JP2005227073A - Phase interruption detection device and pump system - Google Patents
Phase interruption detection device and pump system Download PDFInfo
- Publication number
- JP2005227073A JP2005227073A JP2004034878A JP2004034878A JP2005227073A JP 2005227073 A JP2005227073 A JP 2005227073A JP 2004034878 A JP2004034878 A JP 2004034878A JP 2004034878 A JP2004034878 A JP 2004034878A JP 2005227073 A JP2005227073 A JP 2005227073A
- Authority
- JP
- Japan
- Prior art keywords
- phase
- current
- value
- phases
- detected
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Control Of Positive-Displacement Pumps (AREA)
Abstract
Description
本発明は、欠相検知装置に係り、特に、三相交流電源からポンプ等の負荷機器に供給する電力における欠相を、二相の電流検出器で検知することができる欠相検知装置に関する。また、上記欠相検知装置を備えたポンプシステムに関する。 The present invention relates to a phase loss detection device, and more particularly to a phase loss detection device capable of detecting a phase loss in power supplied from a three-phase AC power source to a load device such as a pump with a two-phase current detector. Moreover, it is related with the pump system provided with the said phase loss detection apparatus.
従来から、深井戸や給水装置などに用いられるポンプシステムは三相モータを搭載しているものが大部分であり、これらのポンプへの三相交流電源からの供給電力に何らかの原因により欠相が生じると、ポンプの運転上、不都合が生じる。このため、三相交流電源からの供給電力に欠相が発生したことを検知する欠相検知装置が従来から知られている(例えば、特許文献1、2参照)。
例えば、特許文献1には、三相のうちの二相に電流検出器を配置し、検出電流と所定電流との関係から、電流検出器を配置したいずれかの相の欠相を検知するとともに、所定時間(例えば1秒)前の電流と現在の電流とを比較することで、電流検出器を配置していない相の欠相を検知する欠相検知装置が提案されている。この欠相検知装置によれば、電流検出器を配置していない相に欠相が生じると、欠相の前後で相電流から線間電流に電流が大幅に増大するため、電流の変化を検出することで、電流検出器を配置していない相の欠相を検知することができる。 For example, in Patent Document 1, current detectors are arranged in two of the three phases, and from the relationship between the detected current and a predetermined current, an open phase of any phase in which the current detector is arranged is detected. There has been proposed a phase loss detection device that detects a phase loss of a phase in which no current detector is arranged by comparing a current before a predetermined time (for example, 1 second) with a current current. According to this phase loss detection device, if a phase failure occurs in a phase that does not have a current detector, the current greatly increases from the phase current to the line current before and after the phase loss, so a change in current is detected. By doing so, it is possible to detect an open phase of a phase in which no current detector is arranged.
また、特許文献2には、三相のそれぞれに電流検出器を配置し、各相の検出電流を30°毎にサンプリングして1サイクル分をRAMに格納し、これから正相分電流と逆相分電流を演算し、不平衡率を演算し、不平衡率が所定値を越えると欠相と判断する欠相検知方法が提案されている。 Further, in Patent Document 2, a current detector is arranged for each of the three phases, the detected current of each phase is sampled every 30 °, and one cycle is stored in the RAM. There has been proposed an open phase detection method in which a partial current is calculated, an unbalance rate is calculated, and a phase failure is determined when the unbalance rate exceeds a predetermined value.
しかしながら、特許文献1記載の欠相検知装置にあっては、ポンプを駆動する三相モータへの供給電力に欠相が生じた場合に、必ずしも電流が相電流から線間電流に増大するものではない。このため、必ずしも欠相を正確に検知できないという問題がある。 However, in the phase loss detection device described in Patent Document 1, when phase loss occurs in the power supplied to the three-phase motor that drives the pump, the current does not necessarily increase from the phase current to the line current. Absent. For this reason, there is a problem that an open phase cannot always be detected accurately.
また、特許文献2記載の欠相検知装置にあっては、三相全てに電流検出器を配置することが必要であり、それぞれの電流検出器の検出結果を用いて複雑な演算処理を行うことが必要である。このことから、特許文献2の欠相検知装置では、コスト高になってしまうとともに、その演算処理にも時間が掛かってしまうという問題がある。 Further, in the phase loss detection device described in Patent Document 2, it is necessary to arrange current detectors in all three phases, and complex calculation processing is performed using the detection results of the respective current detectors. is required. For this reason, the phase loss detection apparatus of Patent Document 2 has a problem that the cost is high and the calculation process also takes time.
