JP2005227161A - Measuring instrument for measuring carbon component in water - Google Patents

Measuring instrument for measuring carbon component in water Download PDF

Info

Publication number
JP2005227161A
JP2005227161A JP2004036887A JP2004036887A JP2005227161A JP 2005227161 A JP2005227161 A JP 2005227161A JP 2004036887 A JP2004036887 A JP 2004036887A JP 2004036887 A JP2004036887 A JP 2004036887A JP 2005227161 A JP2005227161 A JP 2005227161A
Authority
JP
Japan
Prior art keywords
water
sample
unit
liquid film
titanium oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004036887A
Other languages
Japanese (ja)
Inventor
Yozo Morita
洋造 森田
Fumikazu Ogishi
史和 大岸
Kenji Iharada
健志 居原田
Hiroaki Nakanishi
博昭 中西
Isao Katadokoro
功 片所
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2004036887A priority Critical patent/JP2005227161A/en
Publication of JP2005227161A publication Critical patent/JP2005227161A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To extract CO<SB>2</SB>dissolved in sample water without using a gas-permeable film. <P>SOLUTION: A CO<SB>2</SB>extraction part 8 is so constituted that two quartz glass plates 14a and 14b are arranged so that the plane parts thereof are mutually opposed so as to leave an air layer and titanium oxide films 16a and 16b are respectively formed to the opposed plane parts as photocatalyst layers. The sample water issued from an oxidizing reaction part 6 flows along the surface of the titanium oxide layer 16a and ion exchange water flows along the surface of the titanium oxide layer 16b. The liquids flowing along the titanium oxide films 16a and 16b flow as thin liquid films by the catalytic action of titanium oxide and the giving and receiving of CO<SB>2</SB>is performed between the sample water and ion exchanged water. The sample water through the CO<SB>2</SB>extraction part 8 is discharged and the ion exchanged water is judged to a detection part 10. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、製薬用水、半導体製造工程水、冷却水、ボイラー水、水道水などを評価するTOC(有機体炭素)計などの炭素成分測定装置に関し、例えば純水や超純水など不純物の少ない水の有機性汚染を評価する分析計として利用するのに適する測定装置に関する。   The present invention relates to a carbon component measuring apparatus such as a TOC (organic carbon) meter for evaluating pharmaceutical water, semiconductor manufacturing process water, cooling water, boiler water, tap water, etc., for example, there are few impurities such as pure water and ultrapure water. The present invention relates to a measuring apparatus suitable for use as an analyzer for evaluating organic contamination of water.

TOCを測定する方法の一つに、例えば、試料液にペルオキソ二硫酸カリウムを添加し加熱して有機物をCO2に変換し、その試料液からガス透過膜を介して脱イオンされた水にCO2を移行させ、脱イオン水の電気伝導度の変化からCO2量を定量し、TOC値を求める方法がある(特許文献1参照。)。 One method for measuring TOC is, for example, adding potassium peroxodisulfate to a sample solution and heating to convert the organic matter to CO 2, and then converting the sample solution into CO deionized water through a gas permeable membrane. 2 is shifted to, to quantify the amount of CO 2 from a change in the electrical conductivity of the deionized water, there is a method of determining the TOC value (see Patent Document 1.).

その具体的な例としては、例えば、有機化合物を含む試料を酸化し、試料の酸化前の電気伝導度と酸化後の電気伝導度との差分を、少なくとも2個の電極を有する電気伝導度測定セルを酸化前の位置と酸化後の位置に配置し、両電気伝導度測定セルの位置間の試料の電気伝導度の差分として出力する差伝導度計を用いて検出することにより、有機化合物の酸化分解によって生じた電気伝導度増加量を測定し、この電気伝導度増加量から試料中のTOC量を定量する方法が挙げられる(特許文献2参照。)。
特許第2510368号公報 特開2001−281189号公報
As a specific example, for example, a sample containing an organic compound is oxidized, and the difference between the electrical conductivity before oxidation and the electrical conductivity after oxidation of the sample is measured for electrical conductivity having at least two electrodes. By placing the cell in the pre-oxidation position and the post-oxidation position and detecting it using a differential conductivity meter that outputs the difference in the electrical conductivity of the sample between the positions of both conductivity measuring cells, There is a method of measuring the amount of increase in electrical conductivity caused by oxidative decomposition and quantifying the amount of TOC in the sample from the amount of increase in electrical conductivity (see Patent Document 2).
Japanese Patent No. 2510368 JP 2001-281189 A

ガス透過膜を用いてCO2を抽出する方法では、CO2の抽出に長い時間を要する上、抽出効率が低い。
そこで本発明は、試料水からのCO2の抽出をガス透過膜を用いずに行なうことを目的とする。
In the method of extracting CO 2 using a gas permeable membrane, extraction of CO 2 takes a long time and the extraction efficiency is low.
Accordingly, an object of the present invention is to perform extraction of CO 2 from sample water without using a gas permeable membrane.

