JP2005228953A - Photovoltaic element, formation method thereof, and manufacturing device - Google Patents

Photovoltaic element, formation method thereof, and manufacturing device Download PDF

Info

Publication number
JP2005228953A
JP2005228953A JP2004036809A JP2004036809A JP2005228953A JP 2005228953 A JP2005228953 A JP 2005228953A JP 2004036809 A JP2004036809 A JP 2004036809A JP 2004036809 A JP2004036809 A JP 2004036809A JP 2005228953 A JP2005228953 A JP 2005228953A
Authority
JP
Japan
Prior art keywords
electrode layer
substrate
abnormal growth
photovoltaic device
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004036809A
Other languages
Japanese (ja)
Inventor
Takahiro Yajima
孝博 矢島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2004036809A priority Critical patent/JP2005228953A/en
Publication of JP2005228953A publication Critical patent/JP2005228953A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problems wherein photoelectromotive force cannot be effectively taken out when there are many short-circuiting portions in a photovoltaic element, which occurs stochastically following an increase in area, and hence yields are decreased in mass production. <P>SOLUTION: In the photovoltaic element, a first electrode layer, a semiconductor layer, and a second electrode layer are sequentially laminated on a substrate in this order. In this case, the first electrode layer has an abnormal growth removal region, and the semiconductor layer is formed in the abnormal growth removal region. In the method for forming the photovoltaic element and the manufacturing device, a process and a method for breaking the abnormal growth grown on the substrate when forming the first electrode layer after the first electrode layer is formed, and a process and a means for removing the broken abnormal growth section, are provided. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、基板上に第1電極層、半導体層および第2電極層を順次積層した光起電力素子の形成方法に関する。さらに詳しくは、光起電力素子の電極間短絡などによる特性不良発生の防止に関する。   The present invention relates to a method for forming a photovoltaic element in which a first electrode layer, a semiconductor layer, and a second electrode layer are sequentially stacked on a substrate. More specifically, the present invention relates to prevention of characteristic failure due to short-circuit between electrodes of a photovoltaic element.

従来より、非単結晶シリコン系半導体を用いた光起電力素子が知られている。光起電力素子の典型例としては、ステンレス基板上にZnO、Agを代表とする裏面反射層をスパッタ法などで堆積し、さらに膜面に平行なpinあるいはnip接合を有する非晶質シリコンなどの非単結晶半導体膜をプラズマCVD法などにより堆積した後、ITOやSnO2を代表例とする透光性導電性酸化物による光入射側電極を積層したものや、ガラス基板上にSnO2などの光入射側電極を堆積した後、非単結晶半導体層を堆積し、ZnO、Agなどによる裏面反射層を堆積したものが存在する。とくにこれら非単結晶シリコン光起電力素子は半導体層を非常に薄くできるため、材料コストが低く、電力用太陽電池に利用されている。   Conventionally, photovoltaic devices using non-single-crystal silicon-based semiconductors are known. As a typical example of a photovoltaic element, a back surface reflection layer typified by ZnO or Ag is deposited on a stainless steel substrate by sputtering or the like, and amorphous silicon having a pin or nip junction parallel to the film surface is used. After depositing a non-single crystal semiconductor film by plasma CVD or the like, a light incident side electrode made of a light-transmitting conductive oxide such as ITO or SnO2 is laminated, or light incidence such as SnO2 on a glass substrate. After the side electrode is deposited, a non-single crystal semiconductor layer is deposited, and a back reflective layer made of ZnO, Ag, or the like is deposited. In particular, these non-single-crystal silicon photovoltaic devices can be made very thin, so that the material cost is low and they are used for power solar cells.

非単結晶シリコン半導体層は厚さ100nm〜数μmの極薄膜であり、半導体形成工程における熱応力、あるいは加工工程における外部応力などによってひびや割れが起きた場合、第1電極層と第2電極層が短絡状態となる場合がある。また半導体層形成工程で基板堆積表面に微小粉塵が付着すると、この微小粉塵付着部分は半導体層の形成されないピンホールなどになり、第1電極層と第2電極層が短絡状態となる場合がある。これら短絡部分が多いと光起電力を有効に取り出せないという問題が生じる。これらの問題に対して従来から種々の対策(半導体形成工程の最適化やクリーン化など)がなされているが、光起電力素子を大面積化すると確率的に発生するようになり、光起電力素子を量産する場合において、歩留まりを低下させる要因となる。   The non-single-crystal silicon semiconductor layer is an extremely thin film having a thickness of 100 nm to several μm. When cracks or cracks occur due to thermal stress in the semiconductor formation process or external stress in the processing process, the first electrode layer and the second electrode The layer may be shorted. In addition, when fine dust adheres to the substrate deposition surface in the semiconductor layer forming process, the fine dust adhering portion becomes a pinhole or the like where the semiconductor layer is not formed, and the first electrode layer and the second electrode layer may be short-circuited. . If there are many short-circuited portions, there arises a problem that the photovoltaic power cannot be extracted effectively. Various countermeasures (optimization and cleaning of the semiconductor formation process, etc.) have conventionally been taken to deal with these problems. However, if the photovoltaic device is enlarged, it will occur probabilistically. In the case of mass production of the element, it becomes a factor for reducing the yield.

前記問題を解決するため、光起電力素子の第2電極まで形成した後、素子を電解液に浸し、短絡部分に通電することで、短絡状態の第2電極を選択的にエッチングし、短絡部を除去する方法が特許文献1に記載されている。しかしながら、前記選択的エッチングを施しても、光起電力素子の短絡状態を完全に修復することはできず、短絡部分が残ってしまう光起電力素子もあり、素子の製造における歩留まりを必ずしも十分なレベルにまで上げることができずにいた。   In order to solve the problem, after forming the second electrode of the photovoltaic element, the element is immersed in an electrolytic solution, and the short-circuited portion is energized to selectively etch the second electrode in the short-circuit state. Patent Document 1 discloses a method for removing the above. However, even if the selective etching is performed, the short-circuit state of the photovoltaic element cannot be completely repaired, and there is a photovoltaic element in which the short-circuited portion remains, and the yield in manufacturing the element is not always sufficient. I could n’t go up to the level.