本発明は、上述した事情に鑑みて為されたもので、既存の電流検出手段および演算処理手段を利用して、欠相検知手段をソフトウェアで構築することで、低コストで、容易に且つ確実に欠相の発生を検知することができる欠相検知装置を提供することを目的とする。また、上記欠相検知装置を備えたポンプシステムを提供することを目的とする。 The present invention has been made in view of the above-described circumstances. By using the existing current detection means and arithmetic processing means and constructing the phase loss detection means with software, it is easy and reliable at low cost. An object of the present invention is to provide a phase loss detection device capable of detecting the occurrence of phase loss. Moreover, it aims at providing the pump system provided with the said phase loss detection apparatus.
上記課題を解決する本発明の欠相検知装置は、三相交流電源と、該電源から電力供給を受ける三相負荷との間に介装された三相のうちの二相の電流を検出する電流検出器と、前記電流検出器の検出信号から電流波形を検出する検出手段と、前記電流波形から、電流実効値、電流最大値、および、他方相の電流波形がゼロ点を交差する点であるゼロクロスのタイミングでのゼロクロス時電流値を検出する手段と、これらの検出値を比較する比較手段とを備えたことを特徴とするものである。 The phase loss detection device of the present invention that solves the above problems detects a current of two phases of the three phases interposed between a three-phase AC power source and a three-phase load that receives power supply from the power source. A current detector, a detecting means for detecting a current waveform from a detection signal of the current detector, and a current effective value, a maximum current value, and a current waveform of the other phase from the current waveform at a point where the zero point intersects. It is characterized by comprising means for detecting a current value at zero crossing at a certain zero crossing timing, and comparison means for comparing these detected values.
この発明によれば、ポンプシステム等における既存の電流検出手段および演算処理手段を利用して、欠相検知手段をソフトウェアのみで構築することができる。すなわち、一般的にポンプシステムにおいては、三相のうちの二相に電流検出手段を備え、過電流の検出を行ったり、ポンプの運転制御を行ったりしている。このため、ポンプシステムにおいては、検出した電流を演算処理するCPUおよびメモリを備えた演算処理手段を備えているのが一般的である。本発明によれば、既存の電流検出手段および演算処理手段を利用して、欠相検知手段をソフトウェアのみで構築することで、低コストで、容易に且つ確実に欠相の発生を検知することができる欠相検知装置を提供することができる。 According to the present invention, the phase loss detection means can be constructed only by software using the existing current detection means and arithmetic processing means in the pump system and the like. That is, in general, in a pump system, current detection means is provided in two of the three phases to detect an overcurrent or to control the operation of the pump. For this reason, the pump system generally includes an arithmetic processing unit including a CPU and a memory for performing arithmetic processing on the detected current. According to the present invention, it is possible to easily and surely detect the occurrence of a phase loss at low cost by constructing the phase loss detection unit only with software using the existing current detection unit and arithmetic processing unit. Therefore, it is possible to provide a phase loss detection device capable of achieving the above.
ここで、前記比較手段は、検出対象の二相の電流実効値を相互に比較する手段であることが好ましい。これにより、検出対象の二相の電流実効値を相互に比較することで、欠相が生じている場合には検出対象の相の電流実効値が略ゼロとなるため、欠相を生じた相を検知することができる。 Here, it is preferable that the comparison means is a means for comparing two-phase current effective values to be detected with each other. As a result, by comparing the current effective values of the two phases to be detected with each other, the current effective value of the phase to be detected becomes approximately zero when a phase failure occurs. Can be detected.
また、前記比較手段は、検出対象の二相の電流の電流最大値と、他方相ゼロクロス時電流値を比較する手段であることが好ましい。これにより、検出対象の電流検出器を備えた二相以外の相に欠相が生じた場合に、検出対象の二相の相の電流は互いに同相となるため、他方相がゼロクロスしたときの電流値が略ゼロとなる。このため、電流最大値と他方相ゼロクロス時電流値の比を求めると略ゼロとなり、これにより電流検出器を配置した検出対象の二相以外の相の欠相を検知することができる。 The comparison means is preferably means for comparing the current maximum value of the two-phase current to be detected with the current value at the time of the other phase zero crossing. As a result, when a phase failure occurs in a phase other than the two phases provided with the current detector to be detected, the currents of the two phases to be detected are in phase with each other. The value is almost zero. For this reason, when the ratio between the current maximum value and the current value at the time of the other phase zero crossing is obtained, it becomes substantially zero, so that an open phase of a phase other than the two phases to be detected in which the current detector is arranged can be detected.
