JP2005228830A - Permanent magnet - Google Patents

Permanent magnet Download PDF

Info

Publication number
JP2005228830A
JP2005228830A JP2004034201A JP2004034201A JP2005228830A JP 2005228830 A JP2005228830 A JP 2005228830A JP 2004034201 A JP2004034201 A JP 2004034201A JP 2004034201 A JP2004034201 A JP 2004034201A JP 2005228830 A JP2005228830 A JP 2005228830A
Authority
JP
Japan
Prior art keywords
permanent magnet
insulating film
magnet
thickness
volume resistivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004034201A
Other languages
Japanese (ja)
Inventor
Nobuo Kawashita
宜郎 川下
Tetsuro Tayu
哲朗 田湯
Hideaki Ono
秀昭 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2004034201A priority Critical patent/JP2005228830A/en
Publication of JP2005228830A publication Critical patent/JP2005228830A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Abstract

<P>PROBLEM TO BE SOLVED: To provide, in a permanent magnet consisting of a plurality of permanent magnet element pieces integrated via an insulating film, a means with little reduction in magnet characteristics due to the insulating film for suppressing failures in heat generation, due to leakage current. <P>SOLUTION: The permanent magnet consists of the plurality of permanent magnet element pieces, integrated via the insulation film for electrically insulating the pieces from each other. In the permanent magnet, the coating resistance H(=d×ρ<SB>r</SB>÷ρ<SB>m</SB>), defined as a value that the product of the thickness d (m) of the insulation film and volume resistivity ρ<SB>r</SB>(Ωm) of the insulation film, is divided by the volume resistivity ρ<SB>m</SB>(Ωm) of the permanent magnet element piece, and the thickness t (mm) of the magnet element piece, satisfy the expression of H≥23,000×t<SP>-1</SP>. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、回転機器、電子部品、電子機器、モーター等に使用される永久磁石に関する。   The present invention relates to a permanent magnet used for rotating equipment, electronic components, electronic equipment, motors, and the like.

永久磁石式回転機器には、電気抵抗値が高いフェライト永久磁石が主に使用されてきたが、近年の回転機の高性能化にともない、より高性能な希土類永久磁石の使用頻度が増加している。   Permanent magnet rotating machines have mainly used ferrite permanent magnets with high electrical resistance. However, with the recent increase in performance of rotating machines, the use frequency of higher performance rare earth permanent magnets has increased. Yes.

しかし、希土類永久磁石は金属磁石であるために電気抵抗が低い。このため、回転機器等に組み込んだ場合、渦電流損失が増大し、モーター効率が低下する問題が生じる。また、温度上昇により磁石性能が低下するという問題がある。   However, since the rare earth permanent magnet is a metal magnet, its electric resistance is low. For this reason, when incorporated in a rotating device or the like, there arises a problem that eddy current loss increases and motor efficiency decreases. In addition, there is a problem that the magnet performance decreases due to the temperature rise.

以上の点を鑑み、希土類磁石材料の渦電流損失を低減するため、永久磁石を、複数の磁石素片からなる構成とし、各磁石素片を絶縁することによって、電気抵抗を高める試みがいくつか提案されている。特許文献1には、互いに絶縁された複数の永久磁石の薄板を積層させた永久磁石が開示されている。また、特許文献2および特許文献3には、複数の磁石素片を、互いに絶縁されるように、磁界と平行に配置した永久磁石が開示されている。   In view of the above points, in order to reduce the eddy current loss of rare earth magnet materials, some attempts have been made to increase the electric resistance by configuring the permanent magnet to be composed of a plurality of magnet segments and insulating each magnet segment. Proposed. Patent Document 1 discloses a permanent magnet in which thin plates of a plurality of permanent magnets insulated from each other are stacked. Patent Document 2 and Patent Document 3 disclose a permanent magnet in which a plurality of magnet pieces are arranged in parallel with a magnetic field so as to be insulated from each other.

しかしながら、複数の磁石素片が絶縁材を介して結合してなる永久磁石を作製する場合、絶縁材が厚すぎると、磁石成分が少なくなるため磁石の磁力が低下する。一方、絶縁材が薄すぎると、絶縁が不完全となり、漏洩電流が発生する虞がある。発熱は、(電流)×(体積抵抗率)に比例するため、僅かな漏洩電流でも、絶縁材の異常な発熱を引き起こす虞がある。このような、絶縁不良による発熱不良品は、磁石の大量生産時に発生し易く、品質安定の観点から改善が必要であった。
特開平4−79741号公報 特開平6−70520号公報 特開2001−25189号公報
However, in the case of producing a permanent magnet in which a plurality of magnet pieces are bonded via an insulating material, if the insulating material is too thick, the magnet component decreases, and the magnetic force of the magnet decreases. On the other hand, if the insulating material is too thin, insulation may be incomplete and leakage current may occur. Since heat generation is proportional to (current) 2 × (volume resistivity), even a slight leakage current may cause abnormal heat generation of the insulating material. Such heat generation defects due to insulation failure are likely to occur during mass production of magnets, and need to be improved from the viewpoint of quality stability.
Japanese Patent Laid-Open No. 4-79741 JP-A-6-70520 JP 2001-25189 A

そこで、本発明の目的は、複数の永久磁石素片が絶縁膜を介して一体化されてなる永久磁石において、絶縁膜による磁石特性の低減が少なく、かつ、漏洩電流による発熱不良を抑制する手段を提供することである。   Therefore, an object of the present invention is a means for suppressing a heat generation failure due to a leakage current in a permanent magnet in which a plurality of permanent magnet pieces are integrated via an insulating film, with little reduction in magnet characteristics due to the insulating film Is to provide.

