JP2005226457A - Axial flow pump - Google Patents

Axial flow pump Download PDF

Info

Publication number
JP2005226457A
JP2005226457A JP2004032900A JP2004032900A JP2005226457A JP 2005226457 A JP2005226457 A JP 2005226457A JP 2004032900 A JP2004032900 A JP 2004032900A JP 2004032900 A JP2004032900 A JP 2004032900A JP 2005226457 A JP2005226457 A JP 2005226457A
Authority
JP
Japan
Prior art keywords
impeller
axial flow
flow pump
axial
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004032900A
Other languages
Japanese (ja)
Inventor
Takeshi Okubo
剛 大久保
Toshiyuki Osada
俊幸 長田
Takashi Sano
岳志 佐野
Yusuke Miyamoto
祐介 宮本
Kazuyoshi Miyagawa
和芳 宮川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Terumo Corp
Mitsubishi Heavy Industries Ltd
Original Assignee
Terumo Corp
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Terumo Corp, Mitsubishi Heavy Industries Ltd filed Critical Terumo Corp
Priority to JP2004032900A priority Critical patent/JP2005226457A/en
Priority to AU2005200540A priority patent/AU2005200540A1/en
Priority to US11/052,865 priority patent/US20050175450A1/en
Priority to DE200510006120 priority patent/DE102005006120A1/en
Priority to CN200510009427.9A priority patent/CN1654825A/en
Publication of JP2005226457A publication Critical patent/JP2005226457A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D1/00Non-positive-displacement machines or engines, e.g. steam turbines
    • F01D1/02Non-positive-displacement machines or engines, e.g. steam turbines with stationary working-fluid guiding means and bladed or like rotor, e.g. multi-bladed impulse steam turbines
    • F01D1/04Non-positive-displacement machines or engines, e.g. steam turbines with stationary working-fluid guiding means and bladed or like rotor, e.g. multi-bladed impulse steam turbines traversed by the working-fluid substantially axially
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/18Rotors
    • F04D29/181Axial flow rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D3/00Axial-flow pumps

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • External Artificial Organs (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an axial flow pump of stable pressure characteristics. <P>SOLUTION: A boss ratio Dh/Dt which is a ratio of hub diameter Dh of a rotary shaft body 8' composing a rotor to tip diameter Dt of an impeller 9 in an axial flow pump is enlarged. Specifically, the boss ratio is set on 0.65-0.85, preferably 0.7-0.8 to reduce friction loss while suppressing generation of centrifugal force effect and to make pressure characteristics flat. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、安定した圧力特性を有する軸流ポンプに関し、例えば、人工心臓ポンプに適用して好適なものである。   The present invention relates to an axial flow pump having stable pressure characteristics, and is suitable for application to, for example, an artificial heart pump.

従来より、人工心臓ポンプには拍動型、ターボ型、ローラポンプ等の多種のポンプが用いられている。このうち、ターボ型は他に比べて小型化に向いており、特に軸流ポンプは最も小型化が可能である。   Conventionally, various pumps such as a pulsating type, a turbo type, and a roller pump have been used as an artificial heart pump. Among these, the turbo type is more suitable for miniaturization than the others, and the axial flow pump can be most miniaturized.

図4は、従来の軸流ポンプの概略断面構造図である。同図に示すように、大きくは、円筒状のハウジング1と、このハウジング1内における中心軸Xを回転軸とし、ハウジング1内で回転可能に支持された羽根車であるロータ3と、このロータ3を回転させる駆動機構と、を備えており、ロータ3の回転により、軸方向に沿って血液を前方(図4では右側)から取り込み後方(図4では左側)へ圧送するようになっている。なお、図4では、主たる血液流路を白抜き矢印で示す。   FIG. 4 is a schematic sectional view of a conventional axial flow pump. As shown in the figure, roughly, a cylindrical housing 1, a rotor 3 which is an impeller supported rotatably in the housing 1 with the central axis X in the housing 1 as a rotation axis, and the rotor And a drive mechanism that rotates the rotor 3, and by rotation of the rotor 3, blood is taken from the front (right side in FIG. 4) along the axial direction and is pumped backward (left side in FIG. 4). . In FIG. 4, main blood flow paths are indicated by white arrows.