また、前記電流波形の半周期分または1周期分を記憶するメモリを備えることが好ましい。これにより、電流波形から電流実効値、電流最大値、他方相ゼロクロス時電流値を容易に検出することができる。 Moreover, it is preferable to provide a memory for storing half a cycle or one cycle of the current waveform. Thereby, the current effective value, the current maximum value, and the current value at the time of other phase zero crossing can be easily detected from the current waveform.
また、本発明のポンプシステムは、三相交流電源から電力供給を受けるポンプシステムであって、三相交流電源とポンプモータとの間に、三相のうちの二相の電流を検出する電流検出器と、前記電流検出器の検出信号から電流波形を検出する検出手段と、前記電流波形から、電流実効値、電流最大値、および、他方相がゼロクロスするタイミングでのゼロクロス時電流値を検出する手段とからなる欠相検知装置とを備えたことを特徴とするものである。 The pump system of the present invention is a pump system that receives power supply from a three-phase AC power source, and detects current of two phases of the three phases between the three-phase AC power source and the pump motor. , A detecting means for detecting a current waveform from a detection signal of the current detector, and a current effective value, a maximum current value, and a current value at the time of zero crossing at the timing when the other phase is zero crossed from the current waveform. And a phase loss detection device comprising means.
総じて本発明によれば、容易に且つ確実に欠相の発生を検知することができる欠相検知装置を低コストで提供することができる。そして、この欠相検知装置を備えたポンプシステムでは、殆ど製造コストを必要とすることなく、容易に且つ確実に欠相を検知できる。 Generally, according to the present invention, it is possible to provide an open phase detection device that can detect the occurrence of open phase easily and reliably at low cost. And in a pump system provided with this phase loss detection device, phase loss can be detected easily and reliably with almost no manufacturing cost.
以下、本発明の実施形態を図面に基づいて説明する。図1〜図3は本発明に係る欠相検知装置を搭載するポンプシステムの実施形態を示す図である。なお、各図中、同一の作用または機能を有する部材または要素には、同一の符号を付して重複した説明を省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. 1-3 is a figure which shows embodiment of the pump system carrying the phase loss detection apparatus based on this invention. In addition, in each figure, the same code | symbol is attached | subjected to the member or element which has the same effect | action or function, and the overlapping description is abbreviate | omitted.
図1において、ポンプシステムは、三相交流電源から三相の線路r,s,tにより電力供給を受けて三相モータ(三相負荷)11が回転動作し、ポンプ本体12のインペラなどを駆動することにより給排水を行う。例えばこのポンプシステムでは、ポンプモータ11をオン・オフ制御することにより、図示しないタンクに水を所定圧に蓄圧し、該タンクより水を給水する。このため、このポンプシステムの運転制御のため、CPU16を含む演算処理装置15を備えている。また、ポンプモータの過電流保護等のため、線路電流を検出する必要があり、このため、三相のうちの二相にCT13a,14a、および電流検出回路13,14を備えている。そして、例えば過電流の検出のためにはCT13a,14a、および電流検出回路13,14で検出された電流を、上記演算処理装置15に入力し、ここで演算処理することで過電流の検出を行い、警報の発生等を行っている。なお、図2中、18は表示操作部であり、19aはその表示操作部との接続端子、19bは外部出力端子である。
In FIG. 1, the pump system receives power supply from a three-phase AC power source through three-phase lines r, s, t, and a three-phase motor (three-phase load) 11 rotates to drive an impeller of the
このポンプシステムは、三相交流電源端子R、S、Tとモータ(三相負荷)11との間の線路に欠相検知装置10が接続されており、欠相検知装置10は、三相交流電源に接続された線路に流れる電流をそのうちの二相に装着したCT13a,14aにより検出する。そして、検出した電流を電圧変換して電流波形に対応した検出信号を出力する2組の電流検出回路13,14と、この電流検出回路13,14からの検出信号の演算処理を行って三相電流における欠相の発生を検知する演算処理装置15とを備えている。ここで、本実施形態の欠相検知装置10は、電流検出回路13,14のCT13a,14aを三相交流電源からの線路r〜tのいずれかの2個所に取り付けてもよいが、本実施形態では、R相の線路rにCT13aを取り付けて、T相の線路tにCT14aを取り付けた場合で説明する。