また、特許文献2では、半導体層形成途中に基板堆積表面上に付着した微小粉塵を除去することでピンホールをなくし、前記選択的エッチングを施さずに短絡部分をなくすことが開示されている。微小粉塵を除去する具体的な方法は、微小粉塵を帯電して電気的に集塵する、基板を振動する、基板の堆積表面に気体を吹き付ける、基板の温度を半導体層形成工程の温度と異なる温度にする、微小粉塵界面を酸化する、である。しかし、この方法では、基板堆積表面上に付着した微小粉塵の場合のみ除去することが可能であるが、基板表面にある異物や凹凸に起因して第1電極が異常成長し、短絡部分となってしまった場合には十分な効果が得られない。
特開平1−286371号公報 特開平9−107117号公報
Further, Patent Document 2 discloses that pinholes are eliminated by removing fine dust adhering to the substrate deposition surface during the formation of the semiconductor layer, and the short-circuit portion is eliminated without performing the selective etching. Specific methods for removing fine dust are: electrify dust by electrically collecting fine dust, vibrate the substrate, blow gas on the deposition surface of the substrate, and the substrate temperature is different from the temperature of the semiconductor layer forming process The temperature is changed, and the fine dust interface is oxidized. However, with this method, it is possible to remove only in the case of fine dust adhering to the substrate deposition surface, but the first electrode grows abnormally due to foreign matter or irregularities on the substrate surface and becomes a short-circuit portion. If this happens, a sufficient effect cannot be obtained.
JP-A-1-286371 JP-A-9-107117

図1に光起電力素子の短絡部分の模式図を示す。ひびや割れによる短絡部分や、基板堆積表面に微小粉塵が付着して半導体層の形成されなかったピンホールによる短絡部分などは、電解液に浸して選択的エッチングを施すことで、第2電極が除去され、短絡状態ではなくなる(図2)。しかしながら、図1に示すような異常成長部があり、該異常成長部の粒界で短絡が生じた場合は、異常成長部の複雑な表面構造により選択的エッチングだけでは、異常成長部の隙間や影となる部分の第2電極が除去できずに短絡状態が回復しないという問題があった。これに対し、エッチングされにくい部分まで十分にエッチングされるように選択的エッチングの時間を長くすると、正常部分までエッチングされてしまい、結果として素子特性を低下させる。   FIG. 1 shows a schematic diagram of a short-circuit portion of the photovoltaic element. If the short-circuited portion due to cracks or cracks, or the short-circuited portion due to pinholes where the semiconductor layer is not formed due to the fine dust adhering to the substrate deposition surface, the second electrode can be selectively etched by immersing it in the electrolyte Removed and no longer shorted (FIG. 2). However, when there is an abnormally grown portion as shown in FIG. 1 and a short circuit occurs at the grain boundary of the abnormally grown portion, the complex surface structure of the abnormally grown portion causes a gap or There was a problem that the short-circuit state was not recovered because the shadowed second electrode could not be removed. On the other hand, if the selective etching time is increased so that the portion that is difficult to be etched is sufficiently etched, the normal portion is etched, and as a result, the device characteristics are deteriorated.

本発明は、前記問題点を改善し、光起電力を有効に取り出せる光起電力素子の形成方法を提案することを目的とする。   An object of the present invention is to propose a method for forming a photovoltaic element that can improve the above-described problems and can effectively extract photovoltaic power.

本発明においては、基板上に少なくとも第1電極層、半導体層および第2電極層をこの順で順次積層された光起電力素子であって、前記第1電極層が異常成長部除去領域を有し、異常成長部除去領域に前記半導体層が形成されてなる光起電力素子とする。また、前記第1電極層が透光性導電膜と反射導電膜で構成された裏面反射層である光起電力素子とする。   In the present invention, there is provided a photovoltaic element in which at least a first electrode layer, a semiconductor layer, and a second electrode layer are sequentially laminated on a substrate in this order, and the first electrode layer has an abnormal growth portion removal region. In addition, a photovoltaic device in which the semiconductor layer is formed in the abnormal growth portion removal region is obtained. The first electrode layer is a photovoltaic element that is a back surface reflection layer composed of a light-transmitting conductive film and a reflective conductive film.

本発明においては、基板上に少なくとも第1電極層、半導体層および第2電極層をこの順で順次積層する工程を有する光起電力素子の形成方法において、前記半導体層を形成する工程の前に、前記第1電極層形成時に前記基板上に成長した異常成長部を破砕する工程と、破砕された異常成長部を除去する工程と、を有する光起電力素子の形成方法とする。さらには、異常成長部を破砕する工程が、機械的摩擦あるいは物理的衝撃のいずれか、もしくはこれらを組み合わせた光起電力素子の形成方法とする。異常成長部を破砕し、除去した後、残っている異常成長部の個数が50個/mm以下である光起電力素子の形成方法とする。 In the present invention, in the method for forming a photovoltaic device including the step of sequentially laminating at least the first electrode layer, the semiconductor layer, and the second electrode layer in this order on the substrate, before the step of forming the semiconductor layer. A method for forming a photovoltaic device comprising: crushing an abnormally grown portion grown on the substrate at the time of forming the first electrode layer; and removing the crushed abnormally grown portion. Furthermore, the step of crushing the abnormally grown portion is either a mechanical friction or a physical impact, or a method for forming a photovoltaic element that combines these. A method of forming a photovoltaic device in which the number of remaining abnormally grown portions is 50 pieces / mm 2 or less after the abnormally grown portions are crushed and removed.