本発明は、試料水中の炭素成分を抽出可能なCO2に変換する試料調整部と、試料調整部から供給された試料水中のCO2を抽出するCO2抽出部と、CO2抽出部で取り出したCO2を検出する検出部とを備えた全有機炭素計であって、CO2抽出部は、2枚の板状部材が平面部分が向き合うように配置され、一方の平面部分の表面には試料液が液膜となって流れ、他方の平面部分の表面には純水が液膜となって流れ、両液膜間の間隔は試料側の液膜から純水側の液膜へ気相を介してCO2が移動しうる微少間隔に設定されていることを特徴とするものである。
本発明のCO2抽出部では試料側の液膜と純水側の液膜が気相を介して微少間隔で対面する。試料側の液膜は試料調整部によって試料水中の炭素成分が抽出可能なCO2になっており、界面での気液平衡により試料液中のCO2が気相に移動する。純水側の液膜にはCO2は存在せず、しかも中性であるので、純水側の気液界面では気液平衡により気相中のCO2が純水の液膜に移動しやすい。特に、試料調整部が酸性化部を含んで試料液膜が酸性になっている場合には、試料側の液膜界面での液相から気相へのCO2の移動が促進される。
試料側の液膜と純水側の液膜が対面する微少間隔は上に述べたCO2移動が起こる間隔を意味している。その間隔は狭いほどCO2の移動には好都合であるが、試料側の液膜と純水側の液膜が直接接触するまでに接近してはならず、逆にその間隔が広くなるほどCO2が気相中にとどまって純水側の液膜に移動しにくくなるので、その微少間隔としては100〜400μm程度が適当である。
The present invention includes a sample preparation section for converting carbon components of the sample water to extractable CO 2, and CO 2 extractor for extracting CO 2 water sample supplied from the sample adjustment section, taken out in a CO 2 extractor The CO 2 extraction unit is provided with a detecting unit for detecting CO 2 , wherein the CO 2 extracting unit is arranged such that two plate-like members face each other, and the surface of one plane part is The sample liquid flows as a liquid film, and pure water flows as a liquid film on the surface of the other flat surface. The distance between the two liquid films is a gas phase from the liquid film on the sample side to the liquid film on the pure water side. It is characterized in that it is set at a very small interval at which CO 2 can move through
In the CO 2 extraction unit of the present invention, the liquid film on the sample side and the liquid film on the pure water side face each other at a minute interval through the gas phase. The liquid film on the sample side is CO 2 from which the carbon component in the sample water can be extracted by the sample adjustment unit, and the CO 2 in the sample liquid moves to the gas phase due to gas-liquid equilibrium at the interface. Since there is no CO 2 in the liquid film on the pure water side and it is neutral, CO 2 in the gas phase easily moves to the liquid film in the pure water due to gas-liquid equilibrium at the gas-liquid interface on the pure water side. . In particular, when the sample preparation section includes an acidification section and the sample liquid film is acidic, the movement of CO 2 from the liquid phase to the gas phase at the liquid film interface on the sample side is promoted.
The minute interval between the liquid film on the sample side and the liquid film on the pure water side means the interval at which the above-described CO 2 movement occurs. Although the interval is convenient to move the narrow enough CO 2, the liquid film and the pure water side of the liquid film of the sample side must not close until the direct contact, the more the interval conversely becomes wide CO 2 Since it remains in the gas phase and is difficult to move to the liquid film on the pure water side, the fine interval is suitably about 100 to 400 μm.

向き合った2つの平面部分の表面は超親水性又は粗面とすることができる。
その場合、超親水性の表面は光触媒層が形成されたものであってもよい。
光触媒の作用を高めるために、光触媒層に向けて光を照射する光源を設けるのが好ましい。これにより、光触媒層の超親水性作用を維持し、またその表面の清浄を保つことができる。
The surfaces of the two planar portions facing each other can be superhydrophilic or rough.
In that case, the superhydrophilic surface may have a photocatalytic layer formed thereon.
In order to enhance the action of the photocatalyst, it is preferable to provide a light source that emits light toward the photocatalyst layer. Thereby, the superhydrophilic action of the photocatalyst layer can be maintained, and the surface can be kept clean.

本発明で用いる光触媒の一例としては酸化チタン(TiO2)を挙げることができる。酸化チタンの触媒作用として以下の点を挙げることができる。
(1)有機物の分解除去作用。
(2)超親水性により物体表面に付着する水分を薄い一様な膜として水滴となるのを防ぐ超親水作用。
塗布などの方法により板状部材の表面に酸化チタン膜を形成することで、その超親水作用により板状部材表面の濡れ性が高まり、板状部材の表面上を流下する液体は一様な薄い液膜となる。
粗面は多孔性又はスリガラス状に加工された表面のことである。例えばガラス板の表面をサンドブラスト法や化学的エッチング法により加工して得ることができる。
An example of the photocatalyst used in the present invention is titanium oxide (TiO 2 ). The following points can be mentioned as the catalytic action of titanium oxide.
(1) Decomposition removal action of organic matter.
(2) Super-hydrophilic action that prevents water adhering to the object surface from forming a water droplet as a thin uniform film due to super-hydrophilicity.
By forming a titanium oxide film on the surface of the plate-like member by a method such as coating, the wettability of the plate-like member surface is enhanced by its superhydrophilic action, and the liquid flowing down on the surface of the plate-like member is uniformly thin It becomes a liquid film.
The rough surface is a surface processed into a porous or ground glass shape. For example, the surface of the glass plate can be obtained by processing by a sandblasting method or a chemical etching method.