引き続き、具体的な構成を説明していく。ロータ3に対して前方に位置するハウジング1の内壁面には、整流板4が複数突出するように接合され、これらの整流板4の内縁に、中心軸Xと同軸状で円柱状の前側固定体5が接合されている。一方、ロータ3に対して後方に位置するハウジング1の内壁面には、板状のディフューザ6が複数突出するように接合され、これらのディフューザ6の内縁に、中心軸Xと同軸状で円柱状の後側固定体7が接合されている。なお、前側固定体5の前端、及び後側固定体7の後端はそれぞれの中央部が隆起しており、前者は取り込んだ血液を抵抗なく分岐させて整流板4に導き、他方後者はディフューザ6からの血液を抵抗なく合流させるよう導く役割を果たす。   Next, the specific configuration will be explained. A plurality of rectifying plates 4 are joined to the inner wall surface of the housing 1 located in front of the rotor 3 so as to protrude, and a cylindrical front side fixing coaxial with the central axis X is fixed to the inner edges of these rectifying plates 4. The body 5 is joined. On the other hand, a plurality of plate-like diffusers 6 are joined to the inner wall surface of the housing 1 located behind the rotor 3 so as to protrude, and the inner edge of these diffusers 6 is coaxial with the central axis X and is cylindrical. The rear fixed body 7 is joined. The front end of the front side fixing body 5 and the rear end of the rear side fixing body 7 are raised at the center, and the former branches the taken blood without resistance and leads to the current plate 4, while the latter is the diffuser. It plays a role of guiding blood from 6 to join without resistance.

また、後側固定体7の内部には、中心軸Xを回転軸とするモータ10(駆動機構)が収納されている。モータ10には回転軸体8が固定され、回転軸体8は中心軸Xを回転軸として回転するようになっている。更に、回転軸体8の外周面には、インペラ9が複数突出するように接合されていて、これらのインペラ9の外縁は、ハウジング1の内壁面に近接した状態となっている。これらの回転軸体8及びインペラ9より、ロータ3が構成される。   In addition, a motor 10 (drive mechanism) having a central axis X as a rotation axis is accommodated in the rear fixed body 7. A rotation shaft body 8 is fixed to the motor 10, and the rotation shaft body 8 rotates about the central axis X as a rotation axis. Further, a plurality of impellers 9 are joined to the outer peripheral surface of the rotary shaft body 8 so that the outer edges of these impellers 9 are close to the inner wall surface of the housing 1. The rotor 3 is composed of the rotating shaft body 8 and the impeller 9.

このような軸流ポンプによれば、モータ10に給電することで、ロータ3を構成する回転軸体8及びインペラ9が一体的に、ハウジング1内で中心軸Xを中心に回転する。これにより、前方から血液が吸引されてハウジング1内に取り込まれ、その血液は整流板4で旋回成分が除去されながらインペラ9で昇圧されて動圧状態の血液となり、その動圧血液の大部分はディフューザ6で静圧状態に回復されて後方へ吐き出される。こうして、軸流ポンプの基本機能である血液の圧送が達成される。   According to such an axial flow pump, by supplying power to the motor 10, the rotary shaft body 8 and the impeller 9 constituting the rotor 3 are integrally rotated around the central axis X in the housing 1. As a result, blood is sucked from the front and taken into the housing 1, and the blood is boosted by the impeller 9 while the swirling component is removed by the rectifying plate 4 to become blood in a dynamic pressure state, and most of the dynamic pressure blood Is restored to a static pressure state by the diffuser 6 and discharged backward. Thus, the blood pumping, which is the basic function of the axial flow pump, is achieved.

しかしながら、軸流ポンプの吐出圧力特性について詳細に検討してみると、未だ所望の特性が得られていないことが分かる。図5は、従来の軸流ポンプの概略部分構造図である。ロータを構成する回転軸体8の外径をハブ径Dh,インペラ9の外径をチップ径Dtと呼び、これらの比Dh/Dtをボス比と呼ぶ。従来の軸流ポンプでは、ロータのボス比は大きくて0.5、一般的には、動力効率、散気効率、送水効率等を向上させるため更にボス比を小さくする傾向にある(下記、特許文献1,2を参照)。   However, when the discharge pressure characteristics of the axial flow pump are examined in detail, it can be seen that the desired characteristics have not yet been obtained. FIG. 5 is a schematic partial structural diagram of a conventional axial flow pump. The outer diameter of the rotating shaft 8 constituting the rotor is called the hub diameter Dh, the outer diameter of the impeller 9 is called the tip diameter Dt, and the ratio Dh / Dt is called the boss ratio. In conventional axial flow pumps, the boss ratio of the rotor is 0.5, which generally tends to be further reduced in order to improve power efficiency, air diffusion efficiency, water supply efficiency, etc. (see below, patents) References 1 and 2).