そして、さらに本発明においては、少なくとも第1電極層を有する基板上に半導体層を形成する手段を有する光起電力素子の製造装置において、前記第1電極層上に存在する異常成長部を破砕する手段と、破砕された異常成長部を除去する手段と、を有する光起電力素子の製造装置とする。また、前記基板の位置が変化しても、前記異常成長部を破砕する手段が異常成長部以外の第1電極層表面に損傷を与えない程度の圧力で、第1電極層表面に押し付ける手段を有する光起電力素子の製造装置とすることが好ましい。そして、前記光起電力素子の製造装置がロール・ツー・ロール装置であり、前記基板裏面と前記第1電極層表面との間に合紙を有し、前記合紙を振動させる手段を有する光起電力素子の製造装置とする。さらには、音波や超音波の振動を前記合紙に伝達することで、前記異常成長部を破砕する光起電力素子の製造装置とすることが好ましい。   Further, in the present invention, in the photovoltaic device manufacturing apparatus having means for forming a semiconductor layer on a substrate having at least the first electrode layer, the abnormally grown portion existing on the first electrode layer is crushed. A photovoltaic device manufacturing apparatus having means and means for removing a crushed abnormally grown portion. In addition, even if the position of the substrate changes, the means for crushing the abnormally grown portion is pressed against the surface of the first electrode layer with a pressure that does not damage the surface of the first electrode layer other than the abnormally grown portion. It is preferable to use a photovoltaic device manufacturing apparatus. The photovoltaic device manufacturing apparatus is a roll-to-roll apparatus, and has a slip sheet between the back surface of the substrate and the surface of the first electrode layer, and has means for vibrating the slip sheet. It is set as the manufacturing apparatus of an electromotive force element. Furthermore, it is preferable to provide a photovoltaic device manufacturing apparatus that crushes the abnormally grown portion by transmitting vibrations of sound waves and ultrasonic waves to the slip sheet.

本発明の光起電力素子の形成方法によると、第1電極形成時に成長した異常成長部が取り除かれ、短絡状態がなくなるため、光起電力を有効に取り出せる光起電力素子を形成することができ、光起電力素子を生産する際の歩留まりを向上させることが可能となる。   According to the method for forming a photovoltaic element of the present invention, the abnormally grown portion grown at the time of forming the first electrode is removed and the short-circuit state is eliminated, so that a photovoltaic element that can effectively extract the photovoltaic element can be formed. It is possible to improve the yield when producing photovoltaic elements.

図2に、前記異常成長部の成長過程の模式図を示す。ステンレス基板やガラス基板上の洗浄工程や研磨工程を施した後でも、前記基板上に異物や残渣物が残っている場合がある。とくに金属の長尺基板の場合は基板表面に微小な傷や突起、凹凸が存在する場合がある。   FIG. 2 shows a schematic diagram of the growth process of the abnormally grown portion. Even after a cleaning process or a polishing process on a stainless steel substrate or a glass substrate, foreign matter or residue may remain on the substrate. In particular, in the case of a long metal substrate, there are cases where minute scratches, protrusions, and irregularities exist on the surface of the substrate.

第1電極を形成した場合、前記基板上の異物や残渣物、あるいは前記基板表面の微小な凹凸を核として、第1電極層を形成するZnOなどの導電性酸化物が異常成長を起こす場合がある。   When the first electrode is formed, a conductive oxide such as ZnO that forms the first electrode layer may cause abnormal growth with foreign matter and residue on the substrate or minute irregularities on the surface of the substrate as a nucleus. is there.

さらに、異常成長部がある第1電極層の上に半導体層を形成すると、異常成長部の上に、その形状を維持しながら半導体層が堆積されていく。その結果、異常成長部周囲にある粒界では、構造欠陥や表面準位が多くなり易く、短絡状態になっていることが多い。   Furthermore, when the semiconductor layer is formed on the first electrode layer having the abnormally grown portion, the semiconductor layer is deposited on the abnormally grown portion while maintaining the shape thereof. As a result, the grain boundary around the abnormally grown portion tends to increase the number of structural defects and surface states, and is often short-circuited.

図3(a)は基板上に第1電極層を形成した後、堆積膜表面にできた異常成長部のSEM写真である。長径が2〜4μmの大きさの異常成長部が多数あった。図3(b)は、本発明による異常成長部を破砕する工程と除去する工程により、第1電極層の異常成長部を除去した部分のSEM写真である。異常成長部がうまく除去されて、長径3μm程度のくぼみとなっていた。   FIG. 3A is an SEM photograph of an abnormally grown portion formed on the surface of the deposited film after forming the first electrode layer on the substrate. There were many abnormally grown portions having a major axis of 2 to 4 μm. FIG. 3B is an SEM photograph of a portion where the abnormally grown portion of the first electrode layer has been removed by the step of crushing and removing the abnormally grown portion according to the present invention. The abnormally grown portion was successfully removed, resulting in a depression with a major axis of about 3 μm.

図4は除去後に残った異常成長部の個数と光起電力素子の短絡抵抗RshDarkの関係を示す。異常成長部の個数が50個/mm以下であった場合、RshDarkは高くなる。ただし、異常成長部の個数が1〜10個/mmであればRshDarkの違いはなくなるため、本発明は少なくとも異常成長部が10個/mm以上存在する光起電力素子に対して有効に作用する。本発明で除去後に残された異常成長部の個数は50個/mm以下で効果があり、10個/mm以下であればさらに効果がある。従って、異常成長部が好ましくは50個/mm以下、より好ましくは10個/mm以下となるように、本発明を実施する。 FIG. 4 shows the relationship between the number of abnormally grown portions remaining after removal and the short-circuit resistance RshDark of the photovoltaic element. When the number of abnormally grown portions is 50 / mm 2 or less, RshDark increases. However, abnormal since the number of growing portion is no longer RshDark difference between If 1-10 / mm 2, the present invention is effective against a photovoltaic element in which at least the abnormal growth portions exist 10 pieces / mm 2 or more Works. The number of abnormally grown portions left after removal in the present invention is effective at 50 / mm 2 or less, and more effective at 10 / mm 2 or less. Therefore, the present invention is carried out so that the abnormally grown portions are preferably 50 pieces / mm 2 or less, more preferably 10 pieces / mm 2 or less.

