JP2005227025A - Reactor power control method and system - Google Patents

Reactor power control method and system Download PDF

Info

Publication number
JP2005227025A
JP2005227025A JP2004033693A JP2004033693A JP2005227025A JP 2005227025 A JP2005227025 A JP 2005227025A JP 2004033693 A JP2004033693 A JP 2004033693A JP 2004033693 A JP2004033693 A JP 2004033693A JP 2005227025 A JP2005227025 A JP 2005227025A
Authority
JP
Japan
Prior art keywords
reactor
control rod
pressure
target
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004033693A
Other languages
Japanese (ja)
Other versions
JP4369772B2 (en
Inventor
Hitoshi Ochi
仁 越智
Masaichi Yunoki
政一 柚木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2004033693A priority Critical patent/JP4369772B2/en
Publication of JP2005227025A publication Critical patent/JP2005227025A/en
Application granted granted Critical
Publication of JP4369772B2 publication Critical patent/JP4369772B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To maintain reactor pressure and reactor water temperature at constant states during intervals of a raising process of temperature and pressure which is performed in a plurality of steps for reactor power control. <P>SOLUTION: In the reactor power control step, a terminal target reactor pressure is reached by setting individual intermediate target reactor pressures, repeating step by step temperature/pressure rising control and by operating control rods so as to maintain specific reactor water temperature variation rate and reaching the intermediate target reactor pressures. The control rods are to be operated when the difference between an insertion length and a withdrawal length of the control rods until reaching the target reactor pressure in the previous temperature/pressure rising process is within a set value range, after reaching the target reactor pressure in the previous temperature/pressure rising process between the previous process and the next process, and when the difference between a neutron flux detection value at the final control rod operation performed until reaching of the target reactor pressure in the previous temperature/pressure rising process, and a neutron flux detection value at a time elapsed for a certain time from the final control rod operation, is within a set value range. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、原子炉出力制御に関し、特に沸騰水型原子炉の起動時に数段階に分けて行われる各昇温昇圧過程の間における原子炉圧力と炉水温度を一定の状態に維持するのに好適な原子炉出力制御に関する。   The present invention relates to reactor power control, and in particular, to maintain a constant reactor pressure and reactor water temperature during each heating and boosting process performed in several stages when a boiling water reactor is started up. It relates to suitable reactor power control.

沸騰水型原子力発電プラントの起動時の出力上昇は、起動開始→臨界→定格圧力到達→発電機併入→定格出力到達の手順で進められる。このうち原子炉臨界から定格圧力到達までの昇温昇圧過程は、タービンバイパス弁と主蒸気加減弁を閉じ原子炉から蒸気が流出しない状態の下で制御棒操作(主には制御棒の引抜き操作)をなしながら原子炉の圧力と炉水温度を上昇させる。   The increase in output at the start-up of a boiling water nuclear power plant proceeds in the order of start-up → criticality → rated pressure reached → combined generator → rated output reached. Of these, the temperature rise and pressure increase process from the criticality of the reactor to the rated pressure is reached by operating the control rod (mainly pulling out the control rod) under the condition that the turbine bypass valve and main steam control valve are closed and steam does not flow out of the reactor ) While increasing the reactor pressure and reactor water temperature.

昇温昇圧過程では運転員による手動操作で制御棒を操作するか、または自動出力制御装置により自動的に制御棒を操作する。いずれの操作でも、中性子束の急激な上昇によるスクラムなどの原子炉保護機能が作動しないこと、また原子炉を構成する機器の熱的衝撃を避けるため炉水温度変化率を制限値(例えば55℃/h)以下に抑えることが運転上の制約となっている。   In the temperature raising and pressure increasing process, the control rod is operated manually by the operator, or the control rod is automatically operated by the automatic output control device. In any operation, the reactor protection function such as the scram due to the rapid rise of the neutron flux does not operate, and the reactor water temperature change rate is set to a limit value (for example, 55 ° C.) in order to avoid the thermal shock of the equipment constituting the reactor. / H) It is a driving restriction to keep it below.

そこで、炉水温度変化率の測定値を監視し、この測定値と温度変化率の目標値との偏差に基づいて制御棒を操作する方法が提案されている。ただこの方法については、中性子束の値が制御棒の操作に応じて直ちに変化するのに対し、炉水温度変化率の測定に時間遅れを伴うという問題がある。すなわち温度変化率の測定には、燃料棒から炉心内の冷却材への伝熱時間による時間遅れ、炉心から温度測定点までの冷却材の流動時間による時間遅れ、炉水温度を測定する計測器における熱電対の熱容量などに起因した時間遅れ、さらに測定温度から温度変化率を算出するのに一定の時間を要することにより時間遅れなどを生じ、これらの時間遅れは数分のオーダとなる。このため、単に炉水温度変化率の目標値と測定値との偏差に基づいて制御棒を操作しても、制御棒の操作が遅れ、炉水温度変化率を目標値に保つことが困難となる。   Therefore, a method has been proposed in which the measured value of the reactor water temperature change rate is monitored and the control rod is operated based on the deviation between this measured value and the target value of the temperature change rate. However, with this method, the value of the neutron flux changes immediately according to the operation of the control rod, but there is a problem that the measurement of the reactor water temperature change rate involves a time delay. That is, in measuring the rate of temperature change, a time delay due to the heat transfer time from the fuel rod to the coolant in the core, a time delay due to the coolant flow time from the core to the temperature measurement point, and a measuring instrument that measures the reactor water temperature A time lag caused by the heat capacity of the thermocouple at, and a time lag caused by a certain time required to calculate the rate of temperature change from the measured temperature, and these time lags are on the order of several minutes. For this reason, even if the control rod is operated simply based on the deviation between the target value and the measured value of the reactor water temperature change rate, the operation of the control rod is delayed and it is difficult to maintain the reactor water temperature change rate at the target value. Become.

この問題を解消するために、応答の遅い炉水温度変化率を応答の速い中性子束に対応付けて制御する方法、すなわち目標炉水温度変化率を達成する目標中性子束を算出し、この目標中性子束と中性子束の測定値との偏差に基づいて制御棒操作を行うことで炉水温度変化率を制御する方式が提案されている(例えば特許文献1)。   In order to solve this problem, a method for controlling the slow reactor water temperature change rate in association with the fast response neutron flux, that is, calculating the target neutron flux to achieve the target reactor water temperature change rate, A method of controlling the reactor water temperature change rate by performing a control rod operation based on the deviation between the bundle and the measured value of the neutron flux has been proposed (for example, Patent Document 1).

また昇温昇圧過程は何段階かに分けて行うことが通常であり、各段階の昇温昇圧過程には、それぞれで目標原子炉圧力(中間的な目標原子炉圧力)が設定されており、その目標原子炉圧力に到達したらそこで一旦制御棒操作を止める。この停止中には、原子炉を運転するのに必要な機器の起動やテスト、さらに運転員の交代などが行われ、それらの作業などが終了したら次の昇温昇圧段階に移行する。そしてこのような昇温昇圧過程を段階的に繰り返すことで最終的な定格圧力まで原子炉の圧力を上昇させてゆく。   In addition, the temperature boosting process is usually performed in several stages, and the target reactor pressure (intermediate target reactor pressure) is set for each stage of the temperature boosting process in each stage. When the target reactor pressure is reached, the control rod operation is temporarily stopped there. During this shutdown, the equipment necessary for operating the reactor is started up and tested, and the operator is replaced. When these operations are completed, the operation proceeds to the next temperature raising and boosting stage. Then, the pressure of the reactor is increased to the final rated pressure by repeating such a temperature raising and pressure increasing process step by step.

なお原子炉出力制御に関しては、特許文献1の他に、特許文献2〜特許文献6などに開示の例も知られている。   Regarding the reactor power control, in addition to Patent Document 1, examples disclosed in Patent Document 2 to Patent Document 6 are also known.

特開平9−145895号公報JP-A-9-145895 特開平5−150077号公報JP-A-5-150077 特開平5−209987号公報JP-A-5-209987 特開平10−39071号公報JP-A-10-39071 特開平9−113683号公報Japanese Patent Laid-Open No. 9-113683 特開昭64−83190号公報JP-A 64-83190

昇温昇圧過程における従来の制御方式は、炉水の温度反応度係数が負であることを前提としている。すなわち昇温昇圧段階ごとの原子炉圧力目標値に達して制御棒操作を止めると、炉水温度変化率が0℃/h(時間)付近に落ち着き、原子炉圧力と炉水温度は目標値付近で一定に保たれるものと仮定している。   The conventional control method in the temperature raising and pressure increasing process is based on the premise that the temperature reactivity coefficient of the reactor water is negative. In other words, when the reactor pressure target value is reached for each temperature boosting step and the control rod operation is stopped, the reactor water temperature change rate settles around 0 ° C / h (hours), and the reactor pressure and reactor water temperature are near the target values. Is assumed to remain constant.