この装置の試料調整部は、試料水中の有機体炭素を酸化分解させてCO2に変換する酸化反応部又は酸性化部を備えている。酸化反応部で全ての炭素成分をCO2に変換すればTC(全炭素)測定を行なうことができ、酸性化部でIC(無機体炭素)を抽出可能な状態に変換すればIC測定を行なうことができ、また、酸性化部の後でICを除去した後に酸化反応部で有機体炭素をCO2に変換すれはTOC測定を行なうことができる。 The sample preparation unit of this apparatus includes an oxidation reaction unit or an acidification unit that oxidizes and decomposes organic carbon in the sample water to convert it into CO 2 . TC (total carbon) measurement can be performed by converting all carbon components to CO 2 in the oxidation reaction section, and IC measurement can be performed by converting IC (inorganic carbon) to an extractable state in the acidification section. In addition, after removing the IC after the acidification part, TOC measurement can be performed by converting the organic carbon to CO 2 in the oxidation reaction part.

CO2抽出部におけるCO2の抽出方法を気相を介して液膜となって流れる試料水から液膜となって流れる純水へ抽出するようにしたので、CO2の抽出をガス透過膜を用いずに行なうことができ、ガス透過膜を用いた場合よりもCO2の抽出時間を短縮することができる。 Since to extract the extraction method CO 2 in the CO 2 extracting section from the sample water flowing a liquid film through a vapor phase pure water flowing a liquid film, a gas permeable membrane extraction of CO 2 This can be done without using it, and the CO 2 extraction time can be shortened compared with the case where a gas permeable membrane is used.

[実施例1]
以下に一実施例を図1を参照して詳細に説明する。
図1は本発明をTOC(全有機体炭素)測定装置に適用した実施例の構成を概略的に示す図である。
上流側(図の左側)から、pH調整部2、IC除去部4、酸化反応部6、CO2抽出部8及び検出部10が配置されている。pH調整部2、IC除去部4及び酸化反応部6によって試料調整部を構成している。
pH調整部2は、例えば、採取した試料水にpH調整剤として一定割合の無機酸、例えばリン酸を添加することで試料水のpHを酸性に調整する。
IC除去部4はpH調整部2の出口流路に接続されている。IC除去部4では、例えば真空ポンプ5により減圧にすることで試料水中のICをガス透過膜3を介して吸引し、試料水からICを除去する。
酸化反応部6はIC除去部4の出口流路に接続されており、IC除去部4と酸化反応部6の流路中において、試料水中の有機物の酸化を促進させる酸化剤としてペルオキソ二硫酸カリウムが試料水に添加される。酸化反応部6は低圧水銀ランプ7とその低圧水銀ランプ7を取り巻く石英ガラス管9とから構成されている。低圧水銀ランプ7より発生する紫外線を試料水に照射することで溶存酸素と有機物とを反応させ、有機物をCO2に変換する。
CO2抽出部8は、板状部材である2枚の石英ガラス板14a、14bが気相としての閉じられた空間の空気層を隔てて平面部分が向き合うようにして配置されており、酸化反応部6で生成したCO2を試料水から抽出して純水としてのイオン交換水に移行させる。
[Example 1]
Hereinafter, an embodiment will be described in detail with reference to FIG.
FIG. 1 is a diagram schematically showing a configuration of an embodiment in which the present invention is applied to a TOC (total organic carbon) measuring apparatus.
From the upstream side (left side in the figure), a pH adjusting unit 2, an IC removing unit 4, an oxidation reaction unit 6, a CO 2 extraction unit 8 and a detection unit 10 are arranged. The pH adjusting unit 2, the IC removing unit 4 and the oxidation reaction unit 6 constitute a sample adjusting unit.
For example, the pH adjuster 2 adjusts the pH of the sample water to be acidic by adding a certain proportion of an inorganic acid, for example, phosphoric acid, as a pH adjuster to the collected sample water.
The IC removing unit 4 is connected to the outlet channel of the pH adjusting unit 2. In the IC removing unit 4, the IC in the sample water is sucked through the gas permeable film 3 by reducing the pressure by the vacuum pump 5, for example, and the IC is removed from the sample water.
The oxidation reaction unit 6 is connected to the outlet channel of the IC removal unit 4, and potassium peroxodisulfate is used as an oxidizing agent for promoting the oxidation of organic substances in the sample water in the channel of the IC removal unit 4 and the oxidation reaction unit 6. Is added to the sample water. The oxidation reaction unit 6 includes a low-pressure mercury lamp 7 and a quartz glass tube 9 surrounding the low-pressure mercury lamp 7. By irradiating the sample water with ultraviolet rays generated from the low-pressure mercury lamp 7, the dissolved oxygen and the organic substance are reacted to convert the organic substance into CO 2 .
The CO 2 extraction unit 8 is arranged such that two quartz glass plates 14a and 14b, which are plate-like members, face each other across an air layer in a closed space as a gas phase, and an oxidation reaction The CO 2 produced in the section 6 is extracted from the sample water and transferred to ion exchange water as pure water.

