JP3357975B2 - Reactor power control device - Google Patents

Reactor power control device

Info

Publication number
JP3357975B2
JP3357975B2 JP18502796A JP18502796A JP3357975B2 JP 3357975 B2 JP3357975 B2 JP 3357975B2 JP 18502796 A JP18502796 A JP 18502796A JP 18502796 A JP18502796 A JP 18502796A JP 3357975 B2 JP3357975 B2 JP 3357975B2
Authority
JP
Japan
Prior art keywords
change rate
target
reactor
temperature change
water temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18502796A
Other languages
Japanese (ja)
Other versions
JPH1031090A (en
Inventor
義之 宮本
尚司 谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP18502796A priority Critical patent/JP3357975B2/en
Publication of JPH1031090A publication Critical patent/JPH1031090A/en
Application granted granted Critical
Publication of JP3357975B2 publication Critical patent/JP3357975B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は原子力発電プラント
を起動する時に制御棒を自動的に制御して出力を制御す
る原子炉出力制御装置に係り、特に、制御系に与える制
御信号を積分処理を行って求める制御モードに好適な原
子炉出力制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reactor power control device for automatically controlling a control rod when starting a nuclear power plant to control the power, and more particularly to an integration process for a control signal given to a control system. The present invention relates to a reactor power control device suitable for a control mode obtained by performing.

【0002】[0002]

【従来の技術】改良型沸騰水型原子力発電プラントの起
動時の出力上昇は、起動開始→臨界→定格圧力到達→発
電機併入→定格出力到達の手順で進められる。このう
ち、従来技術を、原子炉臨界から定格圧力到達までの間
の昇温昇圧過程で説明する。この過程における制御で
は、タ−ビンバイパス弁と加減弁を閉じ、原子炉から蒸
気が流失しない状態のもとで、炉心に挿入されていた制
御棒を引き抜き、原子炉を昇温昇圧する。
2. Description of the Related Art The output of an improved boiling water nuclear power plant at the time of start-up is increased in the order of start-up → critical → attainment of rated pressure → incorporation of generator → attainment of rated output. Among them, the prior art will be described in the process of raising the temperature and increasing the pressure from the reactor criticality to the rated pressure. In the control in this process, the turbine bypass valve and the control valve are closed, the control rod inserted into the reactor core is pulled out in a state where steam does not flow out of the reactor, and the reactor is heated and pressurized.

【0003】昇温昇圧過程での主な運転制限事項は下記
の2点である。 (i) 制御棒引き抜き時に中性子束の急激な上昇によりス
クラム等の原子炉保護機能が作動しない様炉周期(中性
子束がe=2.71倍となるまでの時間)を一定値以下
に保つ。
[0003] There are the following two main operational restrictions during the temperature raising and pressurizing process. (i) The reactor cycle (time until the neutron flux becomes e = 2.71 times) is kept below a certain value so that the reactor protection function such as scram does not operate due to the rapid rise of the neutron flux when the control rod is pulled out.

【0004】(ii)原子炉を構成する各部材に熱的衝撃を
与えぬよう炉水の温度変化率を制限値(例えば55℃/h)
以下に保つ。
(Ii) Limit the temperature change rate of the reactor water (for example, 55 ° C./h) so as not to give a thermal shock to each member constituting the reactor.
Keep below.

【0005】後者の(ii)の方が条件としては厳しいの
で、一般的には、制限値以下の温度変化率を目標値とし
て設定し、温度変化率が目標値となるよう制御棒を操作
する。なお、ここで言う炉水温度とは必ずしも炉心内で
の冷却材の温度を意味しない。一般の沸騰水型原子炉で
は、炉心内の炉水温度を直接測定していないため、原子
炉圧力容器から引き出した配管内で測定した冷却材の温
度を炉水温度と呼んでいる。このため、炉心内での冷却
材の温度と炉水温度測定値との間には、時間遅れがあ
る。
[0005] Since the latter condition (ii) is more severe, generally a temperature change rate equal to or lower than a limit value is set as a target value, and the control rod is operated so that the temperature change rate becomes the target value. . Here, the reactor water temperature does not necessarily mean the temperature of the coolant in the reactor core. In a general boiling water reactor, the temperature of the coolant measured in the pipe drawn from the reactor pressure vessel is called the reactor water temperature because the reactor water temperature in the reactor core is not directly measured. For this reason, there is a time delay between the temperature of the coolant in the core and the measured value of the reactor water temperature.

【0006】起動時における運転員の従来の制御棒操作
手順を以下に示す。まず、未臨界の原子炉から制御棒を
徐々に引き抜いて、原子炉周期が100秒〜200秒程度の超
過臨界の状態にもっていく。ここまでの過程を臨界過程
と呼び、その後、原子炉を定格圧力まで昇圧する昇温昇
圧過程が始まる。昇温昇圧過程の初期には、炉水温度が
上昇を開始して炉心に負の反応度が印加されるまでは、
前記炉心周期を保って中性子が上昇する。運転員は過去
の運転実績から炉水の温度変化率が目標値付近となる中
性子束レベルの目安をもっており、ある程度中性子束値
が上昇したところで、今後、前記目安を超えそうな場合
は制御棒を挿入し、目安を大きく下回りそうな場合には
制御棒を引き抜く。
[0006] A conventional control rod operation procedure of the operator at the time of starting is shown below. First, the control rod is gradually withdrawn from the subcritical reactor to bring it into a supercritical state with a reactor cycle of about 100 to 200 seconds. The process up to this point is called the critical process, after which the temperature increasing process of increasing the reactor pressure to the rated pressure starts. At the beginning of the heating and pressurizing process, until the reactor water temperature starts to rise and negative reactivity is applied to the core,
Neutrons rise while maintaining the core cycle. The operator has a measure of the neutron flux level at which the temperature change rate of the reactor water is close to the target value from the past operation results. Insert it and pull out the control rod if it is likely to fall far short of the target.