In this pump system, an
なお、この欠相検知装置10に用いるCT13a,14a、電流検出回路13,14、および演算処理装置15は、上述したポンプシステムの運転制御に用いるものを兼用して利用することができる。したがって、この欠相検知装置10では、以下に説明する欠相検知のためのソフトウェアのみを構築することで、ハードウェアとしては、既存のシステムのものをそのまま流用することが可能である。
The
電流検出回路13,14の検出信号は、図2(a)に示すように、正弦波形であり、三相交流電源からの電流波形としては、正常時に、R相とT相の二相間で120度位相がずれた正弦波形として検出される。この三相交流電源からのR相またはT相に欠相が発生した際には、図示するまでもなく、電流波形はR相またはT相の一方のみとなる。また、三相交流電源からのS相に欠相が発生した際には、図2(b)に示すように、R相およびT相の電流波形は同位相になる。
As shown in FIG. 2A, the detection signals of the
このことから、演算処理装置15は、CPU16が不図示のメモリ内に格納するプログラムにしたがって、電流検出回路13,14の検出信号(電流波形)を比較することにより、三相交流電源からのR相、S相、T相のいずれかに欠相が発生したことによる検出信号の変化に応じた比較結果から、欠相の発生相を検知することができる。
From this, the
すなわち、CPU16は、電流検出回路13,14の半周期または1周期の検出信号を例えば0.5mSec毎にサンプリングして、メモリ(RAM)17に保存する。そして、これらのデータをRAM17内に一時記憶しつつ比較することにより、欠相の発生相を検知する。具体的には、CPU16は、R相とT相の電流実効値を比較することにより電流波形の検出対象のR相またはT相における欠相発生を検知することができる。また、R相およびT相の電流最大値に対する他方相ゼロクロス時電流値の比率が予め設定されている値以下である場合に、S相の欠相発生と判断(検知)することができる。
That is, the
まず、この波形データからR相とT相のそれぞれの電流実効値を求める。なお、電流実効値は電流波形データを積分し、面積を計算することにより求められる。正常時には、R相とT相の電流実効値は等しい。したがって、この比を取ると1となる。しかしながら、R相とT相のいずれかが欠相の場合には、欠相した相の電流実効値は0となる。したがって、欠相した相としていない相との比を取ると0となる。このため、R相とT相のいずれかが欠相したことを、両相の実効値を比較することにより容易に検知できる。 First, current effective values of the R phase and the T phase are obtained from the waveform data. The effective current value is obtained by integrating the current waveform data and calculating the area. When normal, the effective current values of the R phase and the T phase are equal. Therefore, when this ratio is taken, it becomes 1. However, when either the R phase or the T phase is missing, the effective current value of the missing phase is zero. Therefore, when the ratio with the phase that is not a phase that has been lost is taken, it becomes zero. For this reason, it can be easily detected that one of the R phase and the T phase is lost by comparing the effective values of both phases.
また、R相電流波形における電流最大値Iprと、T相が電流値ゼロになるゼロクロスタイミングでのゼロクロス時電流値Izr、およびT相電流波形における電流最大時Iptと、R相が電流値ゼロになるゼロクロス時電流値Iztを、上記波形データから求める。正常時には、図2(a)に示すように、R相とT相の電流波形は120゜のずれがある。このため、
Izr/Ipr=0.86
Izt/Ipt=0.86
となる。しかしながら、S相の欠相時には、R相とT相とは図2(b)に示すように、R相とT相の電流波形は同相となる。このため、
Izr/Ipr=0
Izt/Ipt=0
となる。したがって、上記比較により、S相の欠相を容易に検知できる。
Also, the maximum current value Ipr in the R-phase current waveform, the zero-cross current value Izr at the zero-cross timing when the T-phase current value is zero, the maximum current Ipt in the T-phase current waveform, and the R-phase current value is zero. The current value Izt at zero crossing is obtained from the waveform data. At the normal time, as shown in FIG. 2A, the current waveforms of the R phase and the T phase are shifted by 120 °. For this reason,
Izr / Ipr = 0.86
Izt / Ipt = 0.86
It becomes. However, when the S phase is missing, the R phase and the T phase have the same phase as shown in FIG. 2B. For this reason,
Izr / Ipr = 0
Izt / Ipt = 0
It becomes. Therefore, the S phase phase loss can be easily detected by the above comparison.