石英ガラス板14a、14bの表面は図2(A)に示されるようになっている。図2(A)は一方の石英ガラス板14aの表面を示したものであるが、斜線で示された領域16aは光触媒層16a、16bは、例えば酸化チタン膜が0.1μm〜0.5μmの厚さに形成されて超親水性となっている。
領域16aは中央部が広く、上下で中心側に絞り込まれた形状に形成されている。他方の石英ガラス板14bにも同じ形状の光触媒層16bが形成されている。
The surfaces of the quartz glass plates 14a and 14b are as shown in FIG. FIG. 2 (A) shows the surface of one quartz glass plate 14a. In the region 16a shown by hatching, the photocatalyst layers 16a and 16b are made of, for example, a titanium oxide film having a thickness of 0.1 μm to 0.5 μm. It is formed to a thickness and is super hydrophilic.
The region 16a has a wide central portion and is formed in a shape that is narrowed down to the center side in the vertical direction. A photocatalytic layer 16b having the same shape is also formed on the other quartz glass plate 14b.

図2(B)に示されるように、石英ガラス板14a、14bの間隔は表面を流れる試料水と純水との間の距離が、例えば100μm程度になるように調整されている。この距離は2枚の石英ガラス板14a、14bの間に設けられたPDMS(ポリジメチルシロキサン:シリコーン樹脂系)製のスペーサ30によって調整されている。
領域16aの上端には貫通穴22aが設けられている。穴22aは酸化反応部6に接続されており、酸化反応部6からの試料水を光触媒層16aの表面に導く。領域16aの下端にも貫通穴22bが設けられている。穴22bはドレインに接続されており、試料水をこの平面部分から外部に排出する。また、他方の石英ガラス板14bでも領域16bの上端に貫通穴23aが設けられて、穴23aはイオン交換水を光触媒層16bの表面に導き、領域16bの下端に設けられた貫通穴23bは検出部10に接続されており、試料水からCO2を吸収したイオン交換水を検出部10に導く。
このCO2抽出部8では、向き合った酸化チタン膜16a、16bの表面を膜状に流れる液体間でCO2の授受が行なわれる。酸化チタン膜16a表面を流れる試料水中に溶存するCO2は、空気層を介して酸化チタン膜16b表面を流れるイオン交換水に吸収される。
As shown in FIG. 2B, the interval between the quartz glass plates 14a and 14b is adjusted so that the distance between the sample water flowing on the surface and the pure water is, for example, about 100 μm. This distance is adjusted by a spacer 30 made of PDMS (polydimethylsiloxane: silicone resin) provided between the two quartz glass plates 14a and 14b.
A through hole 22a is provided at the upper end of the region 16a. The hole 22a is connected to the oxidation reaction part 6, and guides the sample water from the oxidation reaction part 6 to the surface of the photocatalyst layer 16a. A through hole 22b is also provided at the lower end of the region 16a. The hole 22b is connected to the drain, and discharges the sample water to the outside from this flat portion. The other quartz glass plate 14b also has a through hole 23a at the upper end of the region 16b. The hole 23a guides ion exchange water to the surface of the photocatalyst layer 16b, and the through hole 23b provided at the lower end of the region 16b detects the hole. The ion exchange water that is connected to the unit 10 and has absorbed CO 2 from the sample water is guided to the detection unit 10.
In the CO 2 extraction unit 8, CO 2 is exchanged between liquids flowing in a film shape on the surfaces of the titanium oxide films 16 a and 16 b facing each other. The CO 2 dissolved in the sample water flowing on the surface of the titanium oxide film 16a is absorbed by the ion exchange water flowing on the surface of the titanium oxide film 16b through the air layer.

検出部10はCO2抽出部8でCO2を吸収したイオン交換水の導電率と温度を測定する。イオン交換水の導電率はイオン交換水にCO2が溶解することで上昇するので、イオン交換水の導電率を測定することで試料水中に含まれていたCO2量を測定することができ、試料水中に含まれていた有機物濃度を推定することができる。また、導電率は温度に依存するので、導電率とともにイオン交換水の温度を測定して補正を行なう。
検出部10で導電率と温度を測定されたイオン交換水はポンプ11によってイオン交換樹脂カラム12に導かれてCO2の除去と脱イオンが行なわれ、循環流路によってポンプ11からイオン交換樹脂カラム12へ送られて純度が高められる。循環中のイオン交換水は、電磁弁13を介して酸化チタン膜16b表面に送られる。電磁弁13は制御装置(図示略)によって開閉及び開口度が制御されており、イオン交換水の流量を調節できるようになっている。
The detector 10 measures the conductivity and temperature of the ion-exchanged water that has absorbed CO 2 by the CO 2 extractor 8. Since the conductivity of ion-exchanged water is increased by dissolving CO 2 in ion-exchanged water, the amount of CO 2 contained in the sample water can be measured by measuring the conductivity of ion-exchanged water, The organic substance concentration contained in the sample water can be estimated. Moreover, since electrical conductivity is dependent on temperature, it correct | amends by measuring the temperature of ion-exchange water with electrical conductivity.
The ion-exchanged water whose conductivity and temperature are measured by the detector 10 is guided to the ion-exchange resin column 12 by the pump 11 to remove and deionize CO 2 , and the ion-exchange resin column from the pump 11 by the circulation channel. The purity is increased by being sent to 12. The circulating ion exchange water is sent to the surface of the titanium oxide film 16b through the electromagnetic valve 13. The solenoid valve 13 is controlled in its opening / closing and opening degree by a control device (not shown) so that the flow rate of the ion exchange water can be adjusted.

