb, Rh, Pd, Pt, Mn, Sn, Au, Mg, Cd, Al, In, Ge, and Ti. Here, the M may be bonded to a halogen atom, an oxygen atom, —OH or ═CO. ]
The oxygen reduction catalyst which carry | supported the porphyrin type complex represented by these on the electroconductive support | carrier.
各R'がニトロ基、−COOR又は−C(=O)NR(ここで、R、R及びRは、互いに独立して、水素又は炭素数1〜6のアルキル基を示す)である請求項1記載の酸素還元触媒。 Each R ′ is a nitro group, —COOR 1 or —C (═O) NR 2 R 3 (wherein R 1 , R 2 and R 3 are each independently hydrogen or an alkyl group having 1 to 6 carbon atoms) The oxygen reduction catalyst according to claim 1, wherein 各Rが水素原子である請求項1又は2記載の酸素還元触媒。   The oxygen reduction catalyst according to claim 1 or 2, wherein each R is a hydrogen atom. 請求項1〜3のいずれか1項記載の酸素還元触媒を用いる燃料電池カソード電極触媒。   A fuel cell cathode electrode catalyst using the oxygen reduction catalyst according to any one of claims 1 to 3.
JP2004041587A 2004-02-18 2004-02-18 Fuel cell cathode catalyst Withdrawn JP2005230648A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004041587A JP2005230648A (en) 2004-02-18 2004-02-18 Fuel cell cathode catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004041587A JP2005230648A (en) 2004-02-18 2004-02-18 Fuel cell cathode catalyst

Publications (1)

Publication Number Publication Date
JP2005230648A true JP2005230648A (en) 2005-09-02

Family

ID=35014150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004041587A Withdrawn JP2005230648A (en) 2004-02-18 2004-02-18 Fuel cell cathode catalyst

Country Status (1)

Country Link
JP (1) JP2005230648A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006261086A (en) * 2005-02-21 2006-09-28 National Institute Of Advanced Industrial & Technology Catalyst for electrochemical oxidation of carbon monoxide
JP2008036539A (en) * 2006-08-07 2008-02-21 National Institute Of Advanced Industrial & Technology Catalyst for electrochemically oxidizing carbon monoxide
JP2008161754A (en) * 2006-12-27 2008-07-17 Osaka Univ Catalyst containing macrocyclic cobalt complex, its manufacturing method and its use
JP2008258151A (en) * 2007-03-09 2008-10-23 Sumitomo Chemical Co Ltd Electrode catalyst for fuel cell
JP2009082780A (en) * 2007-09-28 2009-04-23 National Institute Of Advanced Industrial & Technology Catalyst for chemical oxidization of carbon monoxide
WO2011031539A2 (en) * 2009-08-27 2011-03-17 Swift Enterprises, Ltd. Electrocatalyst composition and fuel cell containing same
JP2011528482A (en) * 2008-07-29 2011-11-17 トヨタ自動車株式会社 Method for preparing fuel cell electrode catalyst and solid polymer fuel cell
CN102290584A (en) * 2007-03-09 2011-12-21 独立行政法人产业技术综合研究所 Electrode catalyst for fuel cell
US8906562B2 (en) 2011-12-20 2014-12-09 Samsung Electronics Co., Ltd. Polymeric compound, oxygen permeable membrane, oxygen permeable composite, electrochemical device
CN110676473A (en) * 2019-10-10 2020-01-10 陕西师范大学 Preparation method of multi-stage porous Rh nanosheet