しかるに、最近の沸騰水型原子炉で用いられる燃料は、燃料経済性の向上を図るために、燃料濃縮度を高めて高燃焼度化されている。燃料を効率よく燃焼させる高燃焼度化燃料では、燃料体積に対する水領域の体積を増やした設計になってきている。そしてこうした高燃焼度化燃料については、炉水温度が低い場合に炉水の温度反応度係数が正になる場合のある燃料もあることがわかってきた。炉水の温度反応度係数が正の燃料は、中性子束が増加して発熱量が増えることで炉水温度が上昇すると、正の反応度が印加されて中性子の上昇速度が増加する。その結果として炉水温度変化率も増加する。   However, fuels used in recent boiling water reactors have been increased in fuel burnup by increasing fuel enrichment in order to improve fuel economy. High burn-up fuel that burns fuel efficiently has been designed with the volume of the water region increased relative to the fuel volume. And about such high burn-up fuel, it has been found that there is a fuel in which the temperature reactivity coefficient of the reactor water may become positive when the reactor water temperature is low. A fuel having a positive reactor water temperature reactivity coefficient increases the neutron flux and the calorific value, so that when the reactor water temperature rises, positive reactivity is applied and the rate of neutron rise increases. As a result, the reactor water temperature change rate also increases.

すなわち、炉水の温度反応度係数が正の場合、目標原子炉圧力に到達した一つの昇温昇圧段階を終了させてその後段の昇温昇圧過程を開始するまで制御棒の操作を停止している状態で炉水温度変化率が0℃/h付近に落ち着かずに上昇してしまい、一定であるべき原子炉圧力と炉水温度は当該昇温昇圧過程での目標値から大きくずれてしまう。この場合に、炉水温度の上昇に気づいて運転員が制御棒を直ちに挿入することで対応しても、炉水温度は中性子束に比べ数分の遅れをもって反応するので、その後数分間は炉水温度が上昇し続けることになる。その結果、さらに加速度的な中性子束の上昇と温度変化率の上昇を抑えるために連続的な制御棒の挿入が必要となる。しかしこのような作業を行いながら各機器の起動やテスト、運手員の交代を行うことは困難であることが予想される。   That is, when the temperature reactivity coefficient of reactor water is positive, the operation of the control rod is stopped until one temperature increase / decrease step that has reached the target reactor pressure is completed and the subsequent temperature increase / decrease step is started. In this state, the reactor water temperature change rate rises without being settled near 0 ° C./h, and the reactor pressure and the reactor water temperature that should be constant deviate greatly from the target values in the temperature raising and boosting process. In this case, even if the operator notices the rise in the reactor water temperature and responds by immediately inserting the control rod, the reactor water temperature reacts with a delay of a few minutes compared to the neutron flux, so the reactor for several minutes thereafter. The water temperature will continue to rise. As a result, it is necessary to insert control rods continuously in order to further suppress the neutron flux increase and the temperature change rate. However, it is expected that it is difficult to start up and test each device and change the operator while performing such work.

本発明は、以上のような事情を背景になされたものであり、複数の段階に分けて行われる各昇温昇圧過程の間における原子炉圧力と炉水温度を一定の状態に維持することを可能とする原子炉出力制御方法およびその装置の提供を目的としている。   The present invention has been made in the background as described above, and maintains the reactor pressure and the reactor water temperature in a constant state during each heating and boosting process performed in a plurality of stages. An object of the present invention is to provide a reactor power control method and apparatus capable of enabling it.

上記目的のために本発明では、それぞれに中間的な目標原子炉圧力を設定し、所定の炉水温度変化率を維持しながら前記中間的な目標原子炉圧力に到達させるように制御棒の操作をなす昇温昇圧制御を段階的に繰り返すことで、最終の目標原子炉圧力に到達させるようになっている原子炉出力制御方法において、ある前段の昇温昇圧過程とそれに続く後段の昇温昇圧過程の間で、前記前段の昇温昇圧過程における前記中間的な目標原子炉圧力に到達した後に、前記前段の昇温昇圧過程における前記中間的な目標原子炉圧力に到達するまでの制御棒の挿入量と引抜き量の差分が設定値の範囲である場合、または前記前段の昇温昇圧過程における前記中間的な目標原子炉圧力に到達するまでになされた最後の制御棒動作時における中性子束検出値と前記最後の制御棒動作時から一定時間経過した時刻における中性子束検出値の差分が設定値の範囲である場合に、制御棒の操作を行うようにしたことを特徴としている。   For the above purpose, the present invention sets an intermediate target reactor pressure for each, and operates the control rod so as to reach the intermediate target reactor pressure while maintaining a predetermined reactor water temperature change rate. In the reactor power control method that allows the final target reactor pressure to be reached by repeating the step-up / step-up control that achieves During the process, after reaching the intermediate target reactor pressure in the preceding step-up temperature boosting process, until the intermediate target reactor pressure is reached in the preceding step-up temperature boosting process, Neutron flux detection when the difference between the insertion amount and the extraction amount is within the set value range, or during the last control rod operation performed until the intermediate target reactor pressure is reached in the heating and boosting process of the previous stage value When the difference of the neutron flux detection value at the time when a predetermined time has elapsed from the time the last control rod operation is in the range of set values, and characterized in that to perform the operation of the control rod.

また本発明では上記のような原子炉出力制御方法について、前記制御棒の挿入量と引抜き量の差分に関する設定値としてAとB(ただしA<B)を設定し、また前記中性子束検出値の差分に関する設定値としてCとD(ただしC<D)を設定し、前記制御棒の挿入量と引抜き量の差分が前記設定値Aと前記設定値Bの間の範囲にある場合または前記中性子束検出値の差分が前記設定値Cと前記設定値Dの間の範囲にある場合には予め設定の挿入量で前記制御棒の挿入を行い、前記制御棒の挿入量と引抜き量の差分が前記設定値Bより大きい範囲にある場合または前記中性子束検出値の差分が前記設定値Dより大きい範囲にある場合には前記炉水温度変化率として一時間あたり0℃を設定し、この炉水温度変化率を維持できるように前記制御棒の操作を行うようにしている。   Further, in the present invention, in the reactor power control method as described above, A and B (where A <B) are set as set values relating to the difference between the insertion amount and the withdrawal amount of the control rod, and the neutron flux detection value is set. C and D (where C <D) are set as set values relating to the difference, and the difference between the insertion amount and the withdrawal amount of the control rod is in the range between the set value A and the set value B, or the neutron flux When the difference between the detected values is in the range between the set value C and the set value D, the control rod is inserted with a preset insertion amount, and the difference between the insertion amount of the control rod and the withdrawal amount is When it is in the range larger than the set value B or when the difference between the detected neutron flux values is in the range larger than the set value D, the reactor water temperature change rate is set to 0 ° C. per hour. The control rod so that the rate of change can be maintained And to perform the operation.

また本発明では上記のような原子炉出力制御方法に適用するために、目標圧力到達後制御設定器を備え、前記目標圧力到達後制御設定器には、前記制御棒の挿入量と引抜き量の差分を求める挿入引抜比較器と前記中性子束検出値の差分を求める中性子束比較器の何れか一つが少なくとも設けられてなる構成を原子炉出力制御装置に与えるものとしている。   Further, in the present invention, in order to apply to the reactor power control method as described above, a control setter after reaching the target pressure is provided, and in the control setter after reaching the target pressure, the insertion amount and the withdrawal amount of the control rod are set. A configuration in which at least one of an insertion / extraction comparator for obtaining a difference and a neutron flux comparator for obtaining a difference between the detected neutron flux values is provided to the reactor power control apparatus.

本発明では、一つの昇温昇圧過程とそれに続く昇温昇圧過程の間で、制御棒の操作量または中性子束の変化状態に基づいた判定に応じて制御棒の操作を行うようにしている。したがって本発明によれば、炉水温度反応度係数が正であるために昇温昇圧制御停止後に生じ得る原子炉圧力や炉水温度の上昇を効果的に防ぐことが可能となり、その結果、原子力プラントの起動をより円滑に行えるようになり、運転員の負担も軽減することができる。   In the present invention, the control rod is operated in accordance with the determination based on the operation amount of the control rod or the change state of the neutron flux between one temperature raising and pressure raising process and the subsequent temperature raising and pressure raising process. Therefore, according to the present invention, since the reactor water temperature reactivity coefficient is positive, it is possible to effectively prevent an increase in reactor pressure and reactor water temperature that may occur after the temperature rise and pressure control is stopped. The plant can be started more smoothly and the burden on the operator can be reduced.