【0007】炉水温度が上昇すると中性子束の上昇が止
まり減少に転じる。炉水温度変化率測定値も、前記時間
遅れを経た後、同様に上昇から減少に転じる。この時、
温度変化率測定値が目標値に達しないときは再度制御棒
を引き抜き、温度変化率の上昇を待つ。以上の操作を繰
り返して、一旦測定温度変化率が目標値に達した以後
は、温度変化率目標値より温度変化率測定値が約10℃/h
下回るのを待って、炉周期が十分長いことを確認後、制
御棒を少量引き抜く。この操作を繰り返して炉水の温度
変化率を一定値に保つ。
When the reactor water temperature rises, the neutron flux stops rising and starts to decrease. After the time delay, the measured value of the rate of change in the reactor water temperature also changes from rising to decreasing. At this time,
If the measured value of the temperature change rate does not reach the target value, the control rod is pulled out again and the temperature change rate is waited. By repeating the above operation, once the measured temperature change rate reaches the target value, the measured temperature change rate is about 10 ° C / h from the target temperature change rate.
Wait for the temperature to drop, check that the furnace cycle is long enough, and pull out a small amount of control rod. This operation is repeated to maintain the temperature change rate of the reactor water at a constant value.

【0008】運転員による上記の制御棒操作は、効率良
く昇温昇圧するためには熟練を要する上、操作回数が多
いため時間もかかり、負担が大きい。このため、いくつ
かの自動操作方法が従来から提案されている。その第1
の従来方法では、炉水温度変化率の測定値をみながら、
目標とする温度変化率との偏差に対して比例積分演算を
行い、その結果に基づいて制御棒を操作している。ま
た、第2の従来方法(特公平3−81693公報記載)
では、昇温昇圧過程において、目標温度変化率と現在の
温度変化率とから制御目標値を演算し、制御棒動作のタ
イミングを決定している。
The above-described operation of the control rod by the operator requires skill in order to efficiently raise the temperature and pressure, and is time-consuming and burdensome due to the large number of operations. For this reason, some automatic operation methods have been conventionally proposed. The first
In the conventional method, while observing the measured value of the reactor water temperature change rate,
The proportional integral calculation is performed on the deviation from the target temperature change rate, and the control rod is operated based on the result. In addition, the second conventional method (described in Japanese Patent Publication No. 3-81693)
In the temperature increasing step, the control target value is calculated from the target temperature change rate and the current temperature change rate, and the timing of the control rod operation is determined.

【0009】[0009]

【発明が解決しようとする課題】制御棒の反応度は、同
じ引抜量でも反応度の大きな領域と小さな領域を持つい
わゆる非線形性を有する。さらに、中性子束は、制御棒
操作により直ちに変化するが、炉水温度変化率の変化が
測定されるまでには、燃料棒から炉心内での冷却材への
伝熱時間や、炉心から温度測定点までの流動時間、熱電
対の熱容量などの計測器の遅れ時間、さらに温度から温
度変化率を算出するための時間平均操作による遅れ時間
を生じ、この遅れ時間は数分のオ−ダになる。このた
め、第1の従来方法の様に、炉水温度変化率の目標値と
測定値の偏差に基づいて制御棒を操作した場合、積分器
演算での制御棒反応度の小さい領域での偏差の蓄積、お
よび、温度検出の時間遅れから、目標とする炉水温度変
化率に保つことが難しい。
The reactivity of the control rod has a so-called non-linearity having a region with a large reactivity and a region with a small reactivity at the same amount of withdrawal. In addition, the neutron flux changes immediately due to the operation of the control rod, but until the change in the reactor water temperature change is measured, the heat transfer time from the fuel rod to the coolant in the core and the temperature measurement from the core The flow time to the point, the delay time of the measuring instrument such as the heat capacity of the thermocouple, and the delay time due to the time averaging operation for calculating the temperature change rate from the temperature occur, and this delay time is on the order of several minutes. . Therefore, when the control rod is operated based on the deviation between the target value and the measured value of the reactor water temperature change rate as in the first conventional method, the deviation in the region where the control rod reactivity in the integrator operation is small is small. It is difficult to keep the target reactor water temperature change rate due to the accumulation of water and the time delay of temperature detection.

【0010】また、第2の従来方法では、制御目標値が
一定であるため、制御棒反応度の小さい領域では炉水温
度変化率が目標値に追従できず、目標中性子束を演算す
る積分器に偏差が溜まることになる。その結果、制御棒
反応度の大きい領域に移行したとき、過剰な反応度が印
加されてしまい、炉水温度変化率が55℃/h以上になる
可能性がある。
In the second conventional method, since the control target value is constant, the reactor water temperature change rate cannot follow the target value in a region where the control rod reactivity is small, and the integrator for calculating the target neutron flux is used. Will accumulate deviation. As a result, when shifting to a region where the control rod reactivity is large, excessive reactivity is applied, and the rate of change in reactor water temperature may be 55 ° C./h or more.

【0011】本発明の目的は、投入反応度に非線形性が
あっても、制御パラメータを目標値に良好に追従させる
ことができ目標値のオーバーシュートを抑制することが
できる原子炉出力制御装置を提供することにある。
An object of the present invention is to provide a reactor power control apparatus capable of causing a control parameter to properly follow a target value and suppressing overshoot of the target value even when the input reactivity has nonlinearity. To provide.