本発明は、複数の永久磁石素片が、前記永久磁石素片を互いに電気的に絶縁するための絶縁膜を介して一体化されてなる永久磁石であって、前記絶縁膜の膜厚d(m)と前記絶縁膜の体積抵抗率ρ(Ωm)との積を、前記永久磁石素片の体積抵抗率ρ(Ωm)で除した値として定義される被覆抵抗H(=d×ρ÷ρ)と、前記永久磁石素片の板厚t(mm)とが、H≧23000×t−1を満たすことを特徴とする、永久磁石である。 The present invention is a permanent magnet in which a plurality of permanent magnet pieces are integrated through an insulating film for electrically insulating the permanent magnet pieces from each other, and the film thickness d ( m) and the volume resistivity ρ r (Ωm) of the insulating film divided by the volume resistivity ρ m (Ωm) of the permanent magnet element, the covering resistance H (= d × ρ r ÷ ρ m ) and the plate thickness t (mm) of the permanent magnet element satisfy H ≧ 23000 × t −1 .

本発明の永久磁石は、絶縁膜による磁石特性の低下が少なく、高い磁石特性が維持され、かつ、漏洩電流による発熱不良の発生が効果的に抑制される。   In the permanent magnet of the present invention, there is little deterioration in magnet characteristics due to the insulating film, high magnet characteristics are maintained, and generation of heat generation failure due to leakage current is effectively suppressed.

電磁気学の法則は、周期的磁場中におかれた磁石内に誘導される渦電流は、磁石の磁場方向に垂直な断面積が大きいほど、大きくなることを示している。従って、磁石を絶縁膜で分断して渦電流を抑制する場合、磁石を絶縁する絶縁膜には、磁石の断面積に応じて、満たすべき絶縁性が異なることが予想される。つまり、磁石の断面積に応じて、好適な絶縁性を有する絶縁膜が形成されるべきと考えられる。   The law of electromagnetism shows that the eddy current induced in a magnet placed in a periodic magnetic field increases as the cross-sectional area perpendicular to the magnetic field direction of the magnet increases. Therefore, when the magnet is divided by the insulating film to suppress the eddy current, it is expected that the insulating film that insulates the magnet has different insulating properties to be satisfied depending on the cross-sectional area of the magnet. That is, it is considered that an insulating film having suitable insulating properties should be formed according to the cross-sectional area of the magnet.

本発明者らは、磁石の断面積と絶縁膜の絶縁性との関係について調査すべく、高分子化合物からなる絶縁膜で絶縁された種々の板厚の磁石を作製し、一定の周期的磁場中での発熱量を比較した。その結果、渦電流の抑制に関する、磁石の断面積と絶縁膜の絶縁性との関係を見出し、本発明を完成するに至った。具体的には、隣接する永久磁石素片を絶縁する絶縁膜の膜厚をd(m)、絶縁膜の体積抵抗率をρ(Ωm)、永久磁石素片の体積抵抗率をρ(Ωm)としたとき、H=d×ρ÷ρで表される被覆抵抗Hと、永久磁石素片の板厚t(mm)とが、H≧23000×t−1を満たすように、永久磁石を設計する。好ましくは、H≧61500×t−1.1を満たすように永久磁石を設計する。前記関係を満たすように永久磁石を設計することによって、絶縁膜によって絶縁された永久磁石素片からなる永久磁石における渦電流損失が効果的に抑制される。 In order to investigate the relationship between the cross-sectional area of the magnet and the insulating property of the insulating film, the inventors have prepared magnets with various plate thicknesses insulated with an insulating film made of a polymer compound, and have a constant periodic magnetic field. The calorific value in the inside was compared. As a result, the inventors have found the relationship between the cross-sectional area of the magnet and the insulating property of the insulating film with respect to the suppression of eddy current, and have completed the present invention. Specifically, the thickness of the insulating film that insulates adjacent permanent magnet pieces is d (m), the volume resistivity of the insulating film is ρ r (Ωm), and the volume resistivity of the permanent magnet pieces is ρ m ( Ωm), the covering resistance H represented by H = d × ρ r ÷ ρ m and the plate thickness t (mm) of the permanent magnet element satisfy H ≧ 23000 × t −1 . Design permanent magnets. Preferably, the permanent magnet is designed to satisfy H ≧ 61500 × t −1.1 . By designing the permanent magnet so as to satisfy the above relationship, the eddy current loss in the permanent magnet made of the permanent magnet piece insulated by the insulating film is effectively suppressed.