残された異常成長部の個数が50個/mmより多くなると、RshDarkが2000Ωcm以下と低くなり、短絡電流が流れ、この短絡電流成分により光起電力素子の光電変換特性が低下する。しかし、本発明を実施することによって異常成長部を除去した第1電極層の上に、半導体層と第2電極層を積層すると、短絡状態が回復し、RshDarkが高い光起電力素子が得られる。 If the number of remaining abnormally grown portions exceeds 50 / mm 2 , RshDark becomes as low as 2000 Ωcm 2 or less, a short circuit current flows, and the photoelectric conversion characteristics of the photovoltaic device are degraded by this short circuit current component. However, when the semiconductor layer and the second electrode layer are stacked on the first electrode layer from which the abnormally grown portion has been removed by carrying out the present invention, the short circuit state is recovered and a photovoltaic device having a high RshDark can be obtained. .

異常成長部を破砕する工程は、機械的摩擦あるいは物理的衝撃などが考えられる。具体的には機械的摩擦として、樹脂製や金属製のブラシやはけなどによるブラッシング、基板と基板を重ねる際に基板間に挟み込む合紙による摩擦などが挙げられる。物理的衝撃として、空気や不活性ガスなどの気体を基板表面に吹き付けることで異常成長部を除去する方法が挙げられる。   The process of crushing the abnormally grown portion may be mechanical friction or physical impact. Specific examples of mechanical friction include brushing with a resin or metal brush or brush, friction with a slip sheet sandwiched between substrates when the substrates are stacked. Examples of the physical impact include a method of removing abnormally grown portions by blowing a gas such as air or an inert gas onto the substrate surface.

また、前記異常成長部を破砕する装置は、異常成長部のみを破砕することが目的であるが、異常成長部以外の第1電極層表面に損傷を与える可能性がある。より高い光電変換効率の光起電力素子を得るためには、第1電極層の表面において入射光を十分に散乱させて半導体内で多重反射させる必要がある。また、第1電極層は電極として導電性が高いことも望まれる。異常成長部を破砕する装置はそれらの条件を満たしながら、異常成長部を破砕する構造でなければならず、異常成長部以外の第1電極層表面に損傷を与えない程度の圧力で、第1電極層表面に押し付けて異常成長部を破砕する。前記基板の位置が変化した場合には自動的にその位置に合った場所に移動できる構造でなければ十分な効果が得られない。   The device for crushing the abnormally grown part is intended to crush only the abnormally grown part, but may damage the surface of the first electrode layer other than the abnormally grown part. In order to obtain a photovoltaic device with higher photoelectric conversion efficiency, it is necessary to sufficiently scatter incident light on the surface of the first electrode layer and to multiplex-reflect it in the semiconductor. The first electrode layer is also desired to have high conductivity as an electrode. The apparatus for crushing the abnormally grown portion must have a structure that crushes the abnormally grown portion while satisfying those conditions, and the first pressure layer is not damaged so as not to damage the surface of the first electrode layer other than the abnormally grown portion. The abnormally grown portion is crushed by pressing against the electrode layer surface. When the position of the substrate changes, a sufficient effect cannot be obtained unless the structure can be automatically moved to a location that matches the position.

光起電力素子の製造装置がロール・ツー・ロール装置であり、前記基板が長尺でかつ可とう性を有している場合は、前記第1電極層が形成された基板を巻き上げる際に、前記基板裏面と前記第1電極層表面との間に合紙を挿入する際に、前記合紙を振動させることによって生じる摩擦で、前記異常成長部を破砕することができる。振動は、低周波から高周波にわたる音波であっても、超音波であってもよく、振動による合紙の変位量が少なくとも±1mm以上であれば異常成長部は破砕でき、より好ましくは変位量は±2mm以上である。振動は、振動発生装置によって、直接、前記合紙に伝達してもよく、またスピーカーや騒音発生装置によって大きな音を発生し、気体などの媒体を介して前記合紙に伝達してもよい。   When the photovoltaic device manufacturing apparatus is a roll-to-roll apparatus and the substrate is long and flexible, when winding up the substrate on which the first electrode layer is formed, When inserting a slip sheet between the back surface of the substrate and the front surface of the first electrode layer, the abnormally grown portion can be crushed by friction generated by vibrating the slip sheet. The vibration may be a sound wave ranging from a low frequency to a high frequency, or an ultrasonic wave. If the displacement of the slip sheet due to the vibration is at least ± 1 mm or more, the abnormally grown portion can be crushed, more preferably the displacement is It is ± 2 mm or more. The vibration may be directly transmitted to the slip sheet by a vibration generator, or a loud sound may be generated by a speaker or a noise generator and transmitted to the slip sheet through a medium such as gas.

以下、実施例に基づき本発明に係る光起電力素子の形成方法を詳細に説明するが、本発明はこれらの実施例により何ら限定されるものではない。   Hereinafter, although the formation method of the photovoltaic device based on this invention is demonstrated in detail based on an Example, this invention is not limited at all by these Examples.