【0012】[0012]

【課題を解決するための手段】上記目的は、原子炉出力
制御装置が、中性子検出器に接続された中性子束モニタ
から取り込んだ中性子束レベルを対数化する対数変換器
と、温度計を有する温度検出器から取り込んだ炉水温度
の変化率を算出する温度変化率演算器と、炉水温度変化
率のゆらぎを除去するための最小自乗演算器と、過去の
温度変化率データに基づき,規定時間先の炉水温度の温
度変化率データを予測する進み補償機能部と、目標とす
る炉水温度変化率を入力するための目標炉水温度変化率
設定器と、目標温度変化率の設定を徐々に上昇させる変
化率制限器と、前記変化率制限器の出力と前記進み補償
機能部の出力との偏差を,目標とする炉水温度変化率を
与える中性子束レベルに換算する比例積分器と、前記比
例積分器より換算された中性子束目標値と,前記対数変
換器より出力された現在の中性子束との偏差により制御
棒動作を判定し、当該偏差が規定値以上と判定された場
合に制御棒の動作指令を出力する制御棒動作判定回路
と、前記比例積分器の出力と前記対数変換器の出力との
偏差値より比例積分器の積分器演算を制限する制限信号
を出力する比較回路と、原子炉圧力を検出する圧力計の
信号と目標原子炉圧力を設定する目標原子炉圧力設定器
の出力との偏差が規定値以下となることを判定し制御棒
停止指令を出力する比較器と、から構成されることで、
達成される。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a reactor power control apparatus, comprising: a logarithmic converter for logarithmic neutron flux levels taken from a neutron flux monitor connected to a neutron detector; A temperature change rate calculator for calculating the rate of change of the reactor water temperature taken from the detector, a least squares calculator for removing fluctuations in the rate of change of the reactor water temperature, and a specified time based on the past temperature change rate data. The advance compensation function for predicting the temperature change rate data of the previous reactor water temperature, the target reactor water temperature change rate setting device for inputting the target reactor water temperature change rate, and the setting of the target temperature change rate gradually. A rate-of-change limiter that increases the output of the rate-of-change limiter and the output of the advance compensation function unit, and a proportional integrator that converts the deviation into a neutron flux level that gives a target reactor water temperature change rate; Conversion from the proportional integrator The control rod operation is determined based on the deviation between the neutron flux target value obtained and the current neutron flux output from the logarithmic converter, and if the deviation is determined to be equal to or greater than a specified value, a control rod operation command is output. A control rod operation determination circuit, a comparison circuit that outputs a limit signal for limiting an integrator operation of the proportional integrator based on a deviation value between an output of the proportional integrator and an output of the logarithmic converter, and detects a reactor pressure. A comparator that determines that the deviation between the signal of the pressure gauge to be set and the output of the target reactor pressure setter that sets the target reactor pressure is equal to or less than a specified value and outputs a control rod stop command. so,
Achieved.

【0013】[0013]

【0014】[0014]

【0015】[0015]

【0016】[0016]

【0017】[0017]

【0018】積分出力を制限することにより、制御棒反
応度の非線形特性によらず制御パラメ−タの目標値オ−
バ−シュ−トを抑制でき、制御目標値に追従した制御が
可能となる。
By limiting the integral output, the target value of the control parameter can be controlled independently of the nonlinear characteristic of the control rod reactivity.
Burst can be suppressed and control following the control target value can be performed.

【0019】また、制御棒動作による出力制御中におい
て、比例積分結果の制御目標値変化特性と制御パラメ−
タ変化特性に時間遅れがある場合、制御棒動作のハンチ
ング(挿入/引抜の繰り返し)を招いたり、例えば温度
測定値にゆらぎがあるためそのまま制御に使用すると制
御棒動作がハンチングする虞があるが、過去の変化特性
から規定時間先の温度変化率を予測する機能(温度変化
率進み補償機能)を設けることで、これらの不具合を回
避できる。
Also, during output control by the control rod operation, the control target value change characteristic of the proportional integration result and the control parameter are controlled.
If there is a time delay in the data change characteristic, hunting of the control rod operation (repeated insertion / removal) may be caused, or if the temperature measurement value fluctuates, the control rod operation may hunt if used directly for control. These problems can be avoided by providing a function of predicting the temperature change rate a specified time later from the past change characteristics (temperature change rate advance compensation function).

【0020】更に、制御開始当初は制御パラメ−タは制
御目標値との間に差がありこの状態で制御目標値がパル
ス的に設定されると制御棒過引き抜きとなって目標値を
オ−バ−シュ−トするが、変化率を制限することで、こ
のオーバーシュートを抑制できる。
Further, at the beginning of the control, there is a difference between the control parameter and the control target value. If the control target value is set in a pulsed manner in this state, the control rod is excessively pulled out and the target value is turned off. Although a burst is obtained, this overshoot can be suppressed by limiting the rate of change.

【0021】更にまた、比例/積分のゲインを可変とす
ることで、目標温度変化率への追従性のよい制御が可能
となる。
Further, by making the proportional / integral gain variable, it is possible to perform control with good tracking of the target temperature change rate.

【0022】[0022]

【発明の実施の形態】以下、本発明の一実施の形態を図
面を参照して説明する。図1は、本発明の一実施形態に
係る原子炉出力制御装置の構成図である。図1におい
て、原子炉出力制御装置1は、中性子検出器4に接続さ
れた中性子束モニタ6から取り込んだ中性子束レベルを
対数化する対数変換器14と、温度計(熱電対)5を有
する温度検出器7から取り込んだ炉水温度の変化率を算
出する温度変化率演算器10と、炉水温度変化率のゆら
ぎを除去するための最小自乗演算器11と、炉水温度の
進み補償機能12と、目標とする炉水温度変化率を入力
するための目標炉水温度変化率設定器8と、目標温度変
化率の設定を徐々に上昇させる変化率制限器9と、目標
とする炉水温度変化率を与える中性子束を算出する比例
積分器13と、中性子束目標値と現在の中性子束との偏
差により制御棒操作を判定する制御棒動作判定回路16
と、偏差値より積分器制限信号を出力する比較回路(積
分制限手段)15と、原子炉圧力を検出する圧力計22
の信号と目標原子炉圧力を設定する目標原子炉圧力設定
器19との偏差が規定値以下となることを判定し制御停
止指令を出力する比較器20とから構成されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a configuration diagram of a reactor power control device according to one embodiment of the present invention. In FIG. 1, a reactor power control device 1 includes a logarithmic converter 14 for converting a neutron flux level taken from a neutron flux monitor 6 connected to a neutron detector 4 into a logarithm, and a temperature having a thermometer (thermocouple) 5. Temperature change rate calculator 10 for calculating the rate of change of the reactor water temperature taken from detector 7, least square calculator 11 for removing fluctuations in the rate of change of the reactor water temperature, and advance compensation function 12 for the reactor water temperature A target reactor water temperature change rate setter 8 for inputting a target reactor water temperature change rate; a change rate limiter 9 for gradually increasing the target temperature change rate setting; A proportional integrator 13 for calculating a neutron flux providing a change rate; and a control rod operation determining circuit 16 for determining a control rod operation based on a deviation between a neutron flux target value and a current neutron flux.
A comparison circuit (integration limiting means) 15 for outputting an integrator limiting signal from the deviation value, and a pressure gauge 22 for detecting the reactor pressure
And a comparator 20 for judging that the deviation between the target signal and the target reactor pressure setter 19 for setting the target reactor pressure is equal to or less than a specified value, and outputting a control stop command.