また、絶縁膜の膜厚d(m)と、永久磁石素片の板厚t(mm)とが、好ましくはd≦0.10t、より好ましくはd≦0.05t、さらに好ましくはd≦0.02tを満足する。絶縁膜の膜厚dと永久磁石素片の板厚tとが、このような関係を満足するように永久磁石を設計することによって、磁石特性の低下を最小限に留めることが可能である。   The film thickness d (m) of the insulating film and the plate thickness t (mm) of the permanent magnet element are preferably d ≦ 0.10 t, more preferably d ≦ 0.05 t, and further preferably d ≦ 0. .02t is satisfied. By designing the permanent magnet so that the film thickness d of the insulating film and the plate thickness t of the permanent magnet element satisfy such a relationship, it is possible to minimize a decrease in magnet characteristics.

以下、本発明の永久磁石について詳細に説明する。   Hereinafter, the permanent magnet of the present invention will be described in detail.

本発明の永久磁石は、複数の永久磁石素片からなる。永久磁石素片とは、永久磁石を構成する複数の磁石であり、複数の永久磁石素片は、永久磁石素片を互いに電気的に絶縁するための絶縁膜を介して一体化され、永久磁石を構成している。   The permanent magnet of the present invention comprises a plurality of permanent magnet pieces. The permanent magnet segment is a plurality of magnets constituting the permanent magnet, and the plurality of permanent magnet segments are integrated through an insulating film for electrically insulating the permanent magnet segments from each other. Is configured.

永久磁石および永久磁石素片の形状については、特に限定されない。永久磁石が適用される部位に応じて、永久磁石の形状は決定されればよい。例えば、自動車のモーターに適用される場合には、モーターの大きさや形状に合わせて、永久磁石の大きさや形状が決定されればよい。   The shape of the permanent magnet and the permanent magnet piece is not particularly limited. The shape of the permanent magnet may be determined according to the part to which the permanent magnet is applied. For example, when applied to a motor of an automobile, the size and shape of the permanent magnet may be determined in accordance with the size and shape of the motor.

永久磁石の種類については、特に限定されず、各種金属磁石に適用可能であるが、好ましくは、本発明の永久磁石素片は希土類磁石である。絶縁膜によって、多少は磁石の磁力が低下してしまうので、希土類磁石のような磁力が強靭な磁石を用いることによって、絶縁膜による磁石特性の低下を最小限に抑制可能である。ただし、磁力がそれほど求められない用途に用いる場合など、特別の理由が存在するのであれば、希土類磁石以外の磁石を用いてもよく、このような実施形態も本発明の技術的範囲に含まれうる。   The kind of the permanent magnet is not particularly limited and can be applied to various metal magnets. Preferably, the permanent magnet piece of the present invention is a rare earth magnet. Since the magnetic force of the magnet is somewhat reduced by the insulating film, the use of a magnet having a strong magnetic force such as a rare earth magnet can suppress the deterioration of the magnet characteristics due to the insulating film to the minimum. However, a magnet other than the rare earth magnet may be used as long as there is a special reason such as a case where the magnetic force is not required so much, and such an embodiment is also included in the technical scope of the present invention. sell.

希土類磁石としては、Nd−Fe−B系磁石、Sm−Co系磁石が挙げられる。希土類磁石を構成する主要元素は、必要に応じて、他の元素によって置換されてもよい。例えば、Ndの一部は、Pr、Dy、Tbなどによって置換されてもよいし、Feの一部はCoによって置換されてもよい。   Examples of rare earth magnets include Nd—Fe—B magnets and Sm—Co magnets. The main elements constituting the rare earth magnet may be replaced with other elements as necessary. For example, a part of Nd may be substituted with Pr, Dy, Tb, etc., and a part of Fe may be substituted with Co.

永久磁石の形状は、前述のように特に限定されないが、本発明においては、永久磁石素片の板厚t(mm)および永久磁石素片の体積抵抗率ρ(Ωm)が、前述の規定を満たすように設計される。 The shape of the permanent magnet is not particularly limited as described above, but in the present invention, the plate thickness t (mm) of the permanent magnet piece and the volume resistivity ρ m (Ωm) of the permanent magnet piece are defined as described above. Designed to meet.