本発明の一実施例として、図5に示すようなpin接合型微結晶シリコンシングルセルを作製した。
(1)まず、ロール上のステンレス430からなる基板501(幅356mm×長さ100m)を界面活性剤による洗浄と水洗浄を施し、乾燥することで表面の汚れや異物を取り除いた。
(2)上記基板501上に図6に示すような公知のロール・ツー・ロール式のスパッタリング装置により厚さ800nmのAg502aと厚さ2μmのZnO502bによる裏面反射層502を堆積した。
(3)さらに上記裏面反射層502上にロール・ツー・ロール式のプラズマCVD装置によって、n型非晶質シリコン膜からなるn型層503a、i型微結晶シリコン膜からなるi型層503b、p型微結晶シリコン膜からなるp型層503cを積層し、半導体層503を形成した。
(4)上記半導体層503の上にロール・ツー・ロール式のスパッタリング装置によって厚さ80nmのITO(In2O3+SnO2)による透明導電層504を形成した。
(5)上記透明導電層504まで素子を形成したステンレス基板を長さ248mmでカットし、公知の化学エッチング法でパターニングした後、公知の電解処理装置に電解液として1%硫酸を用意し、光起電力素子裏面をステンレス板に接触させてマイナス側電極に、対向電極をプラス側電極にそれぞれ接続し、印加電圧2V、印加時間1sec、印加間隔0.5secの5回のパルス電圧を印加して短絡部分を除去した後、洗浄、乾燥を行った。
(6)さらに銅ワイヤーをカーボンペーストで被覆した電極を熱圧着装置で接着し、グリッド電極505を形成した。
(7)その後、銅箔を用いたプラス電極と前記グリッド電極505を接続し、マイナス電極を前記基板501に接続して、暗状態における電圧電流特性を測定し、原点付近の傾きから短絡抵抗RshDarkを求めた。
As an example of the present invention, a pin junction type microcrystalline silicon single cell as shown in FIG. 5 was fabricated.
(1) First, a substrate 501 (width 356 mm × length 100 m) made of stainless steel 430 on a roll was washed with a surfactant and washed with water, and dried to remove dirt and foreign matters on the surface.
(2) On the substrate 501, a back reflective layer 502 of 800 nm thick Ag 502 a and 2 μm thick ZnO 502 b was deposited by a known roll-to-roll type sputtering apparatus as shown in FIG.
(3) Further, an n-type layer 503a made of an n-type amorphous silicon film, an i-type layer 503b made of an i-type microcrystalline silicon film, on the back reflective layer 502 by a roll-to-roll type plasma CVD apparatus, A p-type layer 503c made of a p-type microcrystalline silicon film was stacked to form a semiconductor layer 503.
(4) A transparent conductive layer 504 made of ITO (In 2 O 3 + SnO 2) having a thickness of 80 nm was formed on the semiconductor layer 503 by a roll-to-roll type sputtering apparatus.
(5) A stainless steel substrate on which elements are formed up to the transparent conductive layer 504 is cut to a length of 248 mm, patterned by a known chemical etching method, and 1% sulfuric acid is prepared as an electrolytic solution in a known electrolytic processing apparatus. The back surface of the electromotive element is brought into contact with the stainless steel plate, the negative electrode is connected to the negative electrode, the counter electrode is connected to the positive electrode, and an application voltage of 2 V, an application time of 1 sec, and an application interval of 0.5 sec are applied. After removing the short-circuit portion, washing and drying were performed.
(6) Furthermore, the electrode which coat | covered the copper wire with the carbon paste was adhere | attached with the thermocompression bonding apparatus, and the grid electrode 505 was formed.
(7) Thereafter, the positive electrode using copper foil and the grid electrode 505 are connected, the negative electrode is connected to the substrate 501, voltage-current characteristics in the dark state are measured, and the short-circuit resistance RshDark is measured from the inclination near the origin. Asked.

(実施例1)
上記裏面反射層502を堆積した上記ロール状基板501を、図6の巻き取りボビン606に巻き取る際に、ポリイミド製の合紙608を、前記基板501の裏面と、前記裏面反射層502の表面の間に挟みこんでいるが、本実施例では、従来1回の巻き取り工程を複数回実施することで、前記合紙608と基板表面の摩擦を増やすことで、異常成長部の破砕を試みた。裏面反射層として用いたZnOは導電性が高いため、破砕された異常成長部も導電性が高く、静電吸着しにくいので、自由落下でも十分に除去されるが、本実施例では、より効果的に破砕した異常成長部の除去を行うために、複数回の巻き取り工程中に、ロール・ツー・ロール装置(図6)のガスゲート604(幅400mm、高さ10mm、長さ200mmのスリット)にて、基板表面609に150個の直径2mmのガス孔からH2ガス(流量1000sccm)を吹き付けることで、破砕した異常成長部の除去を試みた。それぞれについて120個ずつ光起電力素子を作製し、短絡抵抗RshDarkを測定した。図9に本実施例で得られた光起電力素子の短絡抵抗RshDarkの分布図を示す。本発明の実施により、短絡抵抗RshDarkの低い素子の数が減り、高いRshDarkの素子が増えた。
(Example 1)
When the roll-shaped substrate 501 on which the back surface reflection layer 502 is deposited is wound on the take-up bobbin 606 in FIG. 6, a polyimide interleaf 608 is attached to the back surface of the substrate 501 and the back surface reflection layer 502. In this example, the conventional one-time winding process is performed a plurality of times to increase the friction between the interleaf paper 608 and the substrate surface, thereby attempting to crush the abnormally grown portion. It was. Since ZnO used as the back surface reflection layer has high conductivity, the crushed abnormally grown portion has high conductivity and is difficult to electrostatically adsorb, so it can be removed sufficiently even in free fall. Gas gate 604 (width 400 mm, height 10 mm, length 200 mm slit) of the roll-to-roll device (FIG. 6) during the multiple winding process to remove the abnormally crushed abnormally grown portion Then, H2 gas (flow rate 1000 sccm) was blown from 150 gas holes having a diameter of 2 mm onto the substrate surface 609 to try to remove the crushed abnormally grown portion. 120 photovoltaic elements were produced for each, and the short-circuit resistance RshDark was measured. FIG. 9 shows a distribution diagram of the short-circuit resistance RshDark of the photovoltaic element obtained in this example. By implementing the present invention, the number of elements having a low short circuit resistance RshDark is reduced and the number of elements having a high RshDark is increased.