図6は、従来の軸流ポンプのロータ(羽根車)における流体の流れ方を示す概念図である。同図に示すように、ボス比が小さい、すなわちロータにおいてインペラ9の占める部分が大きい場合には、低流量状態においてインペラ9の入口側外周部に逆流が発生し、ポンプ性能である揚程が減少する(同図(a))。   FIG. 6 is a conceptual diagram showing how a fluid flows in a rotor (impeller) of a conventional axial flow pump. As shown in the figure, when the boss ratio is small, that is, when the impeller 9 occupies a large portion in the rotor, backflow occurs at the outer peripheral portion on the inlet side of the impeller 9 in a low flow rate state, and the head, which is pump performance, decreases. (FIG. (A)).

また、更に流量が低下した状態では、インペラ9の入口側外周部に逆流が発生するだけでなく、インペラ9の出口側内周部にも逆流が発生し、主となる流体の流れ方向が回転速度の大きなインペラ9の外周側に偏ってしまうため、遠心ポンプ等で見られる遠心力効果により揚程が増加してしまう(同図(b))。   Further, in a state where the flow rate is further reduced, not only the backflow is generated in the outer peripheral portion on the inlet side of the impeller 9 but also the reverse flow is generated in the inner peripheral portion on the outlet side of the impeller 9, and the flow direction of the main fluid is rotated. Since it is biased toward the outer peripheral side of the impeller 9 having a high speed, the lift increases due to the centrifugal force effect seen in a centrifugal pump or the like (FIG. 5B).

図7は、従来の軸流ポンプの流量と揚程とからなる圧力特性を示すグラフである。同図に示すように、設計運転流量(設計運転点)よりも低流量において運転する場合には、入口側逆流による揚程減少(図6(a)を参照)及び遠心力効果による揚程増加(図6(b)を参照)がおこり、軸流ポンプの圧力特性として不安定な流量―揚程曲線となってしまう。特に、遠心力効果により、締切揚程が定格点揚程(設計運転点における揚程)に対して大きくなる傾向がある。   FIG. 7 is a graph showing pressure characteristics including the flow rate and the head of a conventional axial flow pump. As shown in the figure, when operating at a flow rate lower than the design operating flow rate (design operating point), the head decreases due to the inlet side reverse flow (see FIG. 6A) and the head increases due to the centrifugal force effect (see FIG. 6). 6 (b)) occurs, resulting in an unstable flow rate-lift curve as a pressure characteristic of the axial flow pump. In particular, due to the centrifugal force effect, the cutoff lift tends to be larger than the rated lift (lift at the design operating point).

特開平8−33896号公報JP-A-8-33896 特開平5−253592号公報Japanese Patent Laid-Open No. 5-253592

上述するように、従来の軸流ポンプは圧力特性が不安定であるため、運転流量に関係なく一定の吐出圧力が必要となるような使用形態(例えば、人工心臓ポンプ)に対しては、適用は難しかった。本発明は、上記状況に鑑みてなされたものであり、安定した圧力特性を有する軸流ポンプを提供することを目的とする。   As described above, since the pressure characteristics of the conventional axial flow pump are unstable, it is applicable to usage forms (for example, artificial heart pumps) that require a constant discharge pressure regardless of the operation flow rate. Was difficult. The present invention has been made in view of the above situation, and an object thereof is to provide an axial flow pump having stable pressure characteristics.

上記課題を解決する本発明に係る軸流ポンプは、
インペラにより流体を圧送する軸流ポンプにおいて、インペラの入口側外周部における逆流とインペラの出口側内周部における逆流とから発生する前記流体の流れの偏りを抑制したボス比を有することを特徴とする軸流ポンプである。
The axial flow pump according to the present invention that solves the above problems is as follows.
An axial flow pump that pumps fluid by an impeller, characterized by having a boss ratio that suppresses a deviation in the flow of the fluid generated from a reverse flow at the outer peripheral portion of the impeller on the inlet side and a reverse flow at the inner peripheral portion of the impeller on the outlet side. This is an axial flow pump.

また、上記軸流ポンプにおいて、前記ボス比は、0.65〜0.85であることを特徴とする軸流ポンプである。   Moreover, the said axial flow pump WHEREIN: The said boss ratio is 0.65-0.85, It is an axial flow pump characterized by the above-mentioned.