なお、R相及びT相のそれぞれの電流波形データは、100mSecの間を演算処理装置15のRAM17(図1参照)に保存する。そして、例えば0.5mSec毎に電流値データを取得するとともに上記RAM17に上書き保存を行う。そして、欠相状態を検出したときにこの上書き保存を停止させることにより、欠相状態を示す電流波形を保存することができる。そして、CPU16によりこの波形をアクセス可能とすることで、通信により他のパーソナルコンピュータ等に電流波形データを送信することで、パーソナルコンピュータ上で上記欠相が生じたときの電流波形を観察することができる。従って、この電流波形を確認することにより、欠相原因の究明等のメンテナンス業務に役立てることが可能である。
The current waveform data of each of the R phase and the T phase is stored in the RAM 17 (see FIG. 1) of the
また、この電流波形データは、常時取得しているものであり、過電流状態や過負荷状態になったときにも、上書き保存を停止させることで、過電流状態や過負荷状態の電流波形を保存することが可能である。このような異常状態の電流波形データは、上述したようにパーソナルコンピュータから観察することが可能であり、欠相状態の検出と同様に、各種メンテナンス業務に役立てることが可能である。また、上記100mSecの間の電流波形データのRAM領域を、例えば10個分用意しておくことで、各10回分の検出時の電流波形データを確認することが可能である。なお、この場合に検出回数が11回以上になったら、古いデータから順次上書き保存を行い、常に新しい10回分のデータを確認できるようにすることが好ましい。 In addition, this current waveform data is always acquired, and even when an overcurrent or overload condition occurs, the current waveform in an overcurrent or overload condition can be obtained by stopping overwriting. It is possible to save. The current waveform data in such an abnormal state can be observed from a personal computer as described above, and can be used for various maintenance tasks as in the detection of the phase failure state. Further, by preparing, for example, 10 RAM areas of current waveform data for 100 mSec, it is possible to check the current waveform data at the time of detection for 10 times. In this case, when the number of detections is 11 times or more, it is preferable that the old data is sequentially overwritten and stored so that new 10 data can always be confirmed.
つぎに、欠相検知の具体的手順について、図3のフローチャートにより説明する。CPU16は、まず、図3のフローチャートに示すように、R相の電流波形を積分することにより電流実効値を算出するとともに、同様に、T相の電流実効値を算出して比較する(ステップS1)。
Next, a specific procedure for phase loss detection will be described with reference to the flowchart of FIG. First, as shown in the flowchart of FIG. 3, the
予め設定されている比率(設定値)と比較できるように、R相に欠相が発生してその電流実効値がT相の電流実効値よりも小さい場合には、そのR相の小さな値を分子にする比率Aを次式により算出する。(ステップS2)
比率A=(R相の電流実効値/T相の電流実効値)×100(%)
In order to be able to compare with a preset ratio (set value), when an open phase occurs in the R phase and the current effective value is smaller than the current effective value of the T phase, the small value of the R phase is The numerator ratio A is calculated by the following formula. (Step S2)
Ratio A = (R phase effective current value / T phase effective current value) × 100 (%)
一方、R相の電流実効値がT相の電流実効値以上の場合には、同様に、T相の値を分子にする比率Aを次式により算出する(ステップS3)。
比率A=(T相の電流実効値/R相の電流実効値)×100(%)
On the other hand, if the current effective value of the R phase is equal to or greater than the current effective value of the T phase, similarly, the ratio A that makes the value of the T phase a numerator is calculated by the following equation (step S3).
Ratio A = (effective current value of T phase / effective current value of R phase) × 100 (%)
R相の電流実効値/T相の電流実効値の比率Aが設定比率よりも小さいとき(ステップS4)には、R相に欠相異常発生と判断する(ステップS22)。 When the ratio A of the effective current value of the R phase / the effective current value of the T phase is smaller than the set ratio (step S4), it is determined that an open phase abnormality has occurred in the R phase (step S22).