永久磁石素片の板厚t(mm)とは、永久磁石に対して外部から印加される周期的磁場に垂直な方向の磁石断面における、永久磁石素片の短辺の長さを意味する。特許文献2の図2に開示されている永久磁石のように、永久磁石素片の短辺が、永久磁石の中心軸側と外部側とで異なる場合には、その平均値を意味する。また、永久磁石素片の断面が、周期的磁場の方向に変化している場合には、その平均値を意味する。永久磁石素片の板厚tは、通常の測定手段によって測定すればよい。組みあがっている永久磁石について、板厚tを測定してもよいし、組みあがっている磁石を分解して、板厚tを測定してもよい。   The plate thickness t (mm) of the permanent magnet element means the length of the short side of the permanent magnet element in the magnet cross section in the direction perpendicular to the periodic magnetic field applied to the permanent magnet from the outside. As in the permanent magnet disclosed in FIG. 2 of Patent Document 2, when the short side of the permanent magnet piece is different between the central axis side and the external side of the permanent magnet, the average value is meant. Moreover, when the cross section of a permanent magnet piece is changing in the direction of a periodic magnetic field, the average value is meant. The plate thickness t of the permanent magnet element may be measured by a normal measuring means. With respect to the assembled permanent magnet, the plate thickness t may be measured, or the assembled magnet may be disassembled and the plate thickness t may be measured.

板厚tは、厚すぎると切断により生じる効果が乏しくなる虞があり、薄すぎると切断加工費が増加する虞がある。このため、板厚tは、好ましくは0.5mm〜50mm、より好ましくは1.0mm〜20mmである。   If the plate thickness t is too thick, the effect produced by cutting may be poor, and if it is too thin, the cutting cost may increase. For this reason, the plate thickness t is preferably 0.5 mm to 50 mm, more preferably 1.0 mm to 20 mm.

永久磁石素片の体積抵抗率ρ(Ωm)は、永久磁石素片における電流の流れにくさを示す指標であり、単位断面積を持つ材料の電気抵抗値として定義される。体積抵抗率が高いほど絶縁性が高い。体積抵抗率は、JIS K6911などの公知の測定方法に準拠して測定されうる。特に限定されないが、永久磁石素片の体積抵抗率ρは、通常は、0.5×10−4〜2.5×10−4μΩm程度である。 The volume resistivity ρ m (Ωm) of the permanent magnet segment is an index indicating the difficulty of current flow in the permanent magnet segment, and is defined as an electric resistance value of a material having a unit cross-sectional area. The higher the volume resistivity, the higher the insulation. The volume resistivity can be measured according to a known measurement method such as JIS K6911. Although not particularly limited, the volume resistivity ρ m of the permanent magnet element is usually about 0.5 × 10 −4 to 2.5 × 10 −4 μΩm.

永久磁石素片間に配置される絶縁膜としては、電気伝導性の低い、セラミックス、エポキシ樹脂やビニル樹脂などの高分子樹脂、無機皮膜などが用いられうる。ただし、これらに限定されるわけではなく、永久磁石素片間を絶縁可能であり、本発明において規定する条件を満足する材料であれば、他の材料が用いられてもよい。   As the insulating film disposed between the permanent magnet pieces, ceramics having a low electrical conductivity, polymer resin such as epoxy resin or vinyl resin, inorganic film, or the like can be used. However, the present invention is not limited to these, and other materials may be used as long as they can insulate the permanent magnet pieces and satisfy the conditions defined in the present invention.

絶縁膜の形状は、特に限定されないが、少なくとも、隣接する永久磁石素片間には、絶縁膜が存在し、永久磁石素片が絶縁膜によって絶縁される。本発明においては、絶縁膜の膜厚d(m)および絶縁膜の体積抵抗率ρ(Ωm)が、前述の規定を満たすように設計される。 Although the shape of the insulating film is not particularly limited, an insulating film exists at least between adjacent permanent magnet pieces, and the permanent magnet pieces are insulated by the insulating film. In the present invention, the film thickness d (m) of the insulating film and the volume resistivity ρ r (Ωm) of the insulating film are designed to satisfy the above-mentioned definition.

絶縁膜の膜厚d(m)は、隣接する永久磁石素片間に存在する絶縁膜の厚さを意味する。絶縁膜の厚さは、使用する絶縁材の質量を調節することによって制御可能である。可能であれば、所定の厚さの絶縁膜を永久磁石素片の表面に付着させてもよい。絶縁膜の膜厚dは、絶縁膜を電子顕微鏡などの顕微鏡で観察することによって、測定されうる。絶縁膜の膜厚dは、安定した絶縁性能を発現させるためには、均一であることが好ましいが、絶縁性能に影響が出ない程度であれば、多少の変化があってもよい。膜厚dが不均一である場合には、絶縁膜の膜厚dは、平均値が採用される。平均値は、例えば、9等分された面内をそれぞれ測定し、それらの平均を算出することによって求めてもよいし、用いる絶縁膜の質量から平均膜厚を算出してもよい。特に限定されないが、絶縁膜の膜厚dは、通常は、0.01〜0.1mm程度である。   The film thickness d (m) of the insulating film means the thickness of the insulating film existing between adjacent permanent magnet pieces. The thickness of the insulating film can be controlled by adjusting the mass of the insulating material used. If possible, an insulating film having a predetermined thickness may be attached to the surface of the permanent magnet piece. The film thickness d of the insulating film can be measured by observing the insulating film with a microscope such as an electron microscope. The thickness d of the insulating film is preferably uniform in order to exhibit stable insulating performance, but may be slightly changed as long as the insulating performance is not affected. When the film thickness d is not uniform, an average value is adopted as the film thickness d of the insulating film. The average value may be obtained, for example, by measuring each of the nine in-plane planes and calculating the average thereof, or the average film thickness may be calculated from the mass of the insulating film to be used. Although not particularly limited, the thickness d of the insulating film is usually about 0.01 to 0.1 mm.