また、上記課題を解決する本発明に係る他の軸流ポンプは、
ハウジングと、このハウジング内において回転可能な羽根車と、この羽根車を回転させる駆動機構と、を備え、前記駆動機構による前記羽根車の回転により、軸方向に沿って流体を前方から取り込み後方へ圧送する軸流ポンプにおいて、
前記駆動機構は、前記羽根車に対する後方で前記ハウジングの内壁面から突出する板状のディフューザに固定された後側固定体に固定され、
前記羽根車は、前記駆動機構に連結された回転軸体と、この回転軸体の外周面から突出したインペラと、よりなり、
前記回転軸体の外径と前記インペラの外形との比であるボス比は、0.65〜0.85であることを特徴とする軸流ポンプである。
Moreover, the other axial flow pump which concerns on this invention which solves the said subject is,
A housing, an impeller rotatable in the housing, and a drive mechanism for rotating the impeller, and fluid is taken in from the front along the axial direction and rotated backward by the rotation of the impeller by the drive mechanism. In axial flow pumps,
The drive mechanism is fixed to a rear fixed body fixed to a plate-like diffuser protruding from the inner wall surface of the housing behind the impeller,
The impeller includes a rotating shaft connected to the drive mechanism, and an impeller protruding from the outer peripheral surface of the rotating shaft,
A boss ratio that is a ratio of an outer diameter of the rotating shaft body and an outer shape of the impeller is 0.65 to 0.85.

本発明に係る軸流ポンプによれば、安定した圧力特性を得ることができ、運転流量の変化に対する吐出圧力の変化幅を低減することができる。この結果、例えば、安定した吐出圧力性能が要求される人工心臓ポンプとして、軸流ポンプを適用することができ、更に小型化された人工心臓ポンプを実現することができる。   With the axial flow pump according to the present invention, stable pressure characteristics can be obtained, and the variation range of the discharge pressure with respect to the change in the operation flow rate can be reduced. As a result, for example, an axial flow pump can be applied as an artificial heart pump that requires stable discharge pressure performance, and a further miniaturized artificial heart pump can be realized.

図1は、本発明の実施形態に係る軸流ポンプの概略部分構造図である。本実施形態に係る軸流ポンプは、図4に示す軸流ポンプと同じ構造をしているため、構造に関する詳細な説明は省略するが、従来の軸流ポンプと比較してボス比を大きくした軸流ポンプである。図1には、軸流ポンプにおけるディフューザ6’、後側固定体7’、回転軸体8’及びインペラ9’の部分構造を示してあり、同図は図5に対応した図である。   FIG. 1 is a schematic partial structural diagram of an axial flow pump according to an embodiment of the present invention. The axial flow pump according to the present embodiment has the same structure as the axial flow pump shown in FIG. 4, and thus a detailed description of the structure is omitted, but the boss ratio is increased as compared with the conventional axial flow pump. It is an axial flow pump. FIG. 1 shows partial structures of a diffuser 6 ′, a rear fixed body 7 ′, a rotating shaft body 8 ′, and an impeller 9 ′ in an axial flow pump, and this figure corresponds to FIG. 5.

本実施形態ではロータを構成する回転軸体8’のハブ径Dhとインペラ9’のチップ径Dtとの比であるボス比Dh/Dtを、0.65〜0.85としてある。図2は、本発明の実施形態に係る軸流ポンプのロータ(羽根車)における流体の流れ方を示す概念図である。また、図3は、本発明の実施形態に係る軸流ポンプの流量と揚程とからなる圧力特性を示すグラフである。   In this embodiment, the boss ratio Dh / Dt, which is the ratio of the hub diameter Dh of the rotating shaft body 8 'constituting the rotor and the tip diameter Dt of the impeller 9', is set to 0.65 to 0.85. FIG. 2 is a conceptual diagram showing how the fluid flows in the rotor (impeller) of the axial flow pump according to the embodiment of the present invention. Moreover, FIG. 3 is a graph which shows the pressure characteristic which consists of the flow volume and head of the axial flow pump which concerns on embodiment of this invention.

図2に示すように、ボス比が0.65〜0.85と大きい、すなわちロータにおいてインペラ9’の占める部分が比較的小さい場合においても、低流量状態においてインペラ9’の入口側外周部に逆流が発生する(図2(a))。この結果、図3に示すように、本実施形態においても揚程が少なからず減少する。   As shown in FIG. 2, even when the boss ratio is as large as 0.65 to 0.85, that is, when the portion occupied by the impeller 9 ′ in the rotor is relatively small, the outer peripheral portion on the inlet side of the impeller 9 ′ in the low flow rate state. Backflow occurs (FIG. 2 (a)). As a result, as shown in FIG. 3, the head is reduced not only in this embodiment.