同様に、T相の電流実効値/R相の電流実効値の比率Aが設定比率よりも小さいとき(ステップS5)には、T相に欠相異常発生と判断する(ステップS23)。 Similarly, when the ratio A of the effective current value of the T phase / the effective current value of the R phase is smaller than the set ratio (step S5), it is determined that an open phase abnormality has occurred in the T phase (step S23).
一方、算出した比率Aが設定比率よりも小さくなかった場合には、R相の電流最大値、T相の電流最大値、T相がゼロクロス時のR相の電流値、および、R相がゼロクロス時のT相の電流値を算出して(ステップS11)、R相およびT相の電流最大値に対する他相ゼロクロス時の電流値の比率B、Cを算出する(ステップS12,S13)。
比率B=(T相ゼロクロス時のR相電流値/R相電流最大値)×100(%)
比率C=(R相ゼロクロス時のT相電流値/T相電流最大値)×100(%)
On the other hand, if the calculated ratio A is not smaller than the set ratio, the R-phase current maximum value, the T-phase current maximum value, the R-phase current value when the T-phase is zero-crossing, and the R-phase zero-crossing The current value of the T phase at the time is calculated (step S11), and the ratios B and C of the current value at the time of other phase zero crossing with respect to the maximum current values of the R phase and the T phase are calculated (steps S12 and S13).
Ratio B = (R-phase current value at T-phase zero crossing / R-phase current maximum value) × 100 (%)
Ratio C = (T-phase current value at R-phase zero crossing / T-phase current maximum value) × 100 (%)
次いで、算出した比率B、Cと設定比率とを比較して(ステップS14)、その比率B、Cのいずれか一方でも設定比率以上であった場合には、欠相異常は発生していないと判断する(ステップS19)。一方、その比率B、Cの双方が設定比率よりも小さい場合には、S相に欠相異常発生と判断する(ステップS20)。 Next, the calculated ratios B and C are compared with the set ratio (step S14), and if any one of the ratios B and C is equal to or greater than the set ratio, it is assumed that no phase loss abnormality has occurred. Judgment is made (step S19). On the other hand, if both of the ratios B and C are smaller than the set ratio, it is determined that a phase failure abnormality has occurred in the S phase (step S20).
以上のステップで、欠相異常が発生した場合には、表示操作部18(図1参照)に直ちに欠相状態を表示させる。すなわち、欠相を生じた相、及び必要に応じて比率A,B,C等のデータや、発生時刻等を表示するとともに、警報を発生する。従って、欠相の発生、特に欠相した相を表示することができるため、欠相が生じた相について集中的に調査することで、欠相の原因を早期に発見することができる。このため、メンテナンスに関わる時間を短縮できるという効果が生じる。また、上述したようにパーソナルコンピュータ等にこれらの情報が送られ、電流波形データとともにメンテナンスのためのデータとして用いられる。 In the above steps, when a phase loss abnormality occurs, the phase loss state is immediately displayed on the display operation unit 18 (see FIG. 1). That is, the phase in which the phase failure has occurred and the data such as the ratios A, B, and C, the occurrence time, etc. are displayed as necessary, and an alarm is generated. Therefore, since the occurrence of phase loss, particularly the phase that has lost phase, can be displayed, the cause of phase loss can be found at an early stage by intensively investigating the phase where phase loss has occurred. For this reason, the effect that the time concerning a maintenance can be shortened arises. Further, as described above, these pieces of information are sent to a personal computer or the like and used as maintenance data together with current waveform data.
ここで、これまで本発明の一実施形態について説明したが、本発明は上述の実施形態に限定されず、その技術的思想の範囲内において種々異なる形態にて実施されてよいことは言うまでもない。例えば、欠相検知装置は、ポンプシステムに限らずに、三相交流電源から電力供給を受ける三相負荷を備える各種のシステムに適用することができる。 Here, although one embodiment of the present invention has been described so far, it is needless to say that the present invention is not limited to the above-described embodiment, and may be implemented in various forms within the scope of the technical idea. For example, the phase loss detection device can be applied not only to a pump system but also to various systems including a three-phase load that receives power supply from a three-phase AC power source.