また、CO2抽出部8の2枚の石英ガラス板14a、14bの近傍には、酸化チタン膜16a、16bに向けて紫外光を照射する光源18a、18bが設けられており、酸化チタン膜16a、16bの超親水性作用を維持し、またその表面を清浄に保つ。石英ガラス板14a、14bは光源18a、18bから発生する紫外光に対して透明であるので、酸化チタン膜16a、16bが形成されている面とは反対側(裏側)から紫外光を照射しても、酸化チタン膜16a、16bの触媒作用を高め、維持することができる。 Further, near the two quartz glass plates 14a and 14b of the CO 2 extraction section 8, light sources 18a and 18b for irradiating the titanium oxide films 16a and 16b with ultraviolet light are provided, and the titanium oxide film 16a. Maintaining the superhydrophilic action of 16b and keeping its surface clean. Since the quartz glass plates 14a and 14b are transparent to the ultraviolet light generated from the light sources 18a and 18b, the quartz glass plates 14a and 14b are irradiated with ultraviolet light from the opposite side (back side) to the surface on which the titanium oxide films 16a and 16b are formed. However, the catalytic action of the titanium oxide films 16a and 16b can be enhanced and maintained.

以下に同実施例の動作を説明する。
この装置に導入された試料は、まずpH調整部2でpHを酸性に調整された後、IC除去部4でICが除去されて酸化反応部6に導かれる。酸化反応部6で試料は石英ガラス管9内を、例えば、流量100μL/minで流れ、試料中に含まれる有機物が低圧水銀ランプ7により照射される波長185nmの紫外光によって酸化分解されてCO2となる。
The operation of this embodiment will be described below.
The sample introduced into the apparatus is first adjusted to an acidic pH by the pH adjusting unit 2, and then the IC is removed by the IC removing unit 4 and led to the oxidation reaction unit 6. Samples of the quartz glass tube 9 in the oxidation reaction unit 6, for example, the flow at a flow rate of 100 [mu] L / min, the organic matter contained in the sample is oxidized and decomposed by ultraviolet light having a wavelength of 185nm emitted by the low-pressure mercury lamp 7 CO 2 It becomes.

酸化分解部6を経た試料水はCO2抽出部8に導かれ、CO2抽出部8の石英ガラス板14aの表面に形成された酸化チタン膜16aの表面上を液膜状で、例えば膜厚0.1mmを保ちながら流下する。一方、石英ガラス板14aに対向配置された石英ガラス板14bの表面に形成されている酸化チタン膜16bの表面上をイオン交換水が液膜状で、例えば膜厚0.1mmを保ちながら流下している。酸化チタン膜16aの表面上を流下する試料水中に溶存しているCO2は気相を介してイオン交換水に移動する。 Sample water through the oxidative decomposition unit 6 is guided to the CO 2 extraction section 8, on the surface of the CO 2 extracting section 8 of the quartz glass plate 14a titanium oxide film 16a formed on the surface of a liquid film form, for example, a thickness It flows down while maintaining 0.1 mm. On the other hand, ion-exchanged water flows down on the surface of the titanium oxide film 16b formed on the surface of the quartz glass plate 14b opposed to the quartz glass plate 14a, for example, while maintaining a film thickness of 0.1 mm. ing. The CO 2 dissolved in the sample water flowing down on the surface of the titanium oxide film 16a moves to the ion exchange water through the gas phase.

CO2抽出部8でCO2を吸収したイオン交換水は検出部10に導かれて導電率と温度を測定される。また、CO2抽出部8を経た試料水は排出される。
イオン交換水の導電率と温度はイオン交換水に吸収されているCO2量と予め関係付けられており、イオン交換水の導電率と温度を測定することによってイオン交換水が吸収したCO2量を測定することができ、それにより試料水中の有機物濃度を推測することができる。
この実施例で、IC除去部4の真空ポンプ5を作動させなかった場合は、ICと有機体炭素がともに測定されてTC計となる。また、IC除去部4の真空ポンプ5を作動させず、酸化反応部6でランプ7を点灯しなかった場合は、IC測定がなされる。
領域16a、16bの形状は図2に示されたものに限らない。
The ion-exchanged water that has absorbed CO 2 by the CO 2 extraction unit 8 is guided to the detection unit 10 to measure the conductivity and temperature. The sample water that has passed through the CO 2 extraction unit 8 is discharged.
Conductivity and temperature of the ion exchange water is pre-associated with the amount of CO 2 absorbed in the ion exchange water, the amount of CO 2 ion-exchanged water was absorbed by measuring the conductivity and temperature of the ion-exchanged water Can be measured, and thereby the organic substance concentration in the sample water can be estimated.
In this embodiment, when the vacuum pump 5 of the IC removing unit 4 is not operated, both IC and organic carbon are measured to become a TC meter. Further, when the vacuum pump 5 of the IC removing unit 4 is not operated and the lamp 7 is not turned on at the oxidation reaction unit 6, IC measurement is performed.
The shapes of the regions 16a and 16b are not limited to those shown in FIG.