また、更に流量が低下した状態では、インペラ9’の入口側外周部に逆流が発生するだけでなく、インペラ9’の出口側内周部にも逆流が発生する(図2(b))。この結果、主となる流体の流れ方向が回転速度の大きなインペラ9’の外周側に偏ってしまうため、遠心力効果により揚程が増加してしまうことになるが、図2(b)に示すように、ボス比が大きいため流体流れの偏りは従来と比較して少なく(流速変化前後において、流体流れの変化が比較的少ない)、遠心力効果の発生を抑制できていることが分かる。   Further, in a state where the flow rate is further reduced, not only a backflow is generated in the outer peripheral portion on the inlet side of the impeller 9 ′ but also a reverse flow is generated in the inner peripheral portion on the outlet side of the impeller 9 ′ (FIG. 2B). As a result, the flow direction of the main fluid is biased toward the outer peripheral side of the impeller 9 ′ having a large rotational speed, so that the lift increases due to the centrifugal force effect, but as shown in FIG. In addition, since the boss ratio is large, the deviation of the fluid flow is small compared to the conventional case (the change of the fluid flow is relatively small before and after the flow velocity change), and it can be seen that the generation of the centrifugal force effect can be suppressed.

軸流ポンプの圧力特性を安定にするための、遠心力効果の発生を抑制可能なボス比としては0.65以上、好ましくは0.7以上とすれば良い。この結果、図3に示すように、設計運転流量(設計運転点)を含めた広い流量範囲において、安定な圧力特性を有する軸流ポンプとすることができる。   The boss ratio capable of suppressing the generation of the centrifugal force effect for stabilizing the pressure characteristics of the axial flow pump may be 0.65 or more, preferably 0.7 or more. As a result, as shown in FIG. 3, an axial flow pump having stable pressure characteristics can be obtained in a wide flow rate range including the design operation flow rate (design operation point).

ボス比を大きくするほど、遠心力効果を抑制することができ、圧力特性を安定なものとすることができるが、軸流ポンプ内における流路断面積が小さくなるため、高流量状態では摩擦損失が増大し揚程が低下するという問題がある。この結果、ボス比が大きすぎると、締切揚程と定格点揚程との比が逆に増大し、圧力特性が不安定になる。このため、ボス比の上限値としては、0.85以下とする必要がある。好ましくは、ボス比0.8以下とするのが良い。   As the boss ratio increases, the centrifugal force effect can be suppressed and the pressure characteristics can be stabilized. However, since the cross-sectional area of the flow path in the axial flow pump is reduced, friction loss occurs at high flow rates. There is a problem that the head is increased and the head is lowered. As a result, if the boss ratio is too large, the ratio between the deadline lift and the rated point lift increases, and the pressure characteristics become unstable. For this reason, the upper limit of the boss ratio needs to be 0.85 or less. Preferably, the boss ratio is 0.8 or less.

なお、ボス比Dh/Dtを設定する際には、ロータを構成する回転軸体8’のハブ径Dhとインペラ9’のチップ径Dtを設定する。ここで、ハブ径Dhとチップ径Dtの設定の態様としては、チップ径Dtを一定としながらハブ径Dhを大きくすることによりボス比を大きく設定する態様と、ハブ径Dhを一定としながらチップ径Dtを小さくすることによりボス比を大きく設定する態様と、ハブ径Dhとチップ径Dtを共に大きくしながらハブ径Dhについてはより大きな増加率で大きくすることによりボス比を大きく設定する態様と、ハブ径Dhとチップ径Dtを共に小さくしながらチップ径Dtについてはより大きな減少率で小さくすることによりボス比を大きく設定する態様とがある。これらの設定方法は、ボス比を大きくすることにより得られる上記効果の程度や、軸流ポンプ自体のスケールや、軸流ポンプ内における流路断面積を考慮して選択すればよい。   When setting the boss ratio Dh / Dt, the hub diameter Dh of the rotating shaft 8 'constituting the rotor and the tip diameter Dt of the impeller 9' are set. Here, as a mode of setting the hub diameter Dh and the tip diameter Dt, a mode in which the boss ratio is set large by increasing the hub diameter Dh while keeping the tip diameter Dt constant, and a tip diameter while keeping the hub diameter Dh constant. A mode in which the boss ratio is set large by decreasing Dt, a mode in which the boss ratio is set large by increasing the hub diameter Dh at a larger increase rate while increasing both the hub diameter Dh and the tip diameter Dt, There is a mode in which the boss ratio is set to be large by reducing the tip diameter Dt at a larger reduction rate while reducing both the hub diameter Dh and the tip diameter Dt. These setting methods may be selected in consideration of the degree of the above effect obtained by increasing the boss ratio, the scale of the axial flow pump itself, and the flow path cross-sectional area in the axial flow pump.