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4568881B2 (en) * 2005-02-21 2010-10-27 独立行政法人産業技術総合研究所 Catalyst for electrochemical oxidation of carbon monoxide
JP2006261086A (en) * 2005-02-21 2006-09-28 National Institute Of Advanced Industrial & Technology Catalyst for electrochemical oxidation of carbon monoxide
JP2008036539A (en) * 2006-08-07 2008-02-21 National Institute Of Advanced Industrial & Technology Catalyst for electrochemically oxidizing carbon monoxide
JP4613350B2 (en) * 2006-08-07 2011-01-19 独立行政法人産業技術総合研究所 Catalyst for electrochemical oxidation of carbon monoxide
JP2008161754A (en) * 2006-12-27 2008-07-17 Osaka Univ Catalyst containing macrocyclic cobalt complex, its manufacturing method and its use
JP2008258151A (en) * 2007-03-09 2008-10-23 Sumitomo Chemical Co Ltd Electrode catalyst for fuel cell
CN102290584A (en) * 2007-03-09 2011-12-21 独立行政法人产业技术综合研究所 Electrode catalyst for fuel cell
JP2009082780A (en) * 2007-09-28 2009-04-23 National Institute Of Advanced Industrial & Technology Catalyst for chemical oxidization of carbon monoxide
JP2011528482A (en) * 2008-07-29 2011-11-17 トヨタ自動車株式会社 Method for preparing fuel cell electrode catalyst and solid polymer fuel cell
US8455384B2 (en) 2008-07-29 2013-06-04 Toyota Jidosha Kabushiki Kaisha Method for preparing fuel cell electrode catalyst and solid polymer fuel cell
WO2011031539A2 (en) * 2009-08-27 2011-03-17 Swift Enterprises, Ltd. Electrocatalyst composition and fuel cell containing same
WO2011031539A3 (en) * 2009-08-27 2011-07-21 Swift Enterprises, Ltd. Electrocatalyst composition and fuel cell containing same
US8906562B2 (en) 2011-12-20 2014-12-09 Samsung Electronics Co., Ltd. Polymeric compound, oxygen permeable membrane, oxygen permeable composite, electrochemical device
CN110676473A (en) * 2019-10-10 2020-01-10 陕西师范大学 Preparation method of multi-stage porous Rh nanosheet
CN110676473B (en) * 2019-10-10 2022-04-15 陕西师范大学 Preparation method of multi-stage porous Rh nanosheet

Similar Documents

Publication Publication Date Title
JP2006314871A (en) Porphyrin based electrode catalyst
JP3996629B2 (en) Oxygen reduction electrode
WO2017073467A1 (en) Magnesium air battery electrode, magnesium air battery, aromatic compound, and metal complex
TW201038573A (en) Cyclic compound
JP3632087B2 (en) Electrode catalyst for fuel electrode of low temperature fuel cell
JP6967761B2 (en) Electrochemical oxygen reduction catalyst
JP2007237092A (en) Method for preparing catalyst material
JP2005230648A (en) Fuel cell cathode catalyst
JP2008258150A (en) Electrode catalyst for fuel cell
Sannegowda Phthalocyanine based metal-organic frame work with carbon nanoparticles as hybrid catalyst for oxygen reduction reaction
JP4613350B2 (en) Catalyst for electrochemical oxidation of carbon monoxide
JP5190965B2 (en) Catalyst for electrochemical oxidation of carbon monoxide
JP5831053B2 (en) Metal complexes, modified products thereof, and compounds useful therefor
JP6607487B2 (en) Catalyst for electrochemical oxygen reduction
JP5158792B2 (en) Catalyst for electrochemical oxidation of carbon monoxide
JP2006247523A (en) Oxygen-reducible catalyst
JP2013016474A (en) Positive electrode catalyst for air secondary battery and air secondary battery
JP2008218041A (en) Catalyst and its manufacturing method
JP2005205393A (en) Porphyrin-based electrode catalyst
KR20230046315A (en) A metal complex or an adduct thereof, a catalyst containing the metal complex or an adduct thereof and a method for producing the same, a liquid composition or electrode containing the catalyst, and an air cell or fuel cell having the electrode
JP2007173173A (en) Cathode for fuel cell and manufacturing method of the same
JP2017084758A (en) Magnesium air battery electrode and magnesium air battery
JP2011076828A (en) Catalyst fine particle for fuel cell and catalyst for fuel cell
JP5828475B2 (en) Catalyst for electrochemical oxidation of hydrazine compounds
JP6666186B2 (en) Electrode for oxygen reduction, air battery and metal complex

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061020

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20081224