[実施例2]
第2の実施例として、CO2抽出部8の2枚の石英ガラス板14a、14bが気相としての閉じられた空間の空気層を隔てて向き合った平面部分の表面に図3(A)に示されるような加工を施したものを挙げることができる。
この実施例のCO2抽出部8において、石英ガラス板14a、14bの平面部分の表面に溝21を加工することによって、試料水とイオン交換水とを液膜状で流下させるようになっている。
[Example 2]
As a second embodiment, the two quartz glass plates 14a and 14b of the CO 2 extraction section 8 are arranged on the surface of a plane portion facing the air layer in a closed space as a gas phase as shown in FIG. The thing which gave the process as shown can be mentioned.
In the CO 2 extraction section 8 of this embodiment, the sample water and the ion exchange water are caused to flow down in the form of a liquid film by processing the groove 21 on the surface of the flat portion of the quartz glass plates 14a and 14b. .

図3(A)は一方の石英ガラス板14aの平面部分の表面を示したものであるが、石英ガラス板14aの平面部分の表面の中央部に粗面部24、その上下に溝21a、21bが形成されている。溝21aは上流側の1つの流路が下流側に行くにしたがって多数の流路に分岐して粗面部24に導かれている。粗面部24の下方の溝21bは下方に向かって中心側に絞り込むように形成されている。
溝21aの上端には貫通穴22aが設けられている。この穴22aは酸化反応部6と接続されており、酸化反応部6からの試料水を溝21aに導く。また、溝21bの下端には貫通穴22bが設けられている。穴22bはドレインに接続されており、溝21bを流下してきた試料水を外部へ排出する。また、他方の石英ガラス板14bにも同形状の粗面部、溝及び貫通穴23a、23bが設けられている。穴23aはイオン交換水を上側の溝に導き、下端に設けられた貫通穴23bは検出部10に接続されており、試料水からCO2を吸収したイオン交換水を検出部10に導く。
FIG. 3A shows the surface of the flat portion of one of the quartz glass plates 14a. A rough surface portion 24 is provided at the center of the surface of the flat portion of the quartz glass plate 14a, and grooves 21a and 21b are provided above and below the rough surface portion 24. Is formed. The groove 21 a is branched into a large number of flow paths as one upstream flow path goes downstream, and is led to the rough surface portion 24. The groove 21b below the rough surface portion 24 is formed so as to be narrowed down toward the center side.
A through hole 22a is provided at the upper end of the groove 21a. The hole 22a is connected to the oxidation reaction unit 6 and guides the sample water from the oxidation reaction unit 6 to the groove 21a. A through hole 22b is provided at the lower end of the groove 21b. The hole 22b is connected to the drain, and discharges the sample water flowing down the groove 21b to the outside. The other quartz glass plate 14b is also provided with rough surface portions, grooves and through holes 23a and 23b having the same shape. The hole 23a guides the ion exchange water to the upper groove, and the through hole 23b provided at the lower end is connected to the detection unit 10 to guide the ion exchange water that has absorbed CO 2 from the sample water to the detection unit 10.

穴22aから出た試料水は溝21aによって広範囲に分散され、粗面部24の面内において一様な液膜となる。図3(B)に示されるように、粗面部24で液膜状に流下する試料水と石英ガラス板14bの表面上の透過部に形成されているイオン交換水の液膜との間で気相を介してCO2の授受が行なわれる。これらの試料水の液膜とイオン交換水の液膜との間の距離は、例えば100μm程度であり、この距離は2枚の石英ガラス板14a、14bの間に設けられたスペーサ30によって調整されている。 The sample water coming out of the hole 22a is dispersed in a wide range by the groove 21a, and becomes a uniform liquid film in the surface of the rough surface portion 24. As shown in FIG. 3B, there is a gap between the sample water flowing down in the form of a liquid film at the rough surface portion 24 and the liquid film of ion-exchanged water formed in the permeation portion on the surface of the quartz glass plate 14b. CO 2 is exchanged through the phases. The distance between the liquid film of the sample water and the liquid film of the ion exchange water is, for example, about 100 μm, and this distance is adjusted by the spacer 30 provided between the two quartz glass plates 14a and 14b. ing.

石英ガラス板14a、14b表面の溝21a、21b、粗面部24の加工方法として、例えばサンドブラスト加工を用いることができる。サンドブラスト加工では、石英ガラス板の表面に保護膜(マスク)をかぶせて溝21a、21b、粗面部のみに開口を設け(エッチング加工)、その後、圧縮空気とともに研磨剤(砂)を吹き付けて溝21a、21b、粗面部だけに粗面を形成する。   As a processing method of the grooves 21a and 21b and the rough surface portion 24 on the surfaces of the quartz glass plates 14a and 14b, for example, sandblasting can be used. In sandblasting, a protective film (mask) is placed on the surface of the quartz glass plate to form grooves 21a and 21b, and openings are formed only on the rough surface portions (etching process). 21b, a rough surface is formed only on the rough surface portion.