以下、本発明の実施形態について説明する。図1に、一実施形態による原子炉出力制御装置の構成を示す。原子炉出力制御装置は、本体制御装置1と測定系を備えている。その測定系には、原子炉圧力検出系、炉水温度検出系、および中性子束検出系がある。   Hereinafter, embodiments of the present invention will be described. FIG. 1 shows a configuration of a reactor power control apparatus according to an embodiment. The reactor power control device includes a main body control device 1 and a measurement system. The measurement system includes a reactor pressure detection system, a reactor water temperature detection system, and a neutron flux detection system.

原子炉圧力検出系は、原子炉10に接続の主蒸気配管で原子炉圧力を検出する圧力センサ11と、この圧力センサ11からの信号に応じて原子炉圧力値を算出し、それを本体制御装置1に出力する圧力検出器2で構成される原子炉圧力検出手段を含んでいる。   The reactor pressure detection system calculates a reactor pressure value according to a pressure sensor 11 that detects a reactor pressure through a main steam pipe connected to the reactor 10, and a signal from the pressure sensor 11, and controls it. Reactor pressure detection means comprising a pressure detector 2 that outputs to the apparatus 1 is included.

炉水温度検出系は、原子炉10に接続の配管内で炉水の温度を検出する熱電対15と、この熱電対15からの信号に応じて炉水温度を算出し、それを本体制御装置1に出力する温度検出器3で構成される炉水温度検出手段を含んでいる。   The reactor water temperature detection system calculates the reactor water temperature according to a signal from the thermocouple 15 that detects the reactor water temperature in the pipe connected to the reactor 10 and the thermocouple 15, and supplies it to the main body control device. 1 includes a reactor water temperature detecting means constituted by a temperature detector 3 that outputs to 1.

中性子束検出系は、原子炉10の炉心12で中性子束を検出してその単位時間あたりの数を計数し、この計数値を中性子束検出信号として出力する中性子束検出手段である中性子束検出器13を含んでいる。また中性子束検出系は、中性子束検出器13からの出力信号を中性子束レベル(中性子束の検出値と炉心の定格出力との割合を示すレベル=%定格)に変換するとともに、中性子束の時間変化率を表す指標である原子炉周期を演算し、それらを本体制御装置1に出力する中性子束モニタ4を含んでいる。   The neutron flux detection system detects a neutron flux in the core 12 of the nuclear reactor 10, counts the number per unit time, and outputs a neutron flux detection signal as a neutron flux detection means. 13 is included. The neutron flux detection system converts the output signal from the neutron flux detector 13 to a neutron flux level (level indicating the ratio between the detected value of the neutron flux and the rated output of the core =% rating) and the time of the neutron flux. It includes a neutron flux monitor 4 that calculates the reactor cycle, which is an index representing the rate of change, and outputs them to the main body control device 1.

本体制御装置1は、制御棒自動制御器8、目標圧力到達後制御設定器9および目標設定器17を備えるとともに、CRT6と操作パネル7を備えている。   The main body control device 1 includes a control rod automatic controller 8, a control setting device 9 after reaching the target pressure, and a target setting device 17, and also includes a CRT 6 and an operation panel 7.

制御棒自動制御器8は、後述する制御ロジックを内蔵しており、その制御ロジックにしたがい制御棒駆動制御器5に適切なタイミングで制御棒の引抜き指令または挿入指令を出力する。そのために制御棒自動制御器8には、温度検出器3で検出した炉水温度、中性子束モニタ4の出力する中性子束レベルと原子炉周期、および目標設定器17から取り込んだ原子炉圧力目標値と炉水温度変化率目標値が入力される。   The control rod automatic controller 8 incorporates a control logic to be described later, and outputs a control rod withdrawal command or insertion command to the control rod drive controller 5 at an appropriate timing according to the control logic. For this purpose, the control rod automatic controller 8 includes the reactor water temperature detected by the temperature detector 3, the neutron flux level and reactor cycle output from the neutron flux monitor 4, and the reactor pressure target value fetched from the target setter 17. And the reactor water temperature change rate target value are input.

制御棒駆動制御器5は、制御棒駆動装置16の制御をなす装置であり、本体制御装置1から出力された制御棒駆動信号(挿入指令または引抜き指令)に基づいて制御棒駆動装置16に制御棒駆動信号を出力する。また、本体制御装置1に対して、制御棒駆動状態(制御棒挿入中、制御棒引抜き中、制御棒操作完了、制御棒の現在位置)信号を出力する。   The control rod drive controller 5 is a device that controls the control rod drive device 16, and controls the control rod drive device 16 based on a control rod drive signal (insertion command or extraction command) output from the main body control device 1. A rod drive signal is output. Further, a control rod drive state (control rod insertion, control rod pulling out, control rod operation completion, current position of control rod) signal is output to the main body control device 1.

制御棒駆動装置16は、炉心12に対する制御棒14の挿入または引抜きを駆動する装置であり、水圧または電動で制御棒14の挿入または引抜きを駆動するようになっており、制御棒駆動制御器5からの信号にしたがって制御棒4を炉心2に挿入し、あるいは炉心2から引抜く動作をする。   The control rod drive device 16 is a device that drives insertion or extraction of the control rod 14 with respect to the core 12. The control rod drive device 16 drives insertion or extraction of the control rod 14 by water pressure or electric power. The control rod 4 is inserted into the core 2 or pulled out from the core 2 in accordance with the signal from.

目標圧力到達後制御設定器9は、本発明を特徴付ける要素であり、後述する制御ロジックを内蔵しており、その制御ロジックにしたがい、ある昇温昇圧過程とそれぞれに続く後段の昇温昇圧過程の間における制御棒の操作に必要な指令を生成する。具体的には、中性子束モニタ4からの中性子束レベル、制御棒自動制御器8からの制御棒駆動信号、および制御棒自動制御器8からの目標原子炉圧力到達信号を入力信号とし、中性子束レベルと制御棒駆動信号それぞれについて炉水の温度反応度係数の状態を判定する。そして炉水の温度反応度係数が小さな正値であると判断された場合には、制御棒自動制御器8に制御棒挿入要求と目標到達後炉周期監視信号を出力する。一方、炉水の温度反応度係数が大きな正値であると判断された場合には、目標原子炉圧力到達後の原子炉圧力と炉水温度を一定に保つ制御のための指令である定値制御信号を目標設定器17に出力する。   The control setter 9 after reaching the target pressure is an element that characterizes the present invention, and incorporates a control logic to be described later. In accordance with the control logic, a certain temperature increase and pressure increase process and a subsequent temperature increase and pressure increase process are performed. Generate commands necessary for control rod operation during the interval. Specifically, the neutron flux level from the neutron flux monitor 4, the control rod drive signal from the control rod automatic controller 8, and the target reactor pressure arrival signal from the control rod automatic controller 8 are input signals, and the neutron flux The state of the reactor water temperature reactivity coefficient is determined for each level and control rod drive signal. When it is determined that the temperature reactivity coefficient of the reactor water is a small positive value, a control rod insertion request and a reactor cycle monitoring signal after reaching the target are output to the control rod automatic controller 8. On the other hand, if the reactor water temperature reactivity coefficient is determined to be a large positive value, the constant value control, which is a command for controlling the reactor pressure and reactor water temperature after reaching the target reactor pressure, to be constant The signal is output to the target setting unit 17.

目標設定器17は、目標原子炉圧力と目標炉水温度変化率を設定するための手段である。その設定操作は、操作パネル7を通じて運転員によりなされる。この目標設定器17で設定された原子炉圧力目標値と炉水温度変化率目標値は制御棒自動制御器8に入力される。ここで、目標原子炉圧力は、複数の段階に分けてなされる昇温昇圧過程ごとに設定され、最終段階の昇温昇圧過程で設定される目標原子炉圧力が最終的な目標原子炉圧力となる。各段での目標原子炉圧力としては例えば1.0MPaが設定される。一方、目標炉水温度変化率は、各昇温昇圧過程において炉水温度変化率の制限値(例えば55℃/h)を順守できるように、例えば20℃/hが設定される。ただし、目標圧力到達後制御設定器9から定値制御信号が入力されると、後述するように、炉水温度変化率目標値は0℃/hに自動的に設定変更され、また目標原子炉圧力は、実際の原子炉圧力に対し十分大きな値である例えば10MPaに自動的に設定変更される。   The target setter 17 is a means for setting the target reactor pressure and the target reactor water temperature change rate. The setting operation is performed by the operator through the operation panel 7. The reactor pressure target value and the reactor water temperature change rate target value set by the target setting unit 17 are input to the control rod automatic controller 8. Here, the target reactor pressure is set for each heating and boosting process divided into a plurality of stages, and the target reactor pressure set in the final heating and boosting process is the final target reactor pressure. Become. For example, 1.0 MPa is set as the target reactor pressure in each stage. On the other hand, the target reactor water temperature change rate is set to 20 ° C./h, for example, so that the limit value (for example, 55 ° C./h) of the reactor water temperature change rate can be observed in each temperature increase / pressurization process. However, when a constant value control signal is input from the control setter 9 after reaching the target pressure, the reactor water temperature change rate target value is automatically changed to 0 ° C./h, and the target reactor pressure is set as described later. Is automatically changed to, for example, 10 MPa, which is a sufficiently large value with respect to the actual reactor pressure.