絶縁膜の体積抵抗率ρ(Ωm)は、永久磁石素片の体積抵抗率ρ(Ωm)と同様、絶縁膜における電流の流れにくさを示す指標であり、単位断面積を持つ材料の電気抵抗値として定義される。体積抵抗率は、JIS K6911などの公知の測定方法に準拠して測定されうる。特に限定されないが、絶縁膜の体積抵抗率ρは、通常は、10〜1015Ωm程度である。 The volume resistivity ρ r (Ωm) of the insulating film is an index indicating the difficulty of current flow in the insulating film, like the volume resistivity ρ m (Ωm) of the permanent magnet piece. Defined as electrical resistance value. The volume resistivity can be measured according to a known measurement method such as JIS K6911. Although not particularly limited, the volume resistivity ρ m of the insulating film is usually about 10 5 to 10 15 Ωm.

本発明の永久磁石の用途は、特に限定されないが、モーターに適用されうる。本発明の永久磁石は、渦電流の発生が抑制され、その上、高い磁石性能を有する。このため、本発明の永久磁石を用いて製造されたモーターを利用すれば、モーターの連続出力を高めることが容易に可能であり、中から大出力のモーターとして好適といえる。また、本発明の永久磁石を用いたモーターは、磁石特性が優れるため、製品の小型軽量化が図れる。例えば、自動車用部品に適用した場合には、車体の軽量化に伴う燃費の向上が可能である。さらに、特に電気自動車やハイブリッド電気自動車の駆動用モーターとしても有効である。これまではスペースの確保が困難であった場所にも駆動用モーターを搭載することが可能となり、電気自動車やハイブリッド自動車の汎用化に寄与すると考えられる。   The use of the permanent magnet of the present invention is not particularly limited, but can be applied to a motor. In the permanent magnet of the present invention, generation of eddy current is suppressed, and in addition, it has high magnet performance. For this reason, if the motor manufactured using the permanent magnet of the present invention is used, the continuous output of the motor can be easily increased, and it can be said that it is suitable as a medium to large output motor. Moreover, since the motor using the permanent magnet of the present invention has excellent magnet characteristics, the product can be reduced in size and weight. For example, when applied to automotive parts, fuel efficiency can be improved as the vehicle body becomes lighter. Furthermore, it is particularly effective as a drive motor for electric vehicles and hybrid electric vehicles. Drive motors can be installed in places where it was difficult to secure space so far, which will contribute to the generalization of electric vehicles and hybrid vehicles.

以下、永久磁石素片としてのNd−Fe−B系希土類焼結磁石を、絶縁膜としての高分子樹脂膜で接着して構成された永久磁石について、各パラメータと電池特性との相関性を示す。   Hereinafter, a correlation between each parameter and battery characteristics is shown for a permanent magnet formed by bonding a Nd—Fe—B rare earth sintered magnet as a permanent magnet piece with a polymer resin film as an insulating film. .

<実験例1>
20×20×5mmのNd−Fe−B系希土類焼結磁石(Br:13.5kG、iHc:16.5kOe、体積抵抗率ρ:0.000002Ωm)を、20×20mmの面に垂直な方向に2分割した。分割された永久磁石素片を、絶縁膜として作用するエポキシ樹脂(体積抵抗率ρ:1.0×1013Ωm)を用いて接着することによって、10×20×5mmの2つの永久磁石素片が、絶縁膜を介して一体化された永久磁石を得た。使用されるエポキシ樹脂の質量を調節することによって、絶縁膜の厚さを0.01μmに制御した。絶縁膜の厚さは、電子顕微鏡によって組織観察をすることによって、測定された。
<Experimental example 1>
A 20 × 20 × 5 mm Nd—Fe—B rare earth sintered magnet (Br: 13.5 kG, iHc: 16.5 kOe, volume resistivity ρ m : 0.000002 Ωm) in a direction perpendicular to a 20 × 20 mm surface It was divided into two. By bonding the divided permanent magnet pieces using an epoxy resin (volume resistivity ρ m : 1.0 × 10 13 Ωm) acting as an insulating film, two permanent magnet elements of 10 × 20 × 5 mm A permanent magnet in which the pieces were integrated through an insulating film was obtained. The thickness of the insulating film was controlled to 0.01 μm by adjusting the mass of the epoxy resin used. The thickness of the insulating film was measured by observing the structure with an electron microscope.