例えば、軸流ポンプの設計に際して、チップ径Dtを一定としながらハブ径Dhを大きくする(第1形態)と、従来の小型化された軸流ポンプとしつつ、ボス比を大きくして安定な圧力特性を得ることができる。ただし、この場合には、従来よりも軸流ポンプ内における流路断面積が小さくなるため、摩擦損失の増加があまり影響しない仕様に適している。   For example, when designing the axial flow pump, if the hub diameter Dh is increased while keeping the tip diameter Dt constant (first form), the boss ratio is increased and a stable pressure is achieved while the conventional axial flow pump is reduced. Characteristics can be obtained. However, in this case, since the cross-sectional area of the flow path in the axial flow pump is smaller than in the prior art, it is suitable for specifications in which an increase in friction loss does not affect much.

また、ハブ径Dhを一定としながらチップ径Dtを小さくする(第2形態)と、従来よりも小型化された軸流ポンプとしつつ、ボス比を大きくして安定な圧力特性を得ることができる。ただし、この場合には、上記第1形態よりも更に軸流ポンプ内における流路断面積が小さくなる。   If the tip diameter Dt is reduced while keeping the hub diameter Dh constant (second embodiment), a stable pressure characteristic can be obtained by increasing the boss ratio while making the axial flow pump smaller than the conventional one. . However, in this case, the flow path cross-sectional area in the axial flow pump is further reduced than in the first embodiment.

また、ハブ径Dhとチップ径Dtを共に大きくしながらハブ径Dhについてはより大きな増加率で大きくする(第3形態)と、従来よりも軸流ポンプ内における流路断面積を大きくして摩擦損失を減少させつつ、ボス比を大きくして安定な圧力特性を得ることができる。ただし、この場合には、チップ径Dtを大きく設定するため、軸流ポンプのスケールは多少大きくなってしまう。   Further, when both the hub diameter Dh and the tip diameter Dt are increased, the hub diameter Dh is increased at a larger increase rate (third embodiment), and the flow passage cross-sectional area in the axial flow pump is increased as compared with the conventional friction. A stable pressure characteristic can be obtained by increasing the boss ratio while reducing the loss. However, in this case, since the tip diameter Dt is set large, the scale of the axial flow pump becomes somewhat large.

また、ハブ径Dhとチップ径Dtを共に小さくしながらチップ径Dtについてはより大きな減少率で小さくする(第4形態)と、従来よりも小型化された軸流ポンプとしつつ、ボス比を大きくして安定な圧力特性を得ることができる。ただし、この場合には、上記第3形態よりも更に軸流ポンプ内における流路断面積が小さくなる。   Further, when both the hub diameter Dh and the tip diameter Dt are reduced, the tip diameter Dt is reduced with a larger reduction rate (fourth embodiment), and the boss ratio is increased while the axial flow pump is made smaller than the conventional one. Thus, stable pressure characteristics can be obtained. However, in this case, the flow path cross-sectional area in the axial flow pump is further reduced than in the third embodiment.

また、他の例では、ハブ径Dhとチップ径Dtを共に大きくすることにより、軸流ポンプ内における流路断面積を確保しつつ、ボス比を大きく設定することができる。すなわち、例えばハブ径Dh=7mm、チップ径Dt=10mmのときのボス比は0.7であり、流路断面積は約51πmm2(=102π―72π)となるが、ハブ径Dh=9.64mm、チップ径Dt=12mmのときのボス比は0.803であり、流路断面積は約51πmm2(=122π―9.642π)となり、流路断面積を確保しつつ、ボス比を大きく設定することができる。ただし、この場合には、チップ径Dtを大きく設定する必要があるため、軸流ポンプのスケールは多少大きくなってしまう。 In another example, by increasing both the hub diameter Dh and the tip diameter Dt, the boss ratio can be set large while ensuring the cross-sectional area of the flow path in the axial flow pump. That is, for example, when the hub diameter Dh = 7 mm and the tip diameter Dt = 10 mm, the boss ratio is 0.7 and the channel cross-sectional area is about 51πmm 2 (= 10 2 π−7 2 π). When Dh = 9.64 mm and tip diameter Dt = 12 mm, the boss ratio is 0.803, and the channel cross-sectional area is about 51πmm 2 (= 12 2 π−9.64 2 π). The ratio can be set large. However, in this case, since the tip diameter Dt needs to be set large, the scale of the axial flow pump becomes somewhat large.