10 欠相検知装置
11 三相モータ
12 ポンプ本体
13a,14a 電流検出器(CT)
13,14 電流検出回路
15 演算処理装置
16 CPU
17 RAM
18 表示操作部
DESCRIPTION OF
13, 14
17 RAM
18 Display operation section
Claims (5)
前記電流検出器の検出信号から電流波形を検出する検出手段と、
前記電流波形から、電流実効値、電流最大値、および、他方相がゼロクロスするタイミングでのゼロクロス時電流値を検出する手段と、これらの検出値を比較する比較手段とを備えたことを特徴とする欠相検知装置。 A current detector that detects a current of two phases of the three phases interposed between a three-phase AC power source and a three-phase load that receives power from the power source;
Detecting means for detecting a current waveform from a detection signal of the current detector;
It comprises means for detecting a current effective value, a current maximum value, and a current value at zero crossing at the timing when the other phase zero crosses from the current waveform, and a comparison means for comparing these detected values. Open phase detector.
前記電流検出器の検出信号から電流波形を検出する検出手段と、
前記電流波形から、電流実効値、電流最大値、および、他方相がゼロクロスするタイミングでのゼロクロス時電流値を検出する手段とからなる欠相検知装置とを備えたことを特徴とするポンプシステム。 A pump system that receives power supply from a three-phase AC power source, a current detector that detects a current of two phases of the three phases between the three-phase AC power source and the pump motor;
Detecting means for detecting a current waveform from a detection signal of the current detector;
A pump system comprising: a phase failure detection device including a current effective value, a current maximum value, and a zero crossing current value at a timing at which the other phase zero crosses from the current waveform.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004034878A JP2005227073A (en) | 2004-02-12 | 2004-02-12 | Phase interruption detection device and pump system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004034878A JP2005227073A (en) | 2004-02-12 | 2004-02-12 | Phase interruption detection device and pump system |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005227073A true JP2005227073A (en) | 2005-08-25 |
Family
ID=35001910
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004034878A Pending JP2005227073A (en) | 2004-02-12 | 2004-02-12 | Phase interruption detection device and pump system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005227073A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009055739A (en) * | 2007-08-28 | 2009-03-12 | Aisin Seiki Co Ltd | Power supply system and method of detecting phase interruption thereof |
WO2014033006A3 (en) * | 2012-08-27 | 2014-09-04 | Siemens Aktiengesellschaft | Switchgear for a single-phase motor and a three-phase motor |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61151479A (en) * | 1984-12-26 | 1986-07-10 | Sumitomo Metal Ind Ltd | Apparatus for diagnosis of electromotor |
JPS62102166A (en) * | 1985-10-30 | 1987-05-12 | Meidensha Electric Mfg Co Ltd | Method for detecting defective phase |
JPH0622441A (en) * | 1992-07-06 | 1994-01-28 | Mitsubishi Electric Corp | Three-phase imbalance detector |
JPH08114637A (en) * | 1994-05-25 | 1996-05-07 | Ebara Densan:Kk | Three-phase ac power supply open-phase detection apparatus |
JPH08122097A (en) * | 1994-10-20 | 1996-05-17 | Sony Magnescale Inc | Displacement amount detector |
JPH09275685A (en) * | 1996-02-06 | 1997-10-21 | Mitsubishi Electric Corp | Power supply harmonic suppression device |
JPH09292427A (en) * | 1996-04-26 | 1997-11-11 | Yaskawa Electric Corp | Open-phase detection circuit for three-phase power supply |
JPH10332761A (en) * | 1997-05-29 | 1998-12-18 | Toshiba Corp | Connecting condition judging method and air conditioner provided with means for performing this method |
JPH11275709A (en) * | 1998-03-20 | 1999-10-08 | Mitsubishi Electric Corp | Control device for vehicle |
JP2000188824A (en) * | 1998-12-21 | 2000-07-04 | Ebara Corp | Open-phase detecting circuit |
JP2000294862A (en) * | 1999-04-01 | 2000-10-20 | Miyachi Technos Corp | Laser device |
JP2001286148A (en) * | 2000-03-30 | 2001-10-12 | Yuasa Corp | Control method and control unit for polyphase-rectifier circuit and recording medium capable of computer reading wherein program for controlling the circuit is recorded |
-
2004
- 2004-02-12 JP JP2004034878A patent/JP2005227073A/en active Pending
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61151479A (en) * | 1984-12-26 | 1986-07-10 | Sumitomo Metal Ind Ltd | Apparatus for diagnosis of electromotor |