作製した永久磁石を、磁場強度0.1T、周波数1000Hzの周期的磁場中で10分間放置し、その際の温度変化および発熱量を観察した。発熱量は、絶縁膜が配置されていない、同様の大きさの永久磁石における発熱量を1とし、この発熱量に対する相対発熱量として評価した。なお、磁場は、20×20mmの面に垂直な方向に印加した。従って、永久磁石素片の板厚tは10mmである。条件および評価結果について、表1に示す。   The produced permanent magnet was allowed to stand for 10 minutes in a periodic magnetic field having a magnetic field strength of 0.1 T and a frequency of 1000 Hz, and the temperature change and heat generation at that time were observed. The calorific value was evaluated as a relative calorific value with respect to this calorific value, assuming that the calorific value of a permanent magnet of the same size with no insulating film disposed. The magnetic field was applied in a direction perpendicular to the 20 × 20 mm surface. Therefore, the plate thickness t of the permanent magnet element is 10 mm. The conditions and evaluation results are shown in Table 1.

また、得られた永久磁石の残留磁化Br、および保磁力iHcを、BHトレーサーを用いて測定した。絶縁膜の膜厚dを永久磁石素片の板厚tで除した値とともに、表2に示す。また、残留磁化Brは、分割されていないNd−Fe−B系希土類焼結磁石のBrを基準として、どの程度のBrが残留しているかをパーセントで示した。   Further, the residual magnetization Br and the coercive force iHc of the obtained permanent magnet were measured using a BH tracer. Table 2 shows values obtained by dividing the thickness d of the insulating film by the thickness t of the permanent magnet piece. Further, the residual magnetization Br indicates the amount of Br remaining in percent based on the Br of the non-divided Nd—Fe—B rare earth sintered magnet.

<実験例2〜38>
Nd−Fe−B系希土類焼結磁石の分割数(2、4、5、または10分割)、絶縁膜として用いられる高分子樹脂の種類(ポリビニル樹脂、またはエポキシ樹脂)、絶縁膜の膜厚を、表1および表2に示すように変化させて、実験例1と同様の手順により種々の永久磁石を得た。
<Experimental Examples 2-38>
The number of divisions (2, 4, 5, or 10 divisions) of the Nd—Fe—B rare earth sintered magnet, the type of polymer resin (polyvinyl resin or epoxy resin) used as the insulation film, and the thickness of the insulation film Various permanent magnets were obtained by the same procedure as in Experimental Example 1, with changes as shown in Tables 1 and 2.

Figure 2005228830
Figure 2005228830

Figure 2005228830
Figure 2005228830

図1は、横軸にH=d×ρ÷ρで表される被覆抵抗Hを、縦軸に相対発熱量をとり、作製した永久磁石の一部のデータをプロットしたグラフである。図1に示すように、被覆抵抗Hを大きくすると、発熱量は磁石の板厚tによって決まる値に収束する。つまり、渦電流の発生による発熱を抑制するためには、板厚tによって決定される所定の値以上の被覆抵抗Hを有していればよい。例えば、板厚t=2mmの場合には、被覆抵抗Hは、10(m)程度あれば充分であり、被覆抵抗Hがこの値以上となるように永久磁石を設計すればよい。 FIG. 1 is a graph in which data of a part of a produced permanent magnet is plotted, with the horizontal axis representing the coating resistance H represented by H = d × ρ r ÷ ρ m and the vertical axis representing the relative heat value. As shown in FIG. 1, when the covering resistance H is increased, the heat generation amount converges to a value determined by the magnet thickness t. That is, in order to suppress the heat generation due to the generation of eddy current, it is sufficient that the covering resistance H is equal to or greater than a predetermined value determined by the plate thickness t. For example, when the plate thickness t = 2 mm, it is sufficient that the covering resistance H is about 10 4 (m), and the permanent magnet may be designed so that the covering resistance H is equal to or greater than this value.

図2は、横軸に板厚t、縦軸に被覆抵抗Hをとり、作製した永久磁石の一部のデータをプロットしたグラフである。図2において、◎は「サンプルの相対発熱量<その板厚における相対発熱量の下限値+0.01」である試料を示し、○は「その板厚における相対発熱量の下限値+0.01<サンプルの相対発熱量<その板厚における相対発熱量の下限値+0.02」である試料を示し、×は「その板厚における相対発熱量の下限値+0.02<サンプルの相対発熱量」である試料を示す。図2に示すように、相対発熱量を収束させるためには、「H≧23000×t−1」を満足すればよく、好ましくは、「H≧61500×t−1.1」を満足すればよいことがわかる。 FIG. 2 is a graph in which data of a part of the produced permanent magnet is plotted with the thickness t on the horizontal axis and the covering resistance H on the vertical axis. In FIG. 2, “◎” indicates a sample where “relative calorific value of sample <lower limit value of relative calorific value at the plate thickness + 0.01”, and ◯ indicates “lower limit value of relative calorific value at the plate thickness + 0.01 < Samples where the relative calorific value of the sample <the lower limit value of the relative calorific value at the plate thickness + 0.02 ”are shown, and x is“ the lower limit value of the relative calorific value at the plate thickness + 0.02 <the relative calorific value of the sample ”. A sample is shown. As shown in FIG. 2, in order to converge the relative calorific value, it is sufficient to satisfy “H ≧ 23000 × t −1 ”, and preferably “H ≧ 61500 × t −1.1 ”. I know it ’s good.