本発明の実施形態に係る軸流ポンプの概略部分構造図である。It is a schematic partial structure figure of the axial flow pump concerning the embodiment of the present invention. 本発明の実施形態に係る軸流ポンプのロータ(羽根車)における流体の流れ方を示す概念図である。It is a conceptual diagram which shows how the fluid flows in the rotor (impeller) of the axial flow pump which concerns on embodiment of this invention. 本発明の実施形態に係る軸流ポンプの流量と揚程とからなる圧力特性を示すグラフである。It is a graph which shows the pressure characteristic which consists of the flow volume and head of the axial flow pump which concerns on embodiment of this invention. 従来の軸流ポンプの概略断面構造図である。It is a schematic sectional structure figure of the conventional axial flow pump. 従来の軸流ポンプの概略部分構造図である。It is a schematic partial structure figure of the conventional axial flow pump. 従来の軸流ポンプのロータ(羽根車)における流体の流れ方を示す概念図である。It is a conceptual diagram which shows how the fluid flows in the rotor (impeller) of the conventional axial flow pump. 従来の軸流ポンプの流量と揚程とからなる圧力特性を示すグラフである。It is a graph which shows the pressure characteristic which consists of the flow volume and head of a conventional axial flow pump.

符号の説明Explanation of symbols

1 ハウジング
3 ロータ(羽根車)
4 整流板
5 前側固定体
6,6’ ディフューザ
7,7’ 後側固定体
8,8’ 回転軸体
9,9’ インペラ
10 モータ
X 中心軸
1 Housing 3 Rotor (Impeller)
4 current plate 5 front fixed body 6, 6 'diffuser 7, 7' rear fixed body 8, 8 'rotating shaft body 9, 9' impeller 10 motor X central shaft

Claims (3)

インペラにより流体を圧送する軸流ポンプにおいて、
インペラの入口側外周部における逆流とインペラの出口側内周部における逆流とから発生する前記流体の流れの偏りを抑制したボス比を有することを特徴とする軸流ポンプ。
In an axial pump that pumps fluid with an impeller,
An axial-flow pump characterized by having a boss ratio that suppresses a deviation in the flow of the fluid generated from a reverse flow at the outer peripheral portion on the inlet side of the impeller and a reverse flow at the inner peripheral portion on the outlet side of the impeller.
請求項1に記載する軸流ポンプにおいて、
前記ボス比は、0.65〜0.85であることを特徴とする軸流ポンプ。
The axial flow pump according to claim 1,
The axial flow pump characterized in that the boss ratio is 0.65 to 0.85.
ハウジングと、このハウジング内において回転可能な羽根車と、この羽根車を回転させる駆動機構と、を備え、前記駆動機構による前記羽根車の回転により、軸方向に沿って流体を前方から取り込み後方へ圧送する軸流ポンプにおいて、
前記駆動機構は、前記羽根車に対する後方で前記ハウジングの内壁面から突出する板状のディフューザに固定された後側固定体に固定され、
前記羽根車は、前記駆動機構に連結された回転軸体と、この回転軸体の外周面から突出したインペラと、よりなり、
前記回転軸体の外径と前記インペラの外形との比であるボス比は、0.65〜0.85であることを特徴とする軸流ポンプ。
A housing, an impeller rotatable in the housing, and a drive mechanism for rotating the impeller, and fluid is taken in from the front along the axial direction and rotated backward by the rotation of the impeller by the drive mechanism. In axial flow pumps,
The drive mechanism is fixed to a rear fixed body fixed to a plate-like diffuser protruding from the inner wall surface of the housing behind the impeller,
The impeller includes a rotating shaft connected to the drive mechanism, and an impeller protruding from the outer peripheral surface of the rotating shaft,
A boss ratio, which is a ratio between an outer diameter of the rotating shaft body and an outer shape of the impeller, is 0.65 to 0.85.
JP2004032900A 2004-02-10 2004-02-10 Axial flow pump Pending JP2005226457A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2004032900A JP2005226457A (en) 2004-02-10 2004-02-10 Axial flow pump
AU2005200540A AU2005200540A1 (en) 2004-02-10 2005-02-08 Axial-flow pump
US11/052,865 US20050175450A1 (en) 2004-02-10 2005-02-09 Axial-flow pump
DE200510006120 DE102005006120A1 (en) 2004-02-10 2005-02-10 axial flow pump
CN200510009427.9A CN1654825A (en) 2004-02-10 2005-02-16 Axial-flow pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004032900A JP2005226457A (en) 2004-02-10 2004-02-10 Axial flow pump