表示装置6は、本体制御装置1と運転員とのインターフェイス手段の一つである。この表示装置6には、温度変化率目標値と実際の温度変化率が並べて表示されたり、目標とする炉水温度の時間変化や実際の炉水温度の時間変化がトレンドとしてグラフ表示されたりする。また中性子束レベルや原子炉周期、あるいは原子炉周期の逆数もトレンドとしてグラフ表示され、さらに制御棒の現在位置の表示もなされる。   The display device 6 is one of interface means between the main body control device 1 and an operator. This display device 6 displays the temperature change rate target value and the actual temperature change rate side by side, or displays the target time variation of the reactor water temperature and the time variation of the actual reactor water temperature as a graph. . The neutron flux level, the reactor cycle, or the reciprocal of the reactor cycle is also displayed as a trend, and the current position of the control rod is also displayed.

操作パネル7は、本体制御装置1と運転員とのインターフェイス手段の他の一つであり、制御操作盤上のコンソールなどとして構成される。この操作パネル7を通じて運転員により目標原子炉圧力や目標炉水温度変化率の設定がなされることは上述の通りである。   The operation panel 7 is another interface means between the main body control device 1 and the operator, and is configured as a console on the control operation panel. As described above, the operator sets the target reactor pressure and the target reactor water temperature change rate through the operation panel 7.

以下では本体制御装置1による原子炉出力制御の具体的内容について説明する。図2〜図4に目標圧力到達後制御設定器9における制御ロジックの構成を示す。目標圧力到達後制御設定器9の制御ロジックは、一つの昇温昇圧過程を終了して次の昇温昇圧過程での制御を開始するまでの間において、炉水の温度反応度係数が正であることにより、原子炉圧力と炉水温度が上昇するのを防止するための制御をなす制御ロジックである。その制御には、炉水温度反応度係数の大きさに応じて、二つの方式がある。   Below, the specific content of the reactor power control by the main body control apparatus 1 is demonstrated. 2 to 4 show the configuration of the control logic in the control setter 9 after reaching the target pressure. After the target pressure is reached, the control logic of the control setter 9 indicates that the temperature reactivity coefficient of the reactor water is positive during the period from the end of one temperature increase / decrease process to the start of control in the next temperature increase / decrease process. Therefore, the control logic performs control to prevent the reactor pressure and the reactor water temperature from rising. There are two types of control depending on the magnitude of the reactor water temperature reactivity coefficient.

具体的には下記の式(1)〜(4)によって炉水温度反応度係数の値を判断し、原子炉圧力目標到達後の制御方式を設定する。すなわち式(1)または式(3)が成立すれば炉水の温度反応度係数は小さな正値であると判断する。そしてこの場合には制御棒挿入指令を本体制御装置1に出し、これに応じて本体制御装置1は、予め設定の挿入量単位で制御棒の挿入を行う。これが第1の制御方式である。一方、式(2)または式(4)が成立すれば炉水の温度反応度係数は大きな正値であると判断する。そしてこの場合には、定値制御信号を目標設定器17に出力し、これに応じて目標設定器17で炉水温度変化率目標値が0℃/hが自動的に設定され、この目標炉水温度変化率を維持するような制御が本体制御装置1でなされる。これが第2の制御方式である。   Specifically, the value of the reactor water temperature reactivity coefficient is determined by the following equations (1) to (4), and the control method after reaching the reactor pressure target is set. That is, if Equation (1) or Equation (3) is established, it is determined that the temperature reactivity coefficient of the reactor water is a small positive value. In this case, a control rod insertion command is issued to the main body control device 1, and in response to this, the main body control device 1 inserts control rods in units of preset insertion amounts. This is the first control method. On the other hand, if Equation (2) or Equation (4) is satisfied, it is determined that the temperature reactivity coefficient of the reactor water is a large positive value. In this case, a constant value control signal is output to the target setter 17, and the target water temperature change rate target value is automatically set to 0 ° C./h by the target setter 17, and this target reactor water is set. Control that maintains the rate of temperature change is performed by the main body control device 1. This is the second control method.

式(1)〜(4)におけるAは、例えばA=(−1)×(制御棒引抜き量の20%)として設定される設定値であり、Bは、例えばB=0として設定される設定値であり、Cは、例えばC=(−1)×(最後に行われた制御棒操作時の中性子束の20%)として設定される設定値であり、Dは、D=0として設定される設定値であり、これら設定値A、B、C、Dには式(5)の関係が成り立つものとする。また式(2)と(3)における「一定時間」は、中性子束の変化状態を判断するのに適切な時間として設定さる時間であり、例えば10分という時間が設定される。なお式(1)と式(2)における「目標原子炉圧力」は昇温昇圧過程ごとに設定される目標原子炉圧力であり、式(3)と式(4)における「最後に行われた制御棒操作」は、各昇温昇圧過程の最後に行われた制御棒操作である。   A in the formulas (1) to (4) is a setting value set as, for example, A = (− 1) × (20% of the amount of control rod drawing), and B is a setting set as B = 0, for example. C is a set value set as, for example, C = (− 1) × (20% of the neutron flux at the time of the last control rod operation), and D is set as D = 0. These setting values A, B, C, and D are assumed to satisfy the relationship of Expression (5). In addition, the “certain time” in the expressions (2) and (3) is a time set as an appropriate time for determining the change state of the neutron flux, and for example, a time of 10 minutes is set. The “target reactor pressure” in the formula (1) and the formula (2) is a target reactor pressure set for each heating and boosting process, and “the last performed” in the formula (3) and the formula (4). The “control rod operation” is a control rod operation performed at the end of each temperature raising / pressurizing process.

A≦ 目標原子炉圧力到達までの制御棒挿入量−引抜き量 ≦B (1)
B< 目標原子炉圧力到達までの制御棒挿入量−引抜き量 (2)
C≦ 最後に行われた制御棒操作から一定時間後の中性子束
−最後に行われた制御棒操作時の中性子束 ≦D (3)
D< 最後に行われた制御棒操作から一定時間後の中性子束
−最後に行われた制御棒操作時の中性子束 (4)
A<BかつC<D (5)
A ≦ Control rod insertion amount until reaching the target reactor pressure−Pullout amount ≦ B (1)
B <Amount of control rod inserted until the target reactor pressure is reached minus the amount of withdrawal (2)
C ≦ neutron flux after a certain time from the last control rod operation−neutron flux at the last control rod operation ≦ D (3)
D <Neutron flux after a certain time since the last control rod operation-Neutron flux at the last control rod operation (4)
A <B and C <D (5)

図2の制御ロジックは第1の制御方式についての制御ロジックである。この制御ロジックは、式(1)に基づく制御ロジックと式(3)に基づく制御ロジックを組み合わせて構成されている。式(1)に基づく制御ロジックは、引抜き量メモリ21、挿入量メモリ22、および第1の挿入引抜比較器23を有し、本体制御装置1からの制御棒駆動信号20を入力信号としている。引抜量メモリ21は、制御棒駆動信号20を入力とし、一つの昇温昇圧過程の制御が開始されてからその昇温昇圧過程での目標原子炉圧力に到達するまでになされる制御棒の操作における引抜量を順次加算するように記憶し、その記憶した制御棒引抜量を挿入引抜比較器23に出力する。挿入量メモリ22も同様に制御棒駆動信号20を入力とし、一つの昇温昇圧過程の制御が開始されてからその昇温昇圧過程での目標原子炉圧力に到達するまでになされる制御棒の操作における挿入量を順次加算するように記憶し、その記憶した制御棒挿入量を挿入引抜比較器23に出力する。挿入引抜比較器23は、式(1)とその設定値AとBが設定されており、引抜量メモリ21から引抜量と挿入量メモリ22からの挿入量について式(1)を満足するか否かを一つの制御棒操作が終了するごとに判定し、式(1)が満足される場合にはOR回路28にオン信号を出力し、式(1)が満足されない場合にはOR回路28にオフ信号を出力する。   The control logic of FIG. 2 is a control logic for the first control method. This control logic is configured by combining a control logic based on Expression (1) and a control logic based on Expression (3). The control logic based on the formula (1) has a drawing amount memory 21, an insertion amount memory 22, and a first insertion / withdrawal comparator 23, and uses a control rod drive signal 20 from the main body control device 1 as an input signal. The withdrawal amount memory 21 receives the control rod drive signal 20 as an input, and operates the control rod that is performed from the start of the control of one temperature raising and boosting process until reaching the target reactor pressure in the temperature raising and boosting process. The amount of pulling out is stored so as to be sequentially added, and the stored amount of control rod drawing is output to the insertion / drawing comparator 23. Similarly, the insertion amount memory 22 receives the control rod drive signal 20 as an input, and the control rod drive signal 20 is controlled from the start of the control of one temperature raising and boosting process until the target reactor pressure is reached in the temperature raising and boosting process. The insertion amount in the operation is stored so as to be sequentially added, and the stored control rod insertion amount is output to the insertion / withdrawal comparator 23. The insertion / withdrawal comparator 23 is set with Expression (1) and its set values A and B, and whether or not Expression (1) is satisfied with respect to the withdrawal amount from the withdrawal amount memory 21 and the insertion amount from the insertion amount memory 22. Is determined each time one control rod operation is completed, and if the expression (1) is satisfied, an ON signal is output to the OR circuit 28, and if the expression (1) is not satisfied, the OR circuit 28 is output. Outputs an off signal.