また、磁石特性を向上させる観点からは、表2に示すように、膜厚dと板厚tとがd≦0.10tを満たす、即ち、d/tが0.1以下であることが好ましい。表2に示すように、d≦0.10tを満足する永久磁石は、残留磁化が90%以上と高い磁気特性が維持されている。また、d≦0.05tを満足する永久磁石は、残留磁化が95%以上であり、d≦0.02tを満足する永久磁石は、残留磁化が98%以上であった。   Further, from the viewpoint of improving the magnet characteristics, as shown in Table 2, it is preferable that the film thickness d and the plate thickness t satisfy d ≦ 0.10t, that is, d / t is 0.1 or less. . As shown in Table 2, the permanent magnet satisfying d ≦ 0.10t maintains a high magnetic characteristic with a residual magnetization of 90% or more. In addition, the permanent magnet satisfying d ≦ 0.05t has a residual magnetization of 95% or more, and the permanent magnet satisfying d ≦ 0.02t has a residual magnetization of 98% or more.

<大量生産適合性評価>
本発明の永久磁石の大量生産適合性を評価するため、20×20×5mmのNd−Fe−B系希土類永久磁石(Br:13.5kG、iHc:16.5kOe)を、20×20mmの面に垂直な方向に5分割した。分割された永久磁石素片を、本発明で定める規定(H≧23000×t−1)に合致するように絶縁膜を介して貼りあわせ、100個の永久磁石を作製した。また、従来用いられていた手法にそって、100個の絶縁膜によって渦電流の発生が防止された永久磁石を作製した。
<Mass production suitability evaluation>
In order to evaluate the suitability for mass production of the permanent magnet of the present invention, a 20 × 20 × 5 mm Nd—Fe—B rare earth permanent magnet (Br: 13.5 kG, iHc: 16.5 kOe) It was divided into 5 in the direction perpendicular to The divided permanent magnet pieces were bonded together via an insulating film so as to meet the definition (H ≧ 23000 × t −1 ) defined in the present invention, and 100 permanent magnets were produced. Further, in accordance with a conventionally used method, a permanent magnet in which generation of eddy currents was prevented by 100 insulating films was produced.

製造された永久磁石について、周期的磁場中で放置し、その際の発熱量を観察した。図3は、本発明の永久磁石を製造した場合における相対発熱量の分布、および従来の永久磁石を製造した場合における相対発熱量の分布を示すグラフである。相対発熱量が0.02以下である永久磁石を合格とし、0.02を上回る相対発熱量を示した永久磁石は不良品と判定した。図3から明らかなように、本発明の永久磁石は不良品の発生率が低く、大量生産にも適している。   About the manufactured permanent magnet, it was left to stand in a periodic magnetic field, and the emitted-heat amount in that case was observed. FIG. 3 is a graph showing the distribution of relative heat generation when the permanent magnet of the present invention is manufactured, and the distribution of relative heat generation when the conventional permanent magnet is manufactured. A permanent magnet having a relative calorific value of 0.02 or less was accepted, and a permanent magnet that exhibited a relative calorific value exceeding 0.02 was determined to be defective. As is apparent from FIG. 3, the permanent magnet of the present invention has a low incidence of defective products and is suitable for mass production.

横軸にH=d×ρ÷ρで表される被覆抵抗Hを、縦軸に相対発熱量をとり、作製した永久磁石の一部のデータをプロットしたグラフである。It is the graph which plotted some data of the produced permanent magnet, with the horizontal axis representing the coating resistance H represented by H = d × ρ r ÷ ρ m and the vertical axis representing the relative calorific value. 横軸に板厚t、縦軸に被覆抵抗Hをとり、作製した永久磁石の一部のデータをプロットしたグラフである。It is the graph which plotted some data of the produced permanent magnet, with the plate thickness t on the horizontal axis and the covering resistance H on the vertical axis. 本発明の永久磁石を製造した場合における相対発熱量の分布、および従来の永久磁石を製造した場合における相対発熱量の分布を示すグラフである。It is a graph which shows the distribution of the relative calorific value when the permanent magnet of the present invention is manufactured, and the distribution of the relative calorific value when the conventional permanent magnet is manufactured.