【0023】次に、臨界到達後から昇温昇圧制御におけ
る原子炉出力制御装置の制御動作を説明する。まず、炉
心が臨界に達した後、図1の原子炉出力制御装置1が自
動的あるいは運転員指令により起動する。格納容器21
に設置された中性子束検出器4の出力信号と、原子炉配
管内に設置された熱伝対5から出力された炉水温度信号
は、夫々、中性子束モニタ6と温度検出器7に入力され
る。中性子束検出器4の検出信号は、中性子束モニタ6
で中性子束レベルに換算され、熱電対5による炉水温度
の検出信号は、温度検出器7で温度信号に換算される。
Next, the control operation of the reactor power control device in the temperature raising and boosting control after reaching the criticality will be described. First, after the core reaches criticality, the reactor power control device 1 of FIG. 1 starts automatically or by an operator's command. Containment container 21
The output signal of the neutron flux detector 4 installed in the reactor and the reactor water temperature signal output from the thermocouple 5 installed in the reactor piping are input to the neutron flux monitor 6 and the temperature detector 7, respectively. You. The detection signal of the neutron flux detector 4 is transmitted to the neutron flux monitor 6
And the detection signal of the reactor water temperature by the thermocouple 5 is converted to a temperature signal by the temperature detector 7.

【0024】昇温昇圧制御の開始時点では、まず、目標
原子炉圧力設定器19にて、目標原子炉圧力設定、及
び、目標炉水温度変化率設定器8にて目標炉水温度変化
率の設定を行う。
At the start of the temperature increase control, first, the target reactor pressure setting unit 19 sets the target reactor pressure and the target reactor water temperature change rate setter 8 sets the target reactor water temperature change rate. Make settings.

【0025】目標炉水温度変化率は、変化率制限器9に
より規定のレ−トで変化率が徐々に上昇していく。炉水
温度変化率演算器10の出力は、実機特性では揺らぎが
あり、この値をそのまま制御に使用した場合、制御棒動
作が引抜/挿入を繰り返す可能性がある。これを防ぐた
め、最小自乗演算器11によりある規定時間の最小自乗
演算を行い、平均化した炉水温度変化率を求める。ま
た、熱電対5には、検出器時定数がある他、制御棒2の
引き抜きによって炉内の温度が上昇するまでの間に更に
炉心部の温度が上昇し、その温度上昇した炉水が熱電対
5の位置に到達して温度が検出されるまで時間がかかる
ため、進み補償機能12にてある時間先の炉水温度を予
測する。
The change rate of the target reactor water temperature gradually increases at a specified rate by the change rate limiter 9. The output of the reactor water temperature change rate calculator 10 fluctuates in the actual machine characteristics, and if this value is used for control as it is, there is a possibility that the control rod operation repeats withdrawal / insertion. In order to prevent this, the least-square operation is performed by the least-square arithmetic unit 11 for a certain specified time, and the average reactor water temperature change rate is obtained. Further, the thermocouple 5 has a detector time constant, and furthermore, the temperature of the core part further rises before the temperature inside the furnace rises due to the withdrawal of the control rod 2, and the reactor water whose temperature has risen becomes thermoelectric. Since it takes time to reach the position of pair 5 and to detect the temperature, the advance compensation function 12 predicts the reactor water temperature at a certain point in time.

【0026】変化率制限器9の出力と、進み補償機能1
2の出力との間に偏差がある場合には、その偏差量を0
とする様に制御棒を動作させなければならない。その制
御棒動作量を決定するための演算を次に説明する。変化
率制限器9と進み補償機能12の偏差は、比例積分回路
13により、目標の中性子束レベルに換算される。この
理由は、中性子束レベルと温度変化率とはほぼ比例関係
にあるためである。このため、比例積分器13により算
出された目標中性子束レベルは、中性子束モニタ6の出
力から対数変換した中性子束レベルと比較される。ここ
で、中性子束モニタ6出力を対数変換器14により対数
化する理由は、中性子束モニタ6出力は昇温昇圧制御過
程において100倍程度変化するものであり、幅の広い
変化を制御しやすいような値に変換するためである。
The output of the change rate limiter 9 and the advance compensation function 1
If there is a deviation from the output of No. 2, the deviation amount is set to 0.
Control rod must be operated as follows. The calculation for determining the control rod operation amount will be described below. The deviation between the rate-of-change limiter 9 and the advance compensation function 12 is converted into a target neutron flux level by a proportional integration circuit 13. The reason for this is that the neutron flux level and the temperature change rate are approximately proportional. Therefore, the target neutron flux level calculated by the proportional integrator 13 is compared with the neutron flux level logarithmically converted from the output of the neutron flux monitor 6. Here, the reason that the output of the neutron flux monitor 6 is logarithmically converted by the logarithmic converter 14 is that the output of the neutron flux monitor 6 changes about 100 times in the temperature raising and boosting control process, so that a wide change can be easily controlled. This is to convert the value to a proper value.