一方、式(3)に基づく制御ロジックは、中性子束メモリ25、時間遅れタイマー26、および第1の中性子束比較器27を有し、本体制御装置1からの制御棒駆動信号20と中性子束モニタ4からの中性子束レベル24を入力信号としている。中性子束メモリ25は、中性子束レベル24と制御棒駆動信号20を入力とし、制御棒が駆動された時点で中性子束レベル24を取り込み、それを中性子束比較器27に出力する。時間遅れタイマー26は、制御棒駆動信号20を入力とし、制御棒が駆動された場合にその駆動時点から設定時間(上の例では10分)だけ遅れて中性子束比較器27にオン信号を出力する。中性子束比較器27は、式(3)とその設定値CとDが設定されおり、時間遅れタイマー26からオン信号が入力された際に、中性子束メモリ25からの中性子束レベル、つまり制御棒が操作された時点での中性子束レベルと、中性子束モニタ4から直接入力される中性子束レベル24、つまり制御棒駆動時から設定時間だけ遅れた時点での中性子束レベルを比較し、式(3)を満足する場合にはOR回路28にオン信号を出力し、式(3)を満足しない場合にはOR回路28にオフ信号を出力する。   On the other hand, the control logic based on the equation (3) has a neutron flux memory 25, a time delay timer 26, and a first neutron flux comparator 27, and a control rod drive signal 20 from the main body control device 1 and a neutron flux monitor. 4 is used as an input signal. The neutron flux memory 25 receives the neutron flux level 24 and the control rod drive signal 20 as inputs, takes in the neutron flux level 24 when the control rod is driven, and outputs it to the neutron flux comparator 27. The time delay timer 26 receives the control rod drive signal 20 as an input, and outputs an ON signal to the neutron flux comparator 27 when the control rod is driven with a delay of a set time (10 minutes in the above example) from the drive point. To do. The neutron flux comparator 27 is set with equation (3) and its set values C and D. When an ON signal is input from the time delay timer 26, the neutron flux level from the neutron flux memory 25, that is, the control rod Is compared with the neutron flux level 24 directly input from the neutron flux monitor 4, that is, the neutron flux level when the control rod is delayed by a set time from the time when the control rod is driven. ) Is output to the OR circuit 28, and when the expression (3) is not satisfied, an OFF signal is output to the OR circuit 28.

OR回路28は、挿入引抜比較器23がオンまたは中性子束比較器27がオンの場合にオン信号、つまり式(1)または式(3)が成立したという情報をAND回路30に出力し、挿入引抜比較器23と中性子束比較器27が両方オフの場合にオフ信号をAND回路30に出力する。AND回路30は、OR回路28の出力と目標原子炉圧力到達信号29を入力とし、両者ともオンの場合にのみオン信号を出力する。すなわちAND回路30は、一つの昇温昇圧過程においてそこでの目標原子炉圧力に到達したことで出力される目標原子炉圧力到達信号29が入力している場合でかつ、式(1)または式(3)が成立していることを条件としてオン信号を出力する。したがってAND回路30の出力がオンであれば、目標原子炉圧力に到達して昇温昇圧制御が停止された状態で式(1)または式(3)が成立していることから、炉水の温度反応度係数が小さな正値であると判断されることになる。そしてこの場合には制御棒挿入要求32と目標到達後炉周期監視信号31が出力される。   The OR circuit 28 outputs an ON signal when the insertion / extraction comparator 23 is ON or the neutron flux comparator 27 is ON, that is, outputs information indicating that Expression (1) or Expression (3) is satisfied to the AND circuit 30 and inserts it. When both the drawing comparator 23 and the neutron flux comparator 27 are off, an off signal is output to the AND circuit 30. The AND circuit 30 receives the output of the OR circuit 28 and the target reactor pressure arrival signal 29, and outputs an ON signal only when both are ON. In other words, the AND circuit 30 receives the target reactor pressure arrival signal 29 that is output when the target reactor pressure is reached in one heating and boosting process, and the formula (1) or the formula ( An ON signal is output on condition that 3) is satisfied. Therefore, if the output of the AND circuit 30 is on, since the equation (1) or the equation (3) is established in a state where the target reactor pressure is reached and the temperature increase / decrease control is stopped, It is determined that the temperature reactivity coefficient is a small positive value. In this case, a control rod insertion request 32 and a furnace cycle monitoring signal 31 after reaching the target are output.

制御棒挿入要求32は、図1における制御棒自動制御器8に入力される。制御棒自動制御器8は、図6に示す制御ロジック構成とされており、制御棒挿入要求32が制御棒動作判定器65に入力し、制御棒駆動が許可される状態であれば挿入指令73を制御棒駆動制御器5に出力し、これに応じて所定の挿入量で制御棒の挿入がなされる。以上が第1の制御方式による制御である。   The control rod insertion request 32 is input to the control rod automatic controller 8 in FIG. The control rod automatic controller 8 has the control logic configuration shown in FIG. 6, and if the control rod insertion request 32 is input to the control rod motion determination unit 65 and the control rod drive is permitted, the insertion command 73 is given. Is output to the control rod drive controller 5, and the control rod is inserted with a predetermined insertion amount accordingly. The above is the control by the first control method.

目標到到達後炉周期監視信号31は、図3に示す制御ロジックおけるゲート回路36に入力される。図3の制御ロジックは、目標原子炉圧力到達後に制御棒挿入要求32が出力されて制御棒を挿入がなされた後に働き、図2の制御ロジックに対する補助的な機能を負っている。すなわち目標原子炉圧力到達後に式(1)と式(3)が成立して制御棒挿入要求32が出力されると、それに応じて予め設定の挿入量で制御棒の挿入がなされるが、それでもなお中性子束が増加傾向にある場合に、さらに制御棒挿入要求32を出力することで図2の制御ロジックを補完する。具体的には、中性子束モニタ4で得られる炉周期計測値33から逆数演算器34にて炉周期の逆数を演算し、その炉周期逆数を炉周期逆数比較器35で設定値と比較する。ここで炉周期は、中性子束が約2.72倍(正確には自然対数の底e倍)になる時間である。炉周期逆数比較器35には、例えば0.00167(炉周期600秒に相当する)という設定値が設定されている。そしてこの設定値と逆数演算器34からの炉周期逆数が比較され、炉周期逆数が設定値以上であった場合には、中性子束が増加傾向にあるとして、炉周期逆数比較器35がオン信号をゲート回路36に出力し、目標到到達後炉周期監視信号31の入力でゲート回路36がつながっていれば、制御棒挿入要求32が出力される。   The furnace cycle monitoring signal 31 after reaching the target is input to the gate circuit 36 in the control logic shown in FIG. The control logic of FIG. 3 works after the control rod insertion request 32 is output after the target reactor pressure is reached and the control rod is inserted, and has an auxiliary function to the control logic of FIG. That is, when the control rod insertion request 32 is output after the equations (1) and (3) are satisfied after the target reactor pressure is reached, the control rod is inserted with a preset insertion amount accordingly. When the neutron flux tends to increase, the control logic shown in FIG. 2 is complemented by outputting a control rod insertion request 32. Specifically, the reciprocal number of the furnace cycle is calculated by the reciprocal calculator 34 from the furnace cycle measurement value 33 obtained by the neutron flux monitor 4, and the reciprocal number of the furnace cycle is compared with the set value by the furnace cycle reciprocal comparator 35. Here, the reactor cycle is the time when the neutron flux is about 2.72 times (more precisely, the base e times the natural logarithm). For example, a set value of 0.00167 (corresponding to a furnace cycle of 600 seconds) is set in the furnace cycle reciprocal comparator 35. Then, this set value is compared with the reciprocal furnace cycle reciprocal from the reciprocal calculator 34. If the reciprocal furnace cycle reciprocal is equal to or greater than the set value, the neutron flux tends to increase and the furnace cycle reciprocal comparator 35 is turned on. If the gate circuit 36 is connected by the input of the furnace cycle monitoring signal 31 after reaching the target, a control rod insertion request 32 is output.