図7(a)(b)は、基板上に第1電極形成した後の比較的広範囲な堆積膜表面のSEM写真である。図7(a)は本実施例による異常成長部を破砕する工程と除去する工程により、第1電極の異常成長部を除去した状態である。SEM写真から、堆積膜表面にある除去された異常成長部の個数は100〜200個/mmで、残った異常成長部の個数は20個/mm以下であった。第1電極形成後に、本実施例を実施した場合、得られた光起電力素子の短絡抵抗RshDarkは光起電力素子の特性に影響を与えることがない程度に高いものであった。図7(b)は、本実施例を実施しなかった状態であり、100〜300個/mmの異常成長部が存在している。そのため、十分な短絡除去ができずに短絡抵抗RshDarkが低く、光電変換効率が低い光起電力素子となった。 7A and 7B are SEM photographs of the surface of the deposited film over a relatively wide range after the first electrode is formed on the substrate. FIG. 7A shows a state where the abnormally grown portion of the first electrode is removed by the step of crushing and removing the abnormally grown portion according to this embodiment. From the SEM photograph, the number of abnormally grown portions removed on the surface of the deposited film was 100 to 200 / mm 2 , and the number of remaining abnormally grown portions was 20 / mm 2 or less. When this example was implemented after forming the first electrode, the short-circuit resistance RshDark of the obtained photovoltaic element was high enough not to affect the characteristics of the photovoltaic element. FIG. 7B shows a state in which this example was not carried out, and there are 100 to 300 abnormal growth portions / mm 2 . For this reason, sufficient short-circuit removal cannot be performed, and the photovoltaic device has low short-circuit resistance RshDark and low photoelectric conversion efficiency.

(実施例2)
本実施例では、上記裏面反射層502を堆積した上記ロール状基板501を、図6の巻き取りボビン606に巻き取る際に、図8に示すように合紙807に振動を与える振動発生装置808を設けることで、基板表面側804に摩擦を加えるようにした。振動発生装置808の振動部の変位量は±2mm程度とし、振動周波数を10Hz〜100kHzの範囲で変えて異常成長部の破砕を試みた。破砕された異常成長部をより効果的に除去するために、基板804を巻き取りボビン805に巻き取った後、次の半導体形成工程において基板804が巻き出される際に、実施例1と同様にロール・ツー・ロール装置(図6)のガスゲート604にて、基板表面809にH2ガス(流量1000sccm)を吹き付けることで、破砕した異常成長部の除去を試みた。図11に合紙に与える振動周波数と得られた光起電力素子の短絡抵抗RshDarkの関係を示す。ここで、実線は度数分布のピーク値を意味し、グレー部分の上端および下端が、素子数が5個以下となるRshDarkの上限および下限を意味する。広い範囲でRshDarkの高抵抗化が図れ、低いRshDarkの素子数が減っている。ただし、振動周波数は大きい方が、より異常成長部の破砕効果が高いという結果が得られた。振動発生装置808の振動部の変位量を±0.5mmとして実施例2と同様の実験を試みたところ、RshDarkの変化は見られなかったため、振動の振幅が小さいと異常成長部が十分に除去できないと考えられる。
(Example 2)
In this embodiment, when the roll-shaped substrate 501 having the back-surface reflective layer 502 deposited thereon is wound around the take-up bobbin 606 in FIG. 6, as shown in FIG. 8, a vibration generator 808 that vibrates the interleaf 807 as shown in FIG. Thus, friction was applied to the substrate surface side 804. The amount of displacement of the vibration part of the vibration generator 808 was set to about ± 2 mm, and the vibration frequency was changed in the range of 10 Hz to 100 kHz to try to crush the abnormally grown part. In order to more effectively remove the crushed abnormally grown portion, when the substrate 804 is wound around the winding bobbin 805 and then the substrate 804 is unwound in the next semiconductor formation step, as in the first embodiment. An attempt was made to remove the crushed abnormally grown portion by blowing H2 gas (flow rate 1000 sccm) onto the substrate surface 809 with the gas gate 604 of the roll-to-roll apparatus (FIG. 6). FIG. 11 shows the relationship between the vibration frequency applied to the slip sheet and the obtained short-circuit resistance RshDark of the photovoltaic element. Here, the solid line means the peak value of the frequency distribution, and the upper and lower ends of the gray portion mean the upper and lower limits of RshDark where the number of elements is 5 or less. The resistance of RshDark can be increased over a wide range, and the number of low RshDark elements is reduced. However, the result that the crushing effect of the abnormal growth part is higher is obtained when the vibration frequency is higher. When an experiment similar to that in Example 2 was performed with the displacement amount of the vibration part of the vibration generator 808 set to ± 0.5 mm, no change in RshDark was observed. Therefore, when the amplitude of vibration was small, the abnormal growth part was sufficiently removed. It is considered impossible.

(実施例3)
本実施例では、上記裏面反射層502を堆積した上記ロール状基板501をロールに巻き取る際に、図9に示すような樹脂製のブラシ908によって基板表面側904をブラッシングすることで異常成長部の破砕を試みた。巻き取りボビン905に基板904が巻き取られると直径が変化し、基板804の位置も移動するが、ブラシ高さ自動調整装置910によって、ブラシ908の位置が基板904の位置に合うようにした。ブラシ908を基板表面904に押し当てる力はブラシの自重(重さ約900g)とした。ブラッシング後にブラシに付随して移動するガス導入管909からH2ガスを吹き付けて破砕された異常成長部の除去を試みた。本実施例では、安価なブラシとガス管などで構成されるため、低コストで本発明を実現することが可能である。H2ガスを50〜200Hzの範囲でパルス状に吹きかけ、光起電力素子の短絡抵抗分布の変化を調べた。図12にH2ガスパルス周波数と得られた光起電力素子の短絡抵抗RshDarkの関係を示す。ここで、実線は度数分布のピーク値を意味し、グレー部分の上端および下端が、素子数が5個以下となるRshDarkの上限および下限を意味する。広い範囲でRshDarkの高抵抗化が図れ、低いRshDarkの素子数が減っている。ただし、H2ガスパルス周波数は大きいと、パルス状から一定状態に近づくためか、破砕された異常成長部の除去効果が少し低いが、100Hz以下で十分に高いRshDarkの素子が得られた。
(Example 3)
In this embodiment, when the roll-shaped substrate 501 having the back-surface reflective layer 502 deposited thereon is wound around a roll, the abnormal growth portion is obtained by brushing the substrate surface side 904 with a resin brush 908 as shown in FIG. Tried crushing. When the substrate 904 is wound around the winding bobbin 905, the diameter changes and the position of the substrate 804 also moves. However, the brush 908 is adjusted to the position of the substrate 904 by the brush height automatic adjusting device 910. The force for pressing the brush 908 against the substrate surface 904 was the weight of the brush (weight: about 900 g). An attempt was made to remove the abnormally grown portion crushed by blowing H2 gas from a gas introduction pipe 909 that moves along with the brush after brushing. In the present embodiment, the present invention can be realized at low cost because it is constituted by an inexpensive brush and a gas pipe. H2 gas was blown in the form of pulses in the range of 50 to 200 Hz, and changes in the short-circuit resistance distribution of the photovoltaic elements were examined. FIG. 12 shows the relationship between the H2 gas pulse frequency and the obtained photovoltaic element short-circuit resistance RshDark. Here, the solid line means the peak value of the frequency distribution, and the upper and lower ends of the gray portion mean the upper and lower limits of RshDark where the number of elements is 5 or less. The resistance of the RshDark can be increased over a wide range, and the number of low RshDark elements is reduced. However, if the H2 gas pulse frequency is large, the effect of removing the crushed abnormally grown portion is slightly low, probably because it approaches a constant state from the pulse shape, but a sufficiently high RshDark element was obtained at 100 Hz or less.