【0027】比例積分器13の出力と中性子束の対数変
換器14の出力との偏差は、制御棒動作判定回路16に
入力され、この偏差が規定値以上の場合に、制御棒の引
抜指令(または挿入指令)18が出力される。この引抜
/挿入指令は、制御棒操作系に入力され、図示しない制
御棒駆動モ−タ3が駆動することにより、制御棒2が動
作する。
A deviation between the output of the proportional integrator 13 and the output of the neutron flux logarithmic converter 14 is input to a control rod operation determination circuit 16. If the deviation is equal to or greater than a specified value, a control rod pull-out command ( Alternatively, an insertion command 18 is output. The pull-out / insertion command is input to the control rod operation system, and the control rod 2 is operated by driving the control rod drive motor 3 (not shown).

【0028】また、比例積分器13出力と中性子束lo
g演算出力との偏差は、比較回路15に入力される。こ
の比較回路15で規定値以上の偏差が検出されたとき、
比例積分器13の積分器演算が制限される。
The output of the proportional integrator 13 and the neutron flux lo
The deviation from the g operation output is input to the comparison circuit 15. When the comparison circuit 15 detects a deviation equal to or greater than a specified value,
The integrator operation of the proportional integrator 13 is restricted.

【0029】次に、上記で説明した機能の詳細と効果を
説明する。制御棒は、炉心の中央部に設置されたものを
引き抜くと、投入反応度が大きく、炉内の燃料の核分裂
が進んで炉水温度が上昇する。これに対し、炉心の中央
部から離れた外周部に設置されたものを引き抜くと、投
入反応度が小さく、炉内燃料の核分裂は進まずに炉水温
度の上昇は小さい。炉心中央部の制御棒を引き抜くか、
外周部の制御棒を引き抜くかの順序は、原子炉起動時に
決定する制御棒引き抜きシ−ケンスで決定されるが、上
述したように制御棒の投入反応度に違いがあるため、例
えば昇温昇圧制御で投入反応度の小さい炉心外周部の制
御棒を動作させる状態では、図2(a)のように、目標
温度変化率(実線)の上昇に対して実際の温度変化率
(破線)が追従しない現象が生じる。
Next, details and effects of the functions described above will be described. When the control rod installed in the center of the reactor core is pulled out, the input reactivity increases, the nuclear fission of the fuel in the reactor proceeds, and the reactor water temperature rises. On the other hand, when the reactor installed at the outer peripheral portion distant from the center of the reactor core is pulled out, the input reactivity is low, the nuclear fission of the fuel in the reactor does not proceed, and the rise in reactor water temperature is small. Pull out the control rod at the center of the core,
The order of withdrawing the control rods at the outer peripheral portion is determined by the control rod withdrawal sequence determined at the time of starting the reactor. In the state where the control rod at the outer periphery of the core having a small input reactivity is operated by the control, as shown in FIG. 2A, the actual temperature change rate (dashed line) follows the rise of the target temperature change rate (solid line). Phenomenon occurs.

【0030】目標温度変化率と実際の炉水温度変化率と
の偏差が大の状態でこの偏差を比例積分回路13(図
1)に入力し続けると、積分出力の演算は増加し続け
る。このときに、前記制御棒引き抜きシ−ケンスに従っ
た制御棒の動作が炉心中央部の反応度投入の大きい箇所
に移行しても、制御棒引き抜きにもかかわらず蓄積され
た積分器の値が小さくならないため、過度に制御棒を引
き抜いてしまい、温度変化率が目標値をオ−バ−シュ−
トしてしまう可能性がある。そこで本実施形態では、こ
のオーバーシュートを防止するため、比例積分器13と
中性子束レベルの対数演算出力との偏差が規定値以上に
なった場合には、積分器出力を制限する。即ち、図2
(b)において、時刻t2まで徐々に積分器出力が増大
してこの時刻t2の時点で比較回路15の積分器制限
(偏差≧規定値)の条件が成立したとき、積分器出力を
一定値に保つという制限を実行する。そして、制御棒反
応度が大きい領域に移行し、目標の炉水温度変化率と現
在の温度変化率の偏差が小さくなった時点t3で、この
制限を除外して通常の積分演算を行う。
If the deviation between the target temperature change rate and the actual reactor water temperature change rate is large and the deviation is continuously input to the proportional integration circuit 13 (FIG. 1), the calculation of the integral output continues to increase. At this time, even if the operation of the control rod in accordance with the control rod withdrawal sequence shifts to a location where the reactivity input is large in the central part of the core, the accumulated value of the integrator is obtained despite the control rod withdrawal. Because it does not decrease, the control rod is pulled out excessively, and the temperature change rate exceeds the target value.
May be lost. Therefore, in the present embodiment, in order to prevent this overshoot, when the deviation between the proportional integrator 13 and the logarithmic calculation output of the neutron flux level exceeds a specified value, the output of the integrator is limited. That is, FIG.
In (b), the integrator output gradually increases until time t2, and when the condition of integrator limitation (deviation ≧ specified value) of the comparison circuit 15 is satisfied at the time t2, the integrator output is set to a constant value. Enforce restrictions to keep. Then, the control region shifts to a region where the control rod reactivity is large, and at the time point t3 when the deviation between the target reactor water temperature change rate and the current temperature change rate becomes small, a normal integration operation is performed excluding this restriction.

【0031】尚、積分器制限を行う条件としては、前記
条件の他、目標炉水温度変化率と現在の炉水温度変化率
の偏差量でも可能である。また、積分器の積分制限の方
法としては、積分器出力を一定に保持する代わりに、積
分制限条件が成立したときに積分時間を大きくとって積
分器出力の上昇を小さくなるようにしてもよい。
The integrator restriction condition may be a deviation amount between the target reactor water temperature change rate and the current reactor water temperature change rate, in addition to the above conditions. As a method of limiting the integration of the integrator, instead of keeping the output of the integrator constant, the integration time may be increased when the integration limiting condition is satisfied, so that the rise of the output of the integrator may be reduced. .