JPS62102166A (en) * | 1985-10-30 | 1987-05-12 | Meidensha Electric Mfg Co Ltd | Method for detecting defective phase |
JPH0622441A (en) * | 1992-07-06 | 1994-01-28 | Mitsubishi Electric Corp | Three-phase imbalance detector |
JPH08114637A (en) * | 1994-05-25 | 1996-05-07 | Ebara Densan:Kk | Three-phase ac power supply open-phase detection apparatus |
JPH08122097A (en) * | 1994-10-20 | 1996-05-17 | Sony Magnescale Inc | Displacement amount detector |
JPH09275685A (en) * | 1996-02-06 | 1997-10-21 | Mitsubishi Electric Corp | Power supply harmonic suppression device |
JPH09292427A (en) * | 1996-04-26 | 1997-11-11 | Yaskawa Electric Corp | Open-phase detection circuit for three-phase power supply |
JPH10332761A (en) * | 1997-05-29 | 1998-12-18 | Toshiba Corp | Connecting condition judging method and air conditioner provided with means for performing this method |
JPH11275709A (en) * | 1998-03-20 | 1999-10-08 | Mitsubishi Electric Corp | Control device for vehicle |
JP2000188824A (en) * | 1998-12-21 | 2000-07-04 | Ebara Corp | Open-phase detecting circuit |
JP2000294862A (en) * | 1999-04-01 | 2000-10-20 | Miyachi Technos Corp | Laser device |
JP2001286148A (en) * | 2000-03-30 | 2001-10-12 | Yuasa Corp | Control method and control unit for polyphase-rectifier circuit and recording medium capable of computer reading wherein program for controlling the circuit is recorded |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009055739A (en) * | 2007-08-28 | 2009-03-12 | Aisin Seiki Co Ltd | Power supply system and method of detecting phase interruption thereof |
WO2014033006A3 (en) * | 2012-08-27 | 2014-09-04 | Siemens Aktiengesellschaft | Switchgear for a single-phase motor and a three-phase motor |
CN104584356A (en) * | 2012-08-27 | 2015-04-29 | 西门子公司 | Switchgear for a single-phase motor and a three-phase motor |
US9851404B2 (en) | 2012-08-27 | 2017-12-26 | Siemens Aktiengesellschaft | Switchgear for a single-phase motor and a three-phase motor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111936874B (en) | Diagnostic device for motor | |
US9625519B2 (en) | Drive failure protection | |
CN106019058B (en) | A kind of three-phase full-bridge inverter open fault diagnostic method based on phase current analysis | |
KR101327006B1 (en) | Apparatus and method for detecting failure of switching device in inverter | |
KR101823140B1 (en) | Method for detecting inverter fault and apparatus thereof | |
JP4994140B2 (en) | Ratio differential relay and ratio differential relay malfunction prevention method | |
US20040189316A1 (en) | Method of diagnosing inverter trouble | |
EP2953262A1 (en) | Step-out detection method and power conversion device | |
CN1265205C (en) | System and method for detecting open-phase of compressor system | |
JP2005227073A (en) | Phase interruption detection device and pump system | |
JP2006238511A (en) | Power supply monitoring recorder | |
JP2006333536A (en) | Digital protective relay | |
JP6550002B2 (en) | Power conditioner and method of detecting theft of cable connected thereto | |
US11385268B2 (en) | Bypass detection modules and related devices and methods | |
JP7374568B2 (en) | Breaker abnormality detection system | |
CN112688359B (en) | Elevator power failure detection method, equipment, device and storage medium | |
JP5621210B2 (en) | Inverter protection method and protection device | |
CN109581174B (en) | Nuclear power station dynamic simulation test system and test method | |
JP2004328886A (en) | Automatic monitoring circuit | |
CN118362836B (en) | Low-frequency power transmission line fault identification method and system based on transient quantity | |
CN215646150U (en) | Motor protector | |
KR20110014398A (en) | Method and driver monitoring system for continuing operation of turbine generator on loss of speed pick unit | |
JP3868425B2 (en) | Mechanism for preventing malfunction of digital protection relays for power systems. | |
CN117761461A (en) | Positioning method and device for ground fault of electric power system of motor train unit | |
KR200256734Y1 (en) | Maximum indicator with storage of video voltage |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061228 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080924 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081021 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20090303 |