図4の制御ロジックは第2の制御方式についての制御ロジックである。この制御ロジックは、基本的には図2の制御ロジックと同じである。相違するのは、図2の制御ロジックが式(1)と式(3)について判断していたのに対し、式(2)と式(4)について判断することと、目標到達後定値制御信号44を出力することである。以下ではこの第2の制御方式用制御ロジックについて、第1の制御方式用制御ロジックと相違する制御内容を中心に説明する。第2の挿入引抜比較器40は、第1の挿入引抜比較器式23に対応するもので、式(2)とその設定値Bが設定されており、第2の中性子束比較器41は、第1の中性子束比較器27に対応するもので、式(4)とその設定値Dが設定されている。そして挿入引抜比較器40により式(2)が満足されると判断された場合と中性子束比較器41により式(4)が満足されると判断された場合のそれぞれでOR回路42にオン信号が出力され、OR回路42は、挿入引抜比較器40と中性子束比較器41からの入力値のどちらかがオンの場合にAND回路43にオン信号を出力する。AND回路43は、OR回路42からの入力値と目標原子炉圧力到達信号29がともにオンの場合、つまり目標原子炉圧力に到達して昇温昇圧過程の制御が停止された状態で式(2)または式(4)が成立することから、炉水の温度反応度係数が大きな正値であると判断され場合に目標到達後定値制御信号44を図1における目標設定器17に出力する。   The control logic of FIG. 4 is a control logic for the second control method. This control logic is basically the same as the control logic of FIG. The difference is that the control logic of FIG. 2 has determined the expressions (1) and (3), but the determination is based on the expressions (2) and (4) and the fixed value control signal after reaching the target. 44 is output. Hereinafter, the control logic for the second control method will be described focusing on the control contents different from the control logic for the first control method. The second insertion / withdrawal comparator 40 corresponds to the first insertion / withdrawal comparator equation 23, and the equation (2) and its set value B are set, and the second neutron flux comparator 41 is: This corresponds to the first neutron flux comparator 27, and formula (4) and its set value D are set. An ON signal is sent to the OR circuit 42 when the insertion / extraction comparator 40 determines that the expression (2) is satisfied and when the neutron flux comparator 41 determines that the expression (4) is satisfied. The OR circuit 42 outputs an ON signal to the AND circuit 43 when one of the input values from the insertion / extraction comparator 40 and the neutron flux comparator 41 is ON. When both the input value from the OR circuit 42 and the target reactor pressure arrival signal 29 are ON, that is, the AND circuit 43 reaches the target reactor pressure and the control of the temperature raising and boosting process is stopped. ) Or equation (4) is established, and when it is determined that the temperature reactivity coefficient of the reactor water is a large positive value, the fixed value control signal 44 after reaching the target is output to the target setting unit 17 in FIG.

目標設定器17は、図5にその構成を示すように、ある段階での昇温昇圧過程の制御開始時に操作パネル7を通じて入力された目標原子炉圧力と目標炉水温度変化率を目標設定回路52において上限と下限に関してチェックした後に目標原子炉圧力53、目標炉水温度変化率54として設定し、これを図1の制御棒自動制御器8に出力する。そしてその段階における昇温昇圧過程が終了した後に、目標到達後定値制御信号44が入力されると、操作パネルにて入力された目標値に代えて、目標設定回路52が所定の目標値を自動的に設定する。その目標値には、目標原子炉圧力53として、例えば10MPaという、実際の原子炉圧力に対して十分に大きな値が設定され、また目標炉水温度変化率54として、炉水温度の上昇のない条件である0℃/hが設定される。   As shown in FIG. 5, the target setting unit 17 is a target setting circuit for setting the target reactor pressure and the target reactor water temperature change rate inputted through the operation panel 7 at the start of control of the temperature raising and boosting process at a certain stage. After checking the upper limit and the lower limit at 52, the target reactor pressure 53 and the target reactor water temperature change rate 54 are set and output to the control rod automatic controller 8 of FIG. Then, when the post-target constant value control signal 44 is input after the temperature raising and boosting process at that stage is completed, the target setting circuit 52 automatically sets a predetermined target value instead of the target value input on the operation panel. To set. The target value is set to a target reactor pressure 53 that is sufficiently large with respect to the actual reactor pressure, for example, 10 MPa, and there is no increase in the reactor water temperature as the target reactor water temperature change rate 54. A condition of 0 ° C./h is set.

制御棒自動制御器8は、図6にその制御ロジックの構成を示すように、目標炉水温度変化率54を維持しながら目標原子炉圧力53まで原子炉を昇温昇圧できるように、実際の炉水温度変化率と中性子束をフィードバックした比例積分動作により制御棒操作を指令する。そして目標原子炉圧力53よりも実際の原子炉圧力69の方が大きくなると圧力比較器70がオフ信号を出力してゲート回路64を切り、比例積分器62の出力を制御棒動作判定器65に伝えないようにし、制御棒動作を行わないようにする。この状態で図4の目標到達後定値制御信号44が出力されて図5の目標設定回路52により目標原子炉圧力53が十分大きな値(上の例では10MPa)に設定され、また目標炉水温度変化率54に0℃/hが設定されると、圧力比較器70がオン信号を出力することで比例積分器62の出力が制御棒動作判定器65に伝えられ、炉水温度変化率を0℃/hに維持するように比例積分動作が行われ、連続的に挿入指令73が出力されることになる。以上が第2の制御方式による制御である。   As shown in FIG. 6, the control rod automatic controller 8 is configured so as to increase the temperature of the reactor up to the target reactor pressure 53 while maintaining the target reactor water temperature change rate 54. Control rod operation is commanded by proportional-integral operation with feedback of reactor water temperature change rate and neutron flux. When the actual reactor pressure 69 becomes higher than the target reactor pressure 53, the pressure comparator 70 outputs an OFF signal to turn off the gate circuit 64, and the output of the proportional integrator 62 is sent to the control rod operation determiner 65. Do not communicate, do not perform control rod movement. In this state, the fixed value control signal 44 after reaching the target in FIG. 4 is output, the target reactor pressure 53 is set to a sufficiently large value (10 MPa in the above example) by the target setting circuit 52 in FIG. When the rate of change 54 is set to 0 ° C./h, the pressure comparator 70 outputs an ON signal, whereby the output of the proportional integrator 62 is transmitted to the control rod operation determiner 65, and the reactor water temperature change rate is set to 0. The proportional integration operation is performed so as to maintain the temperature at ° C./h, and the insertion command 73 is continuously output. The above is the control by the second control method.

以上のように本発明では、炉水温度反応度係数についてその正値の大小を区別し、これに応じて制御方式を変えるようにしている。これは、一つの段階の昇温昇圧過程を終了して次の昇温昇圧過程の間に各種機器の起動やテストや運転員の交代を行っている状態ではできるだけ制御棒の操作を行わないようにすることが望ましいということを考慮したものである。すなわち、炉水温度反応度係数の正値が小さくてそれほど急な炉水温度の上昇が予測されない条件では、予め設定の挿入量による制御棒の挿入を単発的に行うようにすることで、きるだけ制御棒の操作頻度を少なくする。一方、炉水温度反応度係数の正値が大きくて急激な炉水温度の上昇が予測される条件では、炉水温度の上昇防止を重視し、0℃/hという目標炉水温度変化率を維持する制御を行うようにしている。   As described above, in the present invention, the positive and negative values of the reactor water temperature reactivity coefficient are distinguished, and the control method is changed in accordance with this. This means that the control rod should not be operated as much as possible when one stage of the temperature increase / decrease process is completed and various devices are activated, tested, or the operator is changed during the next temperature increase / decrease process. It is considered that it is desirable. That is, under the condition that the positive value of the reactor water temperature reactivity coefficient is small and the rise of the reactor water temperature is not expected to be so rapid, the control rod can be inserted by a single insertion with a preset insertion amount. Only reduce the operation frequency of the control rod. On the other hand, under conditions where the positive value of the reactor water temperature reactivity coefficient is large and a rapid rise in the reactor water temperature is predicted, emphasis is placed on preventing the reactor water temperature from rising, and a target reactor water temperature change rate of 0 ° C / h is set. The control to maintain is performed.