【0032】積分器を制限する技術は、昇温昇圧過程に
のみ有効な技術ではなく、その他の原子力プラントの制
御棒による起動制御(例えば、発電機出力制御過程)に
おいても同様に適用が可能である。即ち、目標パラメ−
タに対してフィ−ドバックパラメ−タが追従しない場合
は、制御棒反応度の小さい領域と判断して積分制限を実
施することにより、目標値のオ−バ−シュ−トを低減で
きる。
The technique of limiting the integrator is not only a technique effective in the temperature raising / pressurizing process, but can also be similarly applied to start control by a control rod of another nuclear power plant (for example, a generator output control process). is there. That is, the target parameter
If the feedback parameter does not follow the motor, the overshoot of the target value can be reduced by determining that the control rod reactivity is in a small area and by limiting the integration.

【0033】次に、温度変化率の制限機能について説明
する。目標温度変化率は、通常運転では、10℃/h〜40
℃/hの間で設定される。一方、制御開始時の温度変化
率はほぼ0℃/hであり、もし、目標温度変化率を40℃
/hと設定し、この値が目標値として制御に使用される
と、制御には目標温度変化率と現在の温度変化率の差が
40℃/hとして比例積分器に入力される。この結果、積
分器による偏差が蓄積され、制御棒の過引き抜きの原因
となる。そこで、図3のように、設定された目標温度変
化率に対し規定の時間tで目標の温度変化率が出力され
るために変化率制限器を設置する。この結果、制御開始
当初の目標炉水温度変化率と現在の炉水温度変化率の偏
差は小さく、積分器に偏差が蓄積されることが無くな
る。温度変化率制限を設けない場合の制御特性を図4に
示し、設けた場合の特性を図5に示す。変化率制限を設
けることで炉水温度変化率のオ−バ−シュ−トが低減可
能である。
Next, the function of limiting the temperature change rate will be described. The target temperature change rate is 10 ° C / h to 40
C / h. On the other hand, the temperature change rate at the start of the control is almost 0 ° C./h, and if the target temperature change rate is 40 ° C.
/ H, and when this value is used as a target value in the control, the difference between the target temperature change rate and the current temperature change rate is controlled.
Input to the proportional integrator as 40 ° C./h. As a result, the deviation due to the integrator is accumulated, which causes the control rod to be pulled out too much. Therefore, as shown in FIG. 3, a change rate limiter is provided to output a target temperature change rate at a specified time t with respect to a set target temperature change rate. As a result, the deviation between the target reactor water temperature change rate at the beginning of the control and the current reactor water temperature change rate is small, and the deviation does not accumulate in the integrator. FIG. 4 shows the control characteristics when the temperature change rate limitation is not provided, and FIG. 5 shows the characteristics when the temperature change rate limitation is provided. By providing a change rate limit, the overshoot of the reactor water temperature change rate can be reduced.

【0034】次に、炉水温度変化率の進み補償機能につ
いて説明する。制御棒を引き抜いた場合、それに伴い中
性子束が上昇する。この中性子束上昇のレベルに応じて
炉水温度も上昇するが、炉水温度の上昇は、中性子束上
昇から遅れが生じる。遅れの原因としては、炉水温度検
出器の遅れ時定数や、炉心中央部の炉水が炉水温度検出
器に到達するまでの移送遅れ時間があるが、このト−タ
ルとして約数分を要する。
Next, the function of compensating for the rate of change of the reactor water temperature will be described. When the control rod is pulled out, the neutron flux rises accordingly. The reactor water temperature also rises according to the level of the neutron flux rise, but the rise of the reactor water temperature is delayed from the rise of the neutron flux. Causes of the delay include the delay time constant of the reactor water temperature detector and the transfer delay time until the reactor water at the center of the core reaches the reactor water temperature detector. It costs.

【0035】図1で示したように、昇温昇圧制御におい
ては、最終的に温度変化率の偏差から比例積分演算によ
って求めた目標中性子束レベルと現在の中性子束レベル
の偏差で制御棒を動作する。従って、温度変化率の特性
と中性子束変化特性にずれがあると、温度変化率が目標
値に追従できない原因となる。これを防止するため図6
のように、過去の温度変化率デ−タから2次曲線を求
め、規定時間先の温度変化率デ−タを予想する進み補償
機能を設ける。この進み補償機能で予測した温度変化率
値を制御に使用することにより、中性子束変化特性と温
度変化特性とが一致し、目標値に追従した制御が可能に
なる。進み補償を設けない場合の制御特性を図7に示
し、設けた場合の制御特性を図8に示す。この進み補償
機能により温度変化率の大きな変動が抑制できる。
As shown in FIG. 1, in the temperature raising / pressurizing control, the control rod is operated with the deviation between the target neutron flux level finally obtained by the proportional integral calculation from the deviation of the temperature change rate and the current neutron flux level. I do. Therefore, if there is a difference between the temperature change rate characteristic and the neutron flux change characteristic, the temperature change rate cannot follow the target value. To prevent this, FIG.
As described above, a lead compensating function is provided for obtaining a quadratic curve from the past temperature change rate data and predicting the temperature change rate data a specified time later. By using the temperature change rate value predicted by the advance compensation function for the control, the neutron flux change characteristic and the temperature change characteristic match, and control following the target value becomes possible. FIG. 7 shows the control characteristics when the advance compensation is not provided, and FIG. 8 shows the control characteristics when the advance compensation is provided. With this advance compensation function, a large change in the temperature change rate can be suppressed.