Claims (4)

複数の永久磁石素片が、前記永久磁石素片を互いに電気的に絶縁するための絶縁膜を介して一体化されてなる永久磁石であって、
前記絶縁膜の膜厚d(m)と前記絶縁膜の体積抵抗率ρ(Ωm)との積を、前記永久磁石素片の体積抵抗率ρ(Ωm)で除した値として定義される被覆抵抗H(=d×ρ÷ρ)と、前記永久磁石素片の板厚t(mm)とが、H≧23000×t−1を満たすことを特徴とする、永久磁石。
A plurality of permanent magnet pieces are permanent magnets integrated through an insulating film for electrically insulating the permanent magnet pieces from each other,
It is defined as a value obtained by dividing the product of the film thickness d (m) of the insulating film and the volume resistivity ρ r (Ωm) of the insulating film by the volume resistivity ρ m (Ωm) of the permanent magnet element. A permanent magnet, wherein the covering resistance H (= d × ρ r ÷ ρ m ) and the plate thickness t (mm) of the permanent magnet element satisfy H ≧ 23000 × t −1 .
前記絶縁膜の膜厚dと前記永久磁石素片の板厚tとが、d≦0.10tを満たすことを特徴とする、請求項1に記載の永久磁石。   The permanent magnet according to claim 1, wherein a thickness d of the insulating film and a plate thickness t of the permanent magnet element satisfy d ≦ 0.10 t. 前記永久磁石素片が希土類磁石であることを特徴とする、請求項1または2に記載の永久磁石。   The permanent magnet according to claim 1, wherein the permanent magnet element is a rare earth magnet. 請求項1〜3のいずれか1項に記載の永久磁石を用いてなるモーター。   The motor using the permanent magnet of any one of Claims 1-3.
JP2004034201A 2004-02-10 2004-02-10 Permanent magnet Withdrawn JP2005228830A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004034201A JP2005228830A (en) 2004-02-10 2004-02-10 Permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004034201A JP2005228830A (en) 2004-02-10 2004-02-10 Permanent magnet

Publications (1)

Publication Number Publication Date
JP2005228830A true JP2005228830A (en) 2005-08-25

Family

ID=35003317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004034201A Withdrawn JP2005228830A (en) 2004-02-10 2004-02-10 Permanent magnet

Country Status (1)

Country Link
JP (1) JP2005228830A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009116540A1 (en) * 2008-03-18 2009-09-24 日東電工株式会社 Permanent magnet for motor, and method for manufacturing the permanent magnet for motor
JP2012050329A (en) * 2011-11-24 2012-03-08 Nitto Denko Corp Permanent magnet for motor and manufacturing method of permanent magnet for motor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009116540A1 (en) * 2008-03-18 2009-09-24 日東電工株式会社 Permanent magnet for motor, and method for manufacturing the permanent magnet for motor
JP2009225608A (en) * 2008-03-18 2009-10-01 Nitto Denko Corp Permanent magnet for motor and method of manufacturing the permanent magnet for motor
CN101978577A (en) * 2008-03-18 2011-02-16 日东电工株式会社 Permanent magnet for motor, and method for manufacturing the permanent magnet for motor
CN103762762A (en) * 2008-03-18 2014-04-30 日东电工株式会社 Permanent magnet for motor, and method for manufacturing the permanent magnet for motor
US9093218B2 (en) 2008-03-18 2015-07-28 Nitto Denko Corporation Permanent magnet for motor, and method for manufacturing the permanent magnet for motor
JP2012050329A (en) * 2011-11-24 2012-03-08 Nitto Denko Corp Permanent magnet for motor and manufacturing method of permanent magnet for motor

Similar Documents

Publication Publication Date Title
US10381149B2 (en) Composite material, reactor, converter, and power conversion device
CN1258774C (en) Bulk amorphous metal magnetic component
JP2010238920A (en) Reactor
Bernier et al. Additive manufacturing of soft and hard magnetic materials used in electrical machines
US20150104678A1 (en) Structure for power electronic parts housing of vehicle
JPWO2021033567A1 (en) How to make magnetic wedges, rotary electric machines, and magnetic wedges
JP2011199265A (en) Reactor and method for manufacturing the same
JP2005228830A (en) Permanent magnet
US20200312548A1 (en) Multicomponent magnet assemblies for electrical machines
EP2810358B1 (en) High voltage stator coil with reduced power tip-up
JP4577759B2 (en) Magnetic core and wire ring parts using the same
JP5658485B2 (en) Magnetic element
JP2008141012A (en) Reactor
WO2018216441A1 (en) Reactor
JP5398636B2 (en) Magnetic element
JP2005251995A (en) Permanent magnet
JP2002356614A (en) Resin magnet
Qasim et al. Comparison of the dielectric properties of functionally graded material dielectrics and layered dielectrics used for electric stress control
CN110576656A (en) Laminated body for iron core
JP2011181942A (en) Permanent magnet
KR102632108B1 (en) Transformer core for cut-stack transformer and transformer comprising same
JP6472614B2 (en) Coil parts
JP2005259811A (en) Permanent magnet
JP2015198550A (en) Cylindrical magnet assembly, magnet assembly and electric motor
WO2024034009A1 (en) Method for manufacturing magnetic wedge, magnetic wedge, stator for rotating electric machine, and rotating electric machine

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070501