図7に示すのは、以上の実施形態における第1の制御方式が適用される場合の効果をシミュレーションで評価した結果であり、沸騰水型原子炉の臨界過程および昇温昇圧の初期段階における炉水温度と炉水温度変化率の変化を示している。ここで昇温昇圧過程の目標原子炉圧力を0.38MPa、目標炉水温度変化率を30℃/hに設定している。初期炉水温度は85℃、炉水の温度反応度係数は180℃以下では僅かに正値、180℃より大きな温度では負値としている。評価の結果では約8500秒で目標原子炉圧力に到達しており、制御開始から目標原子炉圧力到達までは制御棒の引抜きと挿入が繰り返され、若干引抜量が大きくなったところで目標原子炉圧力に到達している。曲線76と78はそれぞれ本発明を適用していない場合の炉水温度と炉水温度変化率の評価結果であり、目標原子炉圧力到達後に制御棒操作を行わないので炉水温度変化率は上昇し、炉水温度もかなり上昇している。これは炉水の温度反応度係数が正であるため温度上昇により中性子束が増大し、それがさらに温度上昇に寄与するという連鎖が生じるためである。実際の原子炉では炉水温度変化率がある設定値(例えば55℃/h)を超えると警報が発生するので運転員が手動で制御棒を操作することになるが、加速度的な温度上昇を抑えるためにはかなりの制御棒操作が必要であり、制御棒挿入量の判断も困難であると推察される。一方、曲線77と79は本発明のを適用した場合の炉水温度と炉水温度変化率の評価結果であり、炉水の温度反応度係数が小さな正値であることを目標圧力到達後制御設定器9により判定し、目標原子炉圧力到達後直ちに制御棒を挿入し、また時刻約9500秒で炉周期が600秒を下回ったためもう一度制御棒を挿入しており、これらの制御棒の挿入により、目標原子炉圧力到達後の炉水温度と原子炉圧力をほとんど上昇させることなく静定させている。この結果から本発明の有効性を確認できる。   FIG. 7 shows the result of evaluating the effect when the first control method in the above embodiment is applied by simulation. The reactor in the initial stage of the critical process of the boiling water reactor and the temperature boosting The change in water temperature and reactor water temperature change rate is shown. Here, the target reactor pressure in the temperature raising / pressurizing process is set to 0.38 MPa, and the target reactor water temperature change rate is set to 30 ° C./h. The initial reactor water temperature is 85 ° C., and the reactor water temperature reactivity coefficient is slightly positive when the temperature is 180 ° C. or lower, and negative when the temperature is higher than 180 ° C. As a result of the evaluation, the target reactor pressure was reached in about 8500 seconds, and the control rod was repeatedly withdrawn and inserted from the start of control until the target reactor pressure was reached. Has reached. Curves 76 and 78 are evaluation results of the reactor water temperature and reactor water temperature change rate when the present invention is not applied, respectively, and the control rod operation is not performed after reaching the target reactor pressure, so the reactor water temperature change rate is increased. However, the reactor water temperature has risen considerably. This is because the temperature reactivity coefficient of the reactor water is positive, so that the neutron flux increases due to the temperature rise, which further contributes to the temperature rise. In an actual reactor, if the reactor water temperature change rate exceeds a certain set value (for example, 55 ° C / h), an alarm is generated, so the operator manually operates the control rod. In order to suppress it, it is assumed that considerable control rod operation is required, and it is difficult to judge the amount of control rod insertion. On the other hand, curves 77 and 79 show the evaluation results of the reactor water temperature and the reactor water temperature change rate when the present invention is applied, and control that the reactor water temperature reactivity coefficient is a small positive value after reaching the target pressure. Judgment is made by the setting device 9, and the control rod is inserted immediately after reaching the target reactor pressure, and the control cycle is inserted again because the reactor cycle is less than 600 seconds at about 9500 seconds. By inserting these control rods The reactor water temperature and the reactor pressure after reaching the target reactor pressure are stabilized without increasing the reactor pressure. From this result, the effectiveness of the present invention can be confirmed.

図8に示すのは、以上の実施形態における第2の制御方式が適用される場合の効果をシミュレーションで評価した結果であり、図7と同様、沸騰水型原子炉の臨界過程および昇温昇圧の初期段階における炉水温度と炉水温度変化率の変化を示している。ここで昇温昇圧過程の目標原子炉圧力を0.38MPa、目標炉水温度変化率を30℃/hに設定している。初期炉水温度は70℃、炉水の温度反応度係数は180℃以下では大きな正値、180℃より大きな温度では負値としている。評価の結果約10800秒で目標原子炉圧力に到達しており、炉水の温度反応度係数が大きな正値であったため、昇温昇圧制御開始から目標原子炉圧力までは制御棒挿入が連続して行われる結果となった。曲線80と82はそれぞれ本発明を適用していない場合の炉水温度と炉水温度変化率の評価結果であり、目標原子炉圧力到達後に制御棒操作を行わないので炉水温度変化率は上昇し炉水温度も加速度的に上昇している。一方、曲線81と83は本発明を適用した場合の炉水温度と炉水温度変化率の評価結果であり、炉水の温度反応度係数が大きな正値であることを目標圧力到達後制御設定器9により判定し、目標原子炉圧力到達後直ちに目標炉水温度変化率を0℃/hに設定した炉水温度一定制御として制御棒を連続的に挿入することで、目標圧力到達後に炉水温度は大きく上昇することなく静定している。この結果から、本発明によれば、炉水の温度反応度係数が大きな正値であっても、目標原子炉圧力到達後に原子炉圧力と炉水温度を一定に保つことが可能であることを確認できる。   FIG. 8 shows a result of evaluating by simulation the effect when the second control method in the above embodiment is applied. Like FIG. 7, the critical process and the temperature increase / decrease of the boiling water reactor are shown. Shows the changes in the reactor water temperature and the reactor water temperature change rate in the initial stage. Here, the target reactor pressure in the temperature raising / pressurizing process is set to 0.38 MPa, and the target reactor water temperature change rate is set to 30 ° C./h. The initial reactor water temperature is 70 ° C., and the temperature reactivity coefficient of reactor water is a large positive value when the temperature is 180 ° C. or lower, and a negative value when the temperature is higher than 180 ° C. As a result of the evaluation, the target reactor pressure was reached in about 10800 seconds, and the temperature reactivity coefficient of the reactor water was a large positive value. Therefore, the insertion of control rods continued from the start of the temperature boost control to the target reactor pressure. The result was done. Curves 80 and 82 are evaluation results of the reactor water temperature and reactor water temperature change rate when the present invention is not applied, respectively, and the control rod operation is not performed after reaching the target reactor pressure, so the reactor water temperature change rate is increased. The reactor water temperature is also increasing at an accelerated rate. On the other hand, curves 81 and 83 are the evaluation results of the reactor water temperature and the reactor water temperature change rate when the present invention is applied, and the control setting after reaching the target pressure indicates that the reactor water temperature reactivity coefficient is a large positive value. As soon as the reactor pressure is reached, the control rod is continuously inserted as constant control of the reactor water temperature with the target reactor water temperature change rate set to 0 ° C./h immediately after reaching the target reactor pressure. The temperature has settled without significantly increasing. From this result, according to the present invention, even if the temperature reactivity coefficient of reactor water is a large positive value, it is possible to keep the reactor pressure and reactor water temperature constant after reaching the target reactor pressure. I can confirm.

本発明は、炉水温度反応度係数が正であるために昇温昇圧制御停止後に生じ得る原子炉圧力や炉水温度の上昇を効果的に防ぐことが可能とし、このことで原子力プラントの起動をより円滑に行えるようにし、運転員の負担も軽減することができる。したがって本発明は原子力プラントに有用なものとして広く利用することができる。   Since the reactor water temperature reactivity coefficient is positive, the present invention can effectively prevent an increase in reactor pressure and reactor water temperature that may occur after the temperature rise and pressure boost control is stopped. Can be performed more smoothly, and the burden on the operator can be reduced. Therefore, the present invention can be widely used as useful for nuclear power plants.

一実施形態による原子炉出力制御装置の構成を示す図である。It is a figure which shows the structure of the nuclear reactor power control apparatus by one Embodiment. 目標圧力到達後制御設定器における第1の制御方式に関する制御ロジックの構成を示す図である。It is a figure which shows the structure of the control logic regarding the 1st control system in the control setter after target pressure arrival. 炉周期に基づく制御棒挿入要求の制御ロジックの構成を示す図である。It is a figure which shows the structure of the control logic of the control rod insertion request | requirement based on a furnace cycle. 目標圧力到達後制御設定器における第2の制御方式に関する制御ロジックの構成を示す図である。It is a figure which shows the structure of the control logic regarding the 2nd control system in the control setter after target pressure arrival. 目標設定器の構成を示す図である。It is a figure which shows the structure of a target setting device. 制御棒自動制御器における制御ロジックの構成を示す図である。It is a figure which shows the structure of the control logic in a control rod automatic controller. 本発明の効果を炉水温度と炉水温度変化率に関して評価した例を示す図である。It is a figure which shows the example which evaluated the effect of this invention regarding the reactor water temperature and the reactor water temperature change rate. 本発明の効果を炉水温度と炉水温度変化率に関して評価した他の例を示す図である。It is a figure which shows the other example which evaluated the effect of this invention regarding the reactor water temperature and the reactor water temperature change rate.