一般的な光起電力素子の短絡部分の模式図Schematic diagram of the short circuit part of a general photovoltaic device 異常成長部の成長過程の模式図Schematic diagram of abnormal growth process 異常成長部および異常成長部を破砕し、除去した跡のSEM写真SEM photograph of abnormally grown part and trace of removed abnormally grown part 除去後に残っていた異常成長部の数と短絡抵抗RshDarkの関係Relationship between number of abnormally grown portions remaining after removal and short-circuit resistance RshDark 本発明の一実施例で用いた光起電力素子の断面模式図Schematic cross-sectional view of a photovoltaic device used in one embodiment of the present invention ロール・ツー・ロール装置の概略図Schematic diagram of roll-to-roll equipment 第1電極形成後の堆積膜表面の広範囲のSEM写真Wide range SEM photograph of deposited film surface after first electrode formation ロール・ツー・ロール装置の巻き取り室の概略図Schematic diagram of the roll-up roll roll ロール・ツー・ロール装置の巻き取り室の概略図Schematic diagram of the roll-up roll roll 光起電力素子の短絡抵抗RshDarkの度数分布Frequency distribution of short-circuit resistance RshDark of photovoltaic element 光起電力素子の短絡抵抗RshDarkと合紙の振動周波数の関係Relationship between short-circuit resistance RshDark of photovoltaic element and vibration frequency of slip sheet 光起電力素子の短絡抵抗RshdarkとH2ガスパルス周波数の関係Relationship between short-circuit resistance Rshdark of photovoltaic element and H2 gas pulse frequency

符号の説明Explanation of symbols

101 基板
102 半導体
103 ITO
104 ひび
105 穴
106 異常成長部の核
107 粒界などの短絡部分
108 異常成長部
109 ゴミなどの異物
201 ITOが除去された部分
202 ITOが除去できない部分
203 異物がとれた跡
501 ステンレス基板
502 裏面反射層
502a Ag
502b ZnO
503 半導体層
503a n型層
503b i型層
503c p型層
504 透明導電層
505 グリッド電極
601 巻き出し室
602 巻き取り室
603 成膜室
604 ガスゲート
605 巻き出しボビン
606 巻き取りボビン
607 アイドリングローラー
608 合紙ボビン
609 ステンレス基板(表面側)
801,901 巻取り室
802,902 ガスゲート
803,903 アイドリングローラー
804,904 ステンレス基板(表面側)
805,905 巻き取りボビン
806,906 合紙ボビン
807,907 合紙
808 振動発生装置
809 合紙と基板表面が接触する部分
908 ブラシ
909 ガス導入管
910 ブラシ高さ自動調整装置
101 Substrate 102 Semiconductor 103 ITO
104 crack 105 hole 106 nucleus of abnormally grown portion 107 short-circuited portion such as grain boundary 108 abnormally grown portion 109 foreign matter such as dust 201 portion where ITO has been removed 202 portion where ITO cannot be removed 203 trace of foreign matter removed 501 stainless steel substrate 502 back surface Reflective layer 502a Ag
502b ZnO
503 Semiconductor layer 503a n-type layer 503b i-type layer 503c p-type layer 504 transparent conductive layer 505 grid electrode 601 unwind chamber 602 take-up chamber 603 film-forming chamber 604 gas gate 605 unwind bobbin 606 take-up bobbin 607 idling roller 608 Bobbin 609 stainless steel substrate (front side)
801, 901 Winding chamber 802, 902 Gas gate 803, 903 Idling roller 804, 904 Stainless steel substrate (front side)
805, 905 Winding bobbins 806, 906 Interleaving bobbins 807, 907 Interleaving paper 808 Vibration generating device 809 Portion where interleaving paper and substrate surface contact 908 Brush 909 Gas introduction pipe 910 Brush height automatic adjustment device

Claims (9)