以上のように、対向して配置された2枚の板状部材の向き合った面の表面に、試料水とイオン交換水をそれぞれ液膜状で流下させ、この両液の間でCO2の授受を行なうようにしたので、ガス透過膜を用いることなくCO2を抽出することができ、CO2抽出効率を向上させることができる。
また、石英ガラス板14a、14bの表面を粗面に加工する場合、加工する溝や粗面の形状は図3に示した以外のものであってもよく、流下する液体が液膜状になるように加工すればよい。
板状部材は石英ガラス板に限らず、他のガラス板やプラスチックなどでもよい。
As described above, the sample water and the ion-exchanged water flow down in the form of a liquid film respectively on the surfaces of the two plate-like members arranged opposite to each other, and exchange of CO 2 between these two liquids. Thus, CO 2 can be extracted without using a gas permeable membrane, and CO 2 extraction efficiency can be improved.
Further, when the surfaces of the quartz glass plates 14a and 14b are processed into rough surfaces, the shapes of the grooves and rough surfaces to be processed may be other than those shown in FIG. 3, and the flowing liquid becomes a liquid film shape. It may be processed as follows.
The plate-like member is not limited to the quartz glass plate, but may be another glass plate or plastic.

実施例では、TOC測定装置に本発明を適用したものを説明したが、本発明は図1のTOC計からIC除去部4を除いた全炭素計や、酸化反応部6を除いた無機炭素計にも適用することができる。
酸化反応部6は、紫外線を照射する以外にも、例えば試料液にペルオキソ二硫酸カリウムを添加し加熱して有機物をCO2に変換するものであってもよい。
In the embodiments, the TOC measuring apparatus according to the present invention has been described. However, the present invention is not limited to the TOC meter of FIG. 1 except for the total carbon meter except the IC removing unit 4 and the inorganic carbon meter excluding the oxidation reaction unit 6. It can also be applied to.
In addition to irradiating with ultraviolet rays, the oxidation reaction unit 6 may be, for example, one that adds potassium peroxodisulfate to a sample solution and heats it to convert organic matter into CO 2 .

本発明を適用したTOC計の一実施例の構成を概略的に示す図である。It is a figure which shows schematically the structure of one Example of the TOC meter to which this invention is applied. 同実施例のCO2抽出部を示す図であり、(A)は平面部分を示す図であり、(B)は側面図である。Is a diagram showing a CO 2 extraction unit of the embodiment, (A) is a diagram showing the planar portion, (B) is a side view. 第2の実施例のCO2抽出部を示す図であり、(A)は平面部分を示す図であり、(B)は側面図である。It is a figure which shows the CO2 extraction part of a 2nd Example, (A) is a figure which shows a plane part, (B) is a side view.

符号の説明Explanation of symbols

2 pH調整部
3 ガス透過膜
4 IC除去部
5 真空ポンプ
6 酸化反応部
7 低圧水銀ランプ
8 CO2抽出部
9 石英ガラス管
10 検出部
11 ポンプ
12 イオン交換樹脂カラム
13 電磁弁
14a、14b 石英ガラス板
16a、16b 酸化チタン膜
18a、18b 光源
21 溝
22a、22b、23a、23b 穴
24 透過部
30 スペーサ
2 pH adjustment unit 3 Gas permeable membrane 4 IC removal unit 5 Vacuum pump 6 Oxidation reaction unit 7 Low pressure mercury lamp 8 CO 2 extraction unit 9 Quartz glass tube 10 Detection unit 11 Pump 12 Ion exchange resin column 13 Electromagnetic valve 14a, 14b Quartz glass Plate 16a, 16b Titanium oxide film 18a, 18b Light source 21 Groove 22a, 22b, 23a, 23b Hole 24 Transmission part 30 Spacer

Claims (5)