【0036】次に、積分器の積分時間を可変にする実施
形態について説明する。前述の温度変化率を制限する機
能の説明と同様に、目標温度変化がパルス的に設定され
た場合、現在の温度変化率との偏差が大きくなり、積分
器に偏差が蓄積され、制御棒の過引き抜きとなる。これ
を防止する一手段として、目標炉水温度変化率と現在の
温度変化率の偏差量に応じて積分時間を可変とする。例
えば、図9(a)に示すように偏差量がbの様に大きい
ときは、図9(b)に示すように積分時間を短くし、偏
差量がaの様に小さいときは、積分時間も長くする。温
度変化率の偏差が大きい場合には、積分時間を短くすこ
とで積分値が早い時間に大きくなって制御棒引き抜き量
が多くなり、炉水温度は急上昇し、目標炉水温度変化率
と現在の温度変化率の偏差が小さくなったときには、積
分時間を大きくすることで積分器出力はゆっくりと増し
ていき、制御棒の引き抜き量は小さくなる。これによ
り、炉水温度変化率は目標値に早く追従可能となる。こ
れにより、炉水温度変化率の目標値オ−バ−シュ−トが
低減可能となる。尚、積分時間を可変にすることについ
て述べたが、比例ゲインを偏差量に応じて可変にするこ
とで対処することも可能である。
Next, an embodiment in which the integration time of the integrator is made variable will be described. As in the description of the function of limiting the temperature change rate described above, when the target temperature change is set in a pulsed manner, the deviation from the current temperature change rate increases, the deviation is accumulated in the integrator, and the control rod It will be over-extracted. As one means for preventing this, the integration time is made variable according to the deviation amount between the target reactor water temperature change rate and the current temperature change rate. For example, when the deviation amount is large as shown in FIG. 9A, the integration time is shortened as shown in FIG. 9B, and when the deviation amount is small as shown in FIG. Also lengthen. If the deviation of the temperature change rate is large, shortening the integration time will increase the integrated value earlier, increase the control rod withdrawal amount, increase the reactor water temperature sharply, and increase the target reactor water temperature change rate and the current When the deviation of the temperature change rate becomes small, the integrator output gradually increases by increasing the integration time, and the control rod withdrawal amount decreases. As a result, the reactor water temperature change rate can quickly follow the target value. As a result, it is possible to reduce the target value overshoot of the reactor water temperature change rate. Although the integration time has been described as being variable, it is possible to cope with this by making the proportional gain variable according to the deviation amount.

【0037】以上の制御により原子炉圧力と目標原子炉
圧力設定器17の設定の偏差が比較器20において規定
値以下となった場合には、昇温昇圧制御を停止とする。
When the deviation between the reactor pressure and the setting of the target reactor pressure setter 17 becomes equal to or less than the specified value in the comparator 20 by the above control, the temperature increase / pressure control is stopped.

【0038】[0038]

【発明の効果】本発明によれば、反応度の非線形性を有
する制御棒の自動制御においても、目標変化率への追従
性が良い制御が可能になる。
According to the present invention, even in the automatic control of the control rod having the non-linearity of the reactivity, it is possible to perform the control with good followability to the target change rate.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例に係る原子炉出力制御装置の
機能構成図である。
FIG. 1 is a functional configuration diagram of a reactor power control device according to one embodiment of the present invention.

【図2】制御目標値に対する制御パラメータの値の関係
を示す図(a)と積分器の制限を示す図(b)である。
FIG. 2A is a diagram illustrating a relationship between a control parameter value and a control target value, and FIG. 2B is a diagram illustrating a limitation of an integrator.

【図3】変化率制限器の機能説明図である。FIG. 3 is an explanatory diagram of functions of a change rate limiter.

【図4】目標温度変化率制限を行わなかったときの炉水
温度の変化を示すグラフである。
FIG. 4 is a graph showing a change in reactor water temperature when a target temperature change rate restriction is not performed.

【図5】目標温度変化率制限を行ったときの炉水温度の
変化を示すグラフである。
FIG. 5 is a graph showing a change in reactor water temperature when a target temperature change rate restriction is performed.

【図6】進み補償の機能説明図である。FIG. 6 is an explanatory diagram of a function of advance compensation.

【図7】進み補償の機能を設けなかったときの炉水温度
の変化を示す図である。
FIG. 7 is a diagram showing a change in reactor water temperature when the advance compensation function is not provided.

【図8】進み補償の機能を設けたときの炉水温度の変化
を示す図である。
FIG. 8 is a diagram showing a change in reactor water temperature when a function of advance compensation is provided.

【図9】目標温度変化率と実温度変化率との関係を示す
グラフ(a)および両変化率の大きさと積分時間との関
係を示すグラフ(b)である。
9A is a graph showing the relationship between the target temperature change rate and the actual temperature change rate, and FIG. 9B is a graph showing the relationship between the magnitude of both the change rates and the integration time.

【符号の説明】[Explanation of symbols]

1…原子炉出力制御装置、2…制御棒、3…駆動モ−
タ、4…中性子束検出器、5…熱伝対、6…中性子束モ
ニタ、7…温度検出器、8…目標炉水温度変化率設定
器、9…変化率制限器、10…温度変化率演算器、11…最
小自乗演算器、12…進み補償機能、13…比例積分器、14
…対数変換器、15…比較回路、16…制御棒動作判定回
路、17…積分制限信号、18…制御棒引き抜き、挿入信
号、19…目標原子炉圧力設定器、20…比較器、21…原子
炉格納容器、22…原子圧力検出器。
1 ... Reactor power control device, 2 ... Control rod, 3 ... Drive mode
4, neutron flux detector, 5: thermocouple, 6: neutron flux monitor, 7: temperature detector, 8: target reactor water temperature change rate setting device, 9: change rate limiter, 10: temperature change rate Computing unit, 11: Least square computing unit, 12: Lead compensation function, 13: Proportional integrator, 14
... logarithmic converter, 15 ... comparison circuit, 16 ... control rod operation judgment circuit, 17 ... integration limit signal, 18 ... control rod withdrawal and insertion signal, 19 ... target reactor pressure setter, 20 ... comparator, 21 ... atom Reactor containment vessel, 22 ... Atomic pressure detector.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G21C 7/00,7/08 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) G21C 7/00, 7/08