Publications (1)

Publication Number Publication Date
JP2005226457A true JP2005226457A (en) 2005-08-25

Family

ID=34824239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004032900A Pending JP2005226457A (en) 2004-02-10 2004-02-10 Axial flow pump

Country Status (5)

Country Link
US (1) US20050175450A1 (en)
JP (1) JP2005226457A (en)
CN (1) CN1654825A (en)
AU (1) AU2005200540A1 (en)
DE (1) DE102005006120A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103644140A (en) * 2013-12-05 2014-03-19 江苏大学 Method for designing submersible axial-flow pump guide vane and submersible axial-flow pump guide vane

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8240976B1 (en) * 2009-03-18 2012-08-14 Ebara International Corp. Methods and apparatus for centrifugal pumps utilizing head curve
US9909588B2 (en) * 2010-07-30 2018-03-06 The Board Of Regents Of The University Of Texas System Axial-flow pumps and related methods

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4173796A (en) * 1977-12-09 1979-11-13 University Of Utah Total artificial hearts and cardiac assist devices powered and controlled by reversible electrohydraulic energy converters
JPH10288199A (en) * 1997-04-11 1998-10-27 Sekiyu Kodan Pump for gas liquid multi-phase flow

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4213745A (en) * 1978-09-11 1980-07-22 Roberts Samuel A Pump for central heating system
US5527159A (en) * 1993-11-10 1996-06-18 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Rotary blood pump

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4173796A (en) * 1977-12-09 1979-11-13 University Of Utah Total artificial hearts and cardiac assist devices powered and controlled by reversible electrohydraulic energy converters
JPH10288199A (en) * 1997-04-11 1998-10-27 Sekiyu Kodan Pump for gas liquid multi-phase flow

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103644140A (en) * 2013-12-05 2014-03-19 江苏大学 Method for designing submersible axial-flow pump guide vane and submersible axial-flow pump guide vane
CN103644140B (en) * 2013-12-05 2015-08-26 江苏大学 A kind of submersible axial flow pump stator design method and submersible axial flow pump stator

Also Published As

Publication number Publication date
US20050175450A1 (en) 2005-08-11
CN1654825A (en) 2005-08-17
AU2005200540A1 (en) 2005-08-25
DE102005006120A1 (en) 2005-09-01

Similar Documents

Publication Publication Date Title
JP4674206B2 (en) Improved pump impeller
JP2011021491A (en) Impeller and rotating machine
JP2006527804A5 (en)
US8419358B2 (en) Flow output nozzle for centrifugal pump
US20050249585A1 (en) Axial-flow type fan having an air outlet blade structure
JP2009041373A (en) Turbo compressor
JP2005226457A (en) Axial flow pump
JP2007177737A (en) Centrifugal compressor
JP5118951B2 (en) Centrifugal pump impeller and centrifugal pump
JP2006194238A (en) Centrifugal compressor
JPWO2010007780A1 (en) Centrifugal pump impeller and centrifugal pump
JP2006144678A (en) Centrifugal blower
JP2008202415A (en) Centrifugal compressor
JPH09195986A (en) Impeller of fluid machinery
JP4252780B2 (en) Turbine type fuel pump
JP2000297775A (en) Self-priming type pump
JP2001153083A (en) Pump
JP5059679B2 (en) Pump structure
JP2003343473A (en) Mixed flow impeller with screw in mixed flow pump
JPH1061594A (en) Structure of impeller and pump
JPH11132196A (en) Multiblade blower
JP2000110792A (en) Fan with multiple blades
JP3794543B2 (en) Centrifugal compressor
JP2009007957A (en) Centrifugal pump
JP2004183630A (en) Vortex pump

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100706