試料水中の炭素成分を抽出可能なCO2に変換する試料調整部と、前記試料調整部から供給された試料水中のCO2を抽出するCO2抽出部と、前記CO2抽出部で取り出したCO2を検出する検出部とを備えた全有機炭素計において、
前記CO2抽出部は、2枚の板状部材が平面部分が向き合うように配置され、前記一方の平面部分の表面には試料液が液膜となって流れ、他方の平面部分の表面には純水が液膜となって流れ、両液膜間の間隔は試料側の液膜から純水側の液膜へ気相を介してCO2が移動しうる微少間隔に設定されていることを特徴とする水中炭素成分の測定装置。
A sample preparation section for converting carbon components of the sample water to extractable CO 2, and CO 2 extractor for extracting CO 2 water sample supplied from the sample preparation unit, taken out in the CO 2 extracting unit CO In the total organic carbon meter equipped with a detection unit for detecting 2 ,
In the CO 2 extraction section, two plate-like members are arranged so that the plane portions face each other, the sample liquid flows as a liquid film on the surface of the one plane portion, and on the surface of the other plane portion. The pure water flows as a liquid film, and the interval between the two liquid films is set to a very small interval at which CO 2 can move from the liquid film on the sample side to the liquid film on the pure water side via the gas phase. A measuring device for carbon components in water.
前記2つの平面部分の表面は超親水性又は粗面となっている請求項1に記載の水中炭素成分の測定装置。   The apparatus for measuring a carbon component in water according to claim 1, wherein the surfaces of the two planar portions are superhydrophilic or rough. 前記超親水性表面は光触媒層が形成されたものである請求項2に記載の水中炭素成分の測定装置。 The apparatus for measuring a carbon component in water according to claim 2, wherein the superhydrophilic surface has a photocatalyst layer formed thereon. 前記CO2抽出部は前記光触媒層に向けて光を照射する光源を備えている請求項3に記載の水中炭素成分の測定装置。 The CO 2 extraction unit measuring apparatus in water carbon component according to claim 3 which includes a light source for irradiating light toward the photocatalyst layer. 前記試料調整部は試料水中の有機体炭素を酸化分解させてCO2に変換する酸化反応部と酸性化部の少なくとも一方を備えている請求項1〜4のいずれかに記載の水中炭素成分の測定装置。
The sample preparation section of the water carbon component according to claim 1 comprising at least one of the oxidation reaction part and acidification unit for converting by oxidative decomposition of organic carbon in the sample water to CO 2 measuring device.
JP2004036887A 2004-02-13 2004-02-13 Measuring instrument for measuring carbon component in water Pending JP2005227161A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004036887A JP2005227161A (en) 2004-02-13 2004-02-13 Measuring instrument for measuring carbon component in water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004036887A JP2005227161A (en) 2004-02-13 2004-02-13 Measuring instrument for measuring carbon component in water

Publications (1)

Publication Number Publication Date
JP2005227161A true JP2005227161A (en) 2005-08-25

Family

ID=35001989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004036887A Pending JP2005227161A (en) 2004-02-13 2004-02-13 Measuring instrument for measuring carbon component in water

Country Status (1)

Country Link
JP (1) JP2005227161A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006300633A (en) * 2005-04-19 2006-11-02 Shimadzu Corp Total organic carbon measuring instrument
WO2007129383A1 (en) * 2006-05-01 2007-11-15 Shimadzu Corporation Device for measuring total organic carbon
JP2008139312A (en) * 2006-12-01 2008-06-19 Millipore Corp Conductivity measurement device, its manufacture and use
CN108845004A (en) * 2018-06-15 2018-11-20 浙江大学 A kind of photoelectric current carbon dioxide sensor
KR20230016993A (en) * 2021-07-27 2023-02-03 서울시립대학교 산학협력단 Total-Organic-Carbon-Based Quantitative Estimation Method of Microplastics in Sewage

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006300633A (en) * 2005-04-19 2006-11-02 Shimadzu Corp Total organic carbon measuring instrument
WO2007129383A1 (en) * 2006-05-01 2007-11-15 Shimadzu Corporation Device for measuring total organic carbon
JPWO2007129383A1 (en) * 2006-05-01 2009-09-17 株式会社島津製作所 Total organic carbon measuring device
JP2008139312A (en) * 2006-12-01 2008-06-19 Millipore Corp Conductivity measurement device, its manufacture and use
CN108845004A (en) * 2018-06-15 2018-11-20 浙江大学 A kind of photoelectric current carbon dioxide sensor
CN108845004B (en) * 2018-06-15 2020-10-13 浙江大学 Photocurrent carbon dioxide sensor
KR20230016993A (en) * 2021-07-27 2023-02-03 서울시립대학교 산학협력단 Total-Organic-Carbon-Based Quantitative Estimation Method of Microplastics in Sewage
KR102545564B1 (en) 2021-07-27 2023-06-20 서울시립대학교 산학협력단 Total-Organic-Carbon-Based Quantitative Estimation Method of Microplastics in Sewage

Similar Documents

Publication Publication Date Title
EP2423677B1 (en) Total organic carbon meter provided with system blank function
US8858682B2 (en) Method for controlling pressure-difference bubble transfer
JP4983914B2 (en) Total organic carbon measuring device
JP4844630B2 (en) Total organic carbon measuring device
JP2510368B2 (en) Method and apparatus for determining carbon dissolved in water
JP4462099B2 (en) Total organic carbon measuring device
US7993586B2 (en) Apparatus for measurement of total organic carbon content
JP2006239640A (en) Microreactor for oxidative decomposition of hardly decomposable organic compound
JP4337624B2 (en) Gas exchange device and underwater carbon component measuring device
JP2005227161A (en) Measuring instrument for measuring carbon component in water
JP2008241325A (en) Whole organic carbon meter having air bubble removing function
WO2007129383A1 (en) Device for measuring total organic carbon
JP2013015387A (en) Water quality analyzer
WO2009125493A1 (en) Total organic carbon analyzer
JP4534949B2 (en) Degassing device and total organic carbon measuring device using it
JP2005147901A (en) Organic substance decomposition device, and total organic carbon measuring instrument
JP3780627B2 (en) Underwater TOC monitor
JP2005214649A (en) Toc measuring instrument
JP5282703B2 (en) Liquid feeding device and total organic carbon measuring device using the same
JPH06148169A (en) Extracting method and extracting device for trace substance
JPH10307113A (en) Underwater toc monitor