符号の説明Explanation of symbols

1 本体制御装置
2 圧力検出器
3 温度検出器
4 中性子束モニタ
5 制御棒駆動制御器
8 制御棒自動制御器
9 目標圧力到達後制御設定器
10 原子炉
11 圧力センサ
13 中性子束検出器
14 制御棒
16 制御棒駆動装置
17 目標設定器
21 引抜き量メモリ
22 挿入量メモリ
23 第1の挿入引抜比較器
25 中性子束メモリ
27 第1の中性子束比較器
40 第2の挿入引抜比較器
41 第2の中性子束比較器
DESCRIPTION OF SYMBOLS 1 Main body control apparatus 2 Pressure detector 3 Temperature detector 4 Neutron flux monitor 5 Control rod drive controller 8 Control rod automatic controller 9 Control setting device 10 after reaching target pressure Reactor 11 Pressure sensor 13 Neutron flux detector 14 Control rod 16 Control rod drive device 17 Target setter 21 Extraction amount memory 22 Insertion amount memory 23 First insertion / extraction comparator 25 Neutron flux memory 27 First neutron flux comparator 40 Second insertion / extraction comparator 41 Second neutron Bundle comparator

Claims (3)

それぞれに中間的な目標原子炉圧力を設定し、所定の炉水温度変化率を維持しながら前記中間的な目標原子炉圧力に到達させるように制御棒の操作をなす昇温昇圧制御を段階的に繰り返すことで、最終の目標原子炉圧力に到達させるようになっている原子炉出力制御方法において、
ある前段の昇温昇圧過程とそれに続く後段の昇温昇圧過程の間で、前記前段の昇温昇圧過程における前記中間的な目標原子炉圧力に到達した後に、前記前段の昇温昇圧過程における前記中間的な目標原子炉圧力に到達するまでの制御棒の挿入量と引抜き量の差分が設定値の範囲である場合、または前記前段の昇温昇圧過程における前記中間的な目標原子炉圧力に到達するまでになされた最後の制御棒動作時における中性子束検出値と前記最後の制御棒動作時から一定時間経過した時刻における中性子束検出値の差分が設定値の範囲である場合に、制御棒の操作を行うようにしたことを特徴とする原子炉出力制御方法。
An intermediate target reactor pressure is set for each of them, and the temperature rising and boosting control is performed step by step to operate the control rod so as to reach the intermediate target reactor pressure while maintaining a predetermined reactor water temperature change rate. In the reactor power control method designed to reach the final target reactor pressure by repeating
After reaching the intermediate target reactor pressure in the preceding heating and boosting process between a certain heating and boosting process in the subsequent stage, and in the preceding heating and boosting process, When the difference between the insertion amount of the control rod and the withdrawal amount until reaching the intermediate target reactor pressure is within the set value range, or the intermediate target reactor pressure is reached in the temperature raising and boosting process of the previous stage When the difference between the detected neutron flux at the time of the last control rod operation and the detected neutron flux at the time when a predetermined time has elapsed from the last control rod operation is within the set value range, A reactor power control method characterized in that an operation is performed.
前記制御棒の挿入量と引抜き量の差分に関する設定値としてAとB(ただしA<B)を設定し、また前記中性子束検出値の差分に関する設定値としてCとD(ただしC<D)を設定し、前記制御棒の挿入量と引抜き量の差分が前記設定値Aと前記設定値Bの間の範囲にある場合または前記中性子束検出値の差分が前記設定値Cと前記設定値Dの間の範囲にある場合には予め設定の挿入量で前記制御棒の挿入を行い、前記制御棒の挿入量と引抜き量の差分が前記設定値Bより大きい範囲にある場合または前記中性子束検出値の差分が前記設定値Dより大きい範囲にある場合には前記炉水温度変化率として一時間あたり0℃を設定し、この炉水温度変化率を維持できるように前記制御棒の操作を行うようにした請求項1に記載の原子炉出力制御方法。   A and B (where A <B) are set as the set values regarding the difference between the insertion amount and the withdrawal amount of the control rod, and C and D (where C <D) are set as the set values regarding the difference between the detected neutron flux values. When the difference between the insertion amount and the withdrawal amount of the control rod is in the range between the setting value A and the setting value B, or the difference between the detected neutron flux values is the difference between the setting value C and the setting value D. The control rod is inserted with a preset insertion amount when the difference is between the insertion amount of the control rod and the extraction amount within a range larger than the set value B or the detected neutron flux value If the difference is greater than the set value D, the reactor water temperature change rate is set to 0 ° C. per hour, and the control rod is operated so that the reactor water temperature change rate can be maintained. Reactor power control method according to claim 1 . 請求項1または請求項2に記載の原子炉出力制御方法で用いる原子炉出力制御装置であって、
目標圧力到達後制御設定器を備えており、前記目標圧力到達後制御設定器には、前記制御棒の挿入量と引抜き量の差分を求める挿入引抜比較器と前記中性子束検出値の差分を求める中性子束比較器の何れか一つが少なくとも設けられてある原子炉出力制御装置。
A reactor power control device used in the reactor power control method according to claim 1 or 2,
A control setter after reaching the target pressure is provided, and the control setter after reaching the target pressure obtains the difference between the insertion / withdrawal comparator for obtaining the difference between the insertion amount and the withdrawal amount of the control rod and the detected value of the neutron flux. A reactor power control device provided with at least one of the neutron flux comparators.
JP2004033693A 2004-02-10 2004-02-10 Reactor power control method and apparatus Expired - Lifetime JP4369772B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004033693A JP4369772B2 (en) 2004-02-10 2004-02-10 Reactor power control method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004033693A JP4369772B2 (en) 2004-02-10 2004-02-10 Reactor power control method and apparatus

Publications (2)

Publication Number Publication Date
JP2005227025A true JP2005227025A (en) 2005-08-25
JP4369772B2 JP4369772B2 (en) 2009-11-25

Family

ID=35001867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004033693A Expired - Lifetime JP4369772B2 (en) 2004-02-10 2004-02-10 Reactor power control method and apparatus

Country Status (1)

Country Link
JP (1) JP4369772B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007064946A (en) * 2005-09-02 2007-03-15 Hitachi Ltd Method and device for determining positive/negative of moderator temperature coefficient

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007064946A (en) * 2005-09-02 2007-03-15 Hitachi Ltd Method and device for determining positive/negative of moderator temperature coefficient
JP4607713B2 (en) * 2005-09-02 2011-01-05 日立Geニュークリア・エナジー株式会社 Moderator temperature coefficient positive / negative judgment method and positive / negative judgment device

Also Published As

Publication number Publication date
JP4369772B2 (en) 2009-11-25

Similar Documents

Publication Publication Date Title
JP2008216242A (en) Nuclear reactor start-up monitoring system
EP3121392A1 (en) Start-up control device and start-up control method for power plant
JP4369772B2 (en) Reactor power control method and apparatus
JP2008122094A (en) Nuclear reactor output control device, nuclear reactor system, and nuclear reactor output control method
JP2005207944A (en) Reactor output control method and its system
JP4084371B2 (en) Reactor power control method and apparatus
JP4607713B2 (en) Moderator temperature coefficient positive / negative judgment method and positive / negative judgment device
JP4398278B2 (en) Reactor power control method and apparatus
JP3304856B2 (en) Control rod control method and control rod automatic controller
JP3172653B2 (en) Control rod operating method and control rod operating device
JPH11142588A (en) Reactor automatic start device
JP3275163B2 (en) Control rod control device and control rod operation method
JPH09145895A (en) Reactor output control method and device
JP5608338B2 (en) Selection control rod control method and controller
JP2007225511A (en) Nuclear reactor monitoring device and output controller
JP2553152B2 (en) Reactor control rod automatic control method
JPH1031090A (en) Reactor output control device
JP4504889B2 (en) Water supply control device
JP2022111680A (en) Control rod automatic control device and control rod automatic control method
JP2012184991A (en) Apparatus and program for controlling nuclear reactor output
CN114830263A (en) Method and controller for controlling a nuclear power plant
JPH1184077A (en) Reactor operation monitor and reactor provided with the same
JPH09222489A (en) Method and device for automatic power regulation of boiling water reactor
JPS63144293A (en) Nuclear reactor output controller
JPS61100692A (en) Controller for nuclear reactor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060106

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20071204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090716

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090825

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090828

R150 Certificate of patent or registration of utility model

Ref document number: 4369772

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130904

Year of fee payment: 4

EXPY Cancellation because of completion of term