基板上に少なくとも第1電極層、半導体層および第2電極層をこの順で順次積層された光起電力素子であって、前記第1電極層が異常成長部除去領域を有し、異常成長部除去領域に前記半導体層が形成されてなることを特徴とする光起電力素子。   A photovoltaic device in which at least a first electrode layer, a semiconductor layer, and a second electrode layer are sequentially laminated on a substrate in this order, wherein the first electrode layer has an abnormal growth portion removal region, and an abnormal growth portion A photovoltaic element, wherein the semiconductor layer is formed in a removal region. 前記第1電極層が透光性導電膜と反射導電膜で構成された裏面反射層である請求項1に記載の光起電力素子。   2. The photovoltaic element according to claim 1, wherein the first electrode layer is a back surface reflective layer composed of a translucent conductive film and a reflective conductive film. 基板上に少なくとも第1電極層、半導体層および第2電極層をこの順で順次積層する工程を有する光起電力素子の形成方法において、前記半導体層を形成する工程の前に、前記第1電極層形成時に前記基板上に成長した異常成長部を破砕する工程と、破砕された異常成長部を除去する工程と、を有することを特徴とする光起電力素子の形成方法。   In the method of forming a photovoltaic device, which includes a step of sequentially stacking at least a first electrode layer, a semiconductor layer, and a second electrode layer in this order on a substrate, the first electrode is formed before the step of forming the semiconductor layer. A method for forming a photovoltaic device, comprising: a step of crushing an abnormally grown portion that has grown on the substrate during layer formation; and a step of removing the crushed abnormally grown portion. 異常成長部を破砕する工程が、機械的摩擦あるいは物理的衝撃のいずれか、もしくはこれらを組み合わせたものである請求項3に記載の光起電力素子の形成方法。   The method for forming a photovoltaic device according to claim 3, wherein the step of crushing the abnormally grown portion is one of mechanical friction and physical impact, or a combination thereof. 異常成長部を破砕し、除去した後、残っている異常成長部の個数が50個/mm以下である請求項3に記載の光起電力素子の形成方法。 Abnormal growth portion by crushing, after removal, the remaining number of the abnormal growth portions which is 50 / mm 2 or less forming method of the photovoltaic device according to claim 3. 少なくとも第1電極層を有する基板上に半導体層を形成する手段を有する光起電力素子の製造装置において、前記第1電極層上に存在する異常成長部を破砕する手段と、破砕された異常成長部を除去する手段と、を有することを特徴とする光起電力素子の製造装置。   In a photovoltaic device manufacturing apparatus having means for forming a semiconductor layer on a substrate having at least a first electrode layer, means for crushing abnormal growth portions existing on the first electrode layer, and crushed abnormal growth And a means for removing the portion of the photovoltaic device. 前記基板の位置が変化しても、前記異常成長部を破砕する手段が異常成長部以外の第1電極層表面に損傷を与えない程度の圧力で、第1電極層表面に押し付ける手段を有することを特徴とする請求項6に記載の光起電力素子の製造装置。   Even if the position of the substrate changes, the means for crushing the abnormal growth portion has means for pressing the first electrode layer surface with a pressure that does not damage the surface of the first electrode layer other than the abnormal growth portion. The photovoltaic device manufacturing apparatus according to claim 6. 前記光起電力素子の製造装置がロール・ツー・ロール装置であり、前記基板裏面と前記第1電極層表面との間に合紙を有し、前記合紙を振動させる手段を有することを特徴とする請求項6に記載の光起電力素子の製造装置。   The photovoltaic device manufacturing apparatus is a roll-to-roll apparatus, and has a slip sheet between the back surface of the substrate and the surface of the first electrode layer, and has means for vibrating the slip sheet. The photovoltaic device manufacturing apparatus according to claim 6. 音波や超音波の振動を前記合紙に伝達することで、前記異常成長部を破砕することを特徴とする請求項8に記載の光起電力素子の製造装置。   The apparatus for manufacturing a photovoltaic element according to claim 8, wherein the abnormally grown portion is crushed by transmitting vibrations of sound waves and ultrasonic waves to the slip sheet.
JP2004036809A 2004-02-13 2004-02-13 Photovoltaic element, formation method thereof, and manufacturing device Withdrawn JP2005228953A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004036809A JP2005228953A (en) 2004-02-13 2004-02-13 Photovoltaic element, formation method thereof, and manufacturing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004036809A JP2005228953A (en) 2004-02-13 2004-02-13 Photovoltaic element, formation method thereof, and manufacturing device

Publications (1)

Publication Number Publication Date
JP2005228953A true JP2005228953A (en) 2005-08-25

Family

ID=35003418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004036809A Withdrawn JP2005228953A (en) 2004-02-13 2004-02-13 Photovoltaic element, formation method thereof, and manufacturing device

Country Status (1)

Country Link
JP (1) JP2005228953A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007180519A (en) * 2005-11-29 2007-07-12 Kyocera Corp Process for fabrication of solar battery element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007180519A (en) * 2005-11-29 2007-07-12 Kyocera Corp Process for fabrication of solar battery element

Similar Documents

Publication Publication Date Title
US7301215B2 (en) Photovoltaic device
JP5421701B2 (en) Crystalline silicon solar cell and manufacturing method thereof
JP4418500B2 (en) Photoelectric conversion device and manufacturing method thereof
JP5127252B2 (en) Method for manufacturing photoelectric conversion element
US7906365B2 (en) Method of manufacturing solar cell panel
WO1998043304A1 (en) Photovoltaic element and method for manufacture thereof
JP2009531842A (en) Uneven transparent conductive layer and method for producing the same
JP4340031B2 (en) Surface roughening method for solar cell substrate
JP6423373B2 (en) Photoelectric conversion element and solar cell module including the same
JP2002141524A (en) Multi-bonded thin film solar cell
JP2005228953A (en) Photovoltaic element, formation method thereof, and manufacturing device
JP3492213B2 (en) Manufacturing method of thin film solar cell
JP2002076390A (en) Photovoltaic device and manufacturing method therefor
JP2000133828A (en) Thin-film solar cell and manufacture thereof
JPWO2012132961A1 (en) Method for manufacturing photoelectric conversion element
JP2011181620A (en) Crystal silicon-based solar cell
JP4804611B2 (en) Manufacturing method of integrated hybrid thin film solar cell
JP2014187165A (en) Method and device for manufacturing solar cell
JP2005228952A (en) Substrate for photovoltaic element, forming method thereof, and semiconductor device
JP2001217435A (en) Thin film solar cell and its manufacturing method
JP3085180B2 (en) Field effect solar cell
JP4131615B2 (en) Manufacturing method of integrated photovoltaic device
JP4162373B2 (en) Photovoltaic device manufacturing method
JP2004221142A (en) Photovoltaic device and its manufacturing method
JP3272222B2 (en) Method for manufacturing semiconductor device

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070501