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 中性子検出器に接続された中性子束モニ
タから取り込んだ中性子束レベルを対数化する対数変換
器と、 温度計を有する温度検出器から取り込んだ炉水温度の変
化率を算出する温度変化率演算器と、 炉水温度変化率のゆらぎを除去するための最小自乗演算
器と、 過去の温度変化率データに基づき,規定時間先の炉水温
度の温度変化率データを予測する進み補償機能部と、 目標とする炉水温度変化率を入力するための目標炉水温
度変化率設定器と、 目標温度変化率の設定を徐々に上昇させる変化率制限器
と、 前記変化率制限器の出力と前記進み補償機能部の出力と
の偏差を,目標とする炉水温度変化率を与える中性子束
レベルに換算する比例積分器と、 前記比例積分器より換算された中性子束目標値と,前記
対数変換器より出力された現在の中性子束との偏差によ
り制御棒動作を判定し、当該偏差が規定値以上と判定さ
れた場合に制御棒の動作指令を出力する制御棒動作判定
回路と、 前記比例積分器の出力と前記対数変換器の出力との偏差
値より比例積分器の積分器演算を制限する制限信号を出
力する比較回路と、 原子炉圧力を検出する圧力計の信号と目標原子炉圧力を
設定する目標原子炉圧力設定器の出力との偏差が規定値
以下となることを判定し制御棒停止指令を出力する比較
器と、 から構成されていることを特徴とする原子炉出力制御装
置。
1. A logarithmic converter for converting a neutron flux level taken from a neutron flux monitor connected to a neutron detector to a logarithm, and a temperature for calculating a rate of change of reactor water temperature taken from a temperature detector having a thermometer. Rate-of-change calculator, least-squares calculator for removing fluctuations in the reactor water temperature change rate, advance compensation for predicting the temperature-change rate data of the reactor water temperature a specified time ahead based on past temperature change rate data a functional unit, and the target reactor water temperature change rate setter for entering the reactor water temperature change rate of the target, and the change rate limiter gradually increasing the setting of the target temperature change rate, the change rate limiter A proportional integrator for converting the deviation between the output and the output of the advance compensation function unit into a neutron flux level that gives a target reactor water temperature change rate; a neutron flux target value converted by the proportional integrator; From logarithmic converter The control rod operation is determined based on the deviation from the current neutron flux, and a control rod operation determination circuit that outputs a control rod operation command when the deviation is determined to be equal to or greater than a specified value, and an output of the proportional integrator. And a comparison circuit for outputting a limit signal for limiting the integrator operation of the proportional integrator based on a deviation value between the output of the logarithmic converter and a target for setting a signal of a pressure gauge for detecting a reactor pressure and a target reactor pressure. A reactor power control device comprising: a comparator that determines that a deviation from the output of the reactor pressure setter is equal to or less than a specified value and outputs a control rod stop command.
JP18502796A 1996-07-15 1996-07-15 Reactor power control device Expired - Lifetime JP3357975B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18502796A JP3357975B2 (en) 1996-07-15 1996-07-15 Reactor power control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18502796A JP3357975B2 (en) 1996-07-15 1996-07-15 Reactor power control device

Publications (2)

Publication Number Publication Date
JPH1031090A JPH1031090A (en) 1998-02-03
JP3357975B2 true JP3357975B2 (en) 2002-12-16

Family

ID=16163509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18502796A Expired - Lifetime JP3357975B2 (en) 1996-07-15 1996-07-15 Reactor power control device

Country Status (1)

Country Link
JP (1) JP3357975B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4590361B2 (en) * 2006-02-28 2010-12-01 株式会社日立製作所 Nuclear reactor system
JP5802406B2 (en) * 2011-03-04 2015-10-28 株式会社東芝 Reactor power control device and program
CN112466497B (en) * 2020-11-10 2024-04-09 中广核工程有限公司 Automatic control method, system, computer equipment and medium thereof for pressure and temperature

Also Published As

Publication number Publication date
JPH1031090A (en) 1998-02-03

Similar Documents

Publication Publication Date Title
JP3357975B2 (en) Reactor power control device
US6477218B1 (en) Control system of nuclear power plant, and control method thereof
US4486381A (en) Power controlling apparatus for boiling water atomic reactor
JPS6146799B2 (en)
JP4398278B2 (en) Reactor power control method and apparatus
JPH09171093A (en) Method and apparatus for protecting pressurized water reactor from departure from nucleate boiling and boiling in high temperature pipe
JP2005207944A (en) Reactor output control method and its system
JP4084371B2 (en) Reactor power control method and apparatus
KR101813450B1 (en) Calculation method to protect the core of the pressurized light water reactor protection system
JPH09145895A (en) Reactor output control method and device
JP3316825B2 (en) Automatic reactor power adjustment system for boiling water reactor
JP2553152B2 (en) Reactor control rod automatic control method
JP4504889B2 (en) Water supply control device
CN117153440B (en) Axial xenon oscillation test and out-of-pile calibration method and device, storage medium and terminal
JP2002014188A (en) Control rod drawing monitoring device, and nuclear reactor output control device provided with the same
JP4369772B2 (en) Reactor power control method and apparatus
JP3372767B2 (en) Reactor control device
JP2507516B2 (en) Reactor control device
JP3275163B2 (en) Control rod control device and control rod operation method
JPS6021359B2 (en) How to quickly and accurately generate core power in a nuclear reactor
JPH0511092A (en) Method of protecting nuclear reactor
JPH11142588A (en) Reactor automatic start device
JPH0697269B2 (en) How to operate a nuclear reactor
JPS5810718B2 (en) How to control the operation of a nuclear reactor
JPH0810271B2 (en) Reactor control device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071011

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081011

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091011

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091011

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101011

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111011

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121011

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121011

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131011

Year of fee payment: 11

EXPY Cancellation because of completion of term