JP2005225048A - Injection molding mold - Google Patents

Injection molding mold Download PDF

Info

Publication number
JP2005225048A
JP2005225048A JP2004035264A JP2004035264A JP2005225048A JP 2005225048 A JP2005225048 A JP 2005225048A JP 2004035264 A JP2004035264 A JP 2004035264A JP 2004035264 A JP2004035264 A JP 2004035264A JP 2005225048 A JP2005225048 A JP 2005225048A
Authority
JP
Japan
Prior art keywords
block
mold
resin
cooling
nesting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004035264A
Other languages
Japanese (ja)
Inventor
Osamu Murakami
治 村上
Yoshimichi Ogata
喜通 尾方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2004035264A priority Critical patent/JP2005225048A/en
Publication of JP2005225048A publication Critical patent/JP2005225048A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an injection molding mold capable of cooling a molded product to a thermal deformation temperature or below capable of taking out the molded product in its molding operation process while faithfully transferring and molding a highly detailed pattern, capable of sharply shortening a molding process time and capable of sharply enhancing productivity. <P>SOLUTION: The injection molding mold is equipped with a mold body 2 having a recessed part and the core block 4 fitted and held in the recessed part in a freely slidable manner to form a cavity 5 in the recessed part and constituted so that the core block 4 is heated to the glass transition point of a resin to be molded or above to compression-mold the resin charged in the cavity 5. The injection molding mold is also equipped with a cooling block 6 independently arranged to the end surface on the side opposite to the cavity side of the core block 4 so as to be brought into contact with and separated from the end surface and a drive means 7 for driving the cooling block 6 so as to bring in the direction brought into contact with and separated from the core block 4. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、例えばエンコーダ樹脂円板や携帯電話機等の立体表示液晶のキーデバイスとなる両面プリズムシート等のような光学部品を高精度に射出成形するための射出成形金型に関するものである。   The present invention relates to an injection mold for high-precision injection molding of optical components such as a double-sided prism sheet used as a key device for stereoscopic display liquid crystal such as an encoder resin disk and a mobile phone.

回折格子やフレネルレンズ等の微細パターンを表面に有する光学部品を樹脂材料で高精度に成形するために射出成形金型を適用し、金型温度を樹脂のガラス転移点以上に加熱した状態で樹脂を金型内に充填して射出成形や射出圧縮成形を行う方法は既に知られている。しかし、このような射出成形金型では、成形品を金型から取り出すためには金型内に充填された樹脂が熱変形温度以下となるまで冷却する必要があり、その冷却に要する時間が長くなって生産性が悪いという課題があった。この課題を解決するために、樹脂のPVT(圧力、比容積、温度)特性を利用して樹脂母材をガラス転移温度以上に加熱してから熱変形温度以下に徐冷する過程で、キャビティを最終形状よりも拡大された状態から最終形状に縮小するように構成した射出成形金型も既に知られている(例えば、特許文献1参照)。   Applying an injection mold to mold optical parts with fine patterns such as diffraction gratings and Fresnel lenses on the surface with a resin material with high accuracy, with the mold temperature heated above the glass transition point of the resin A method of performing injection molding or injection compression molding by filling a mold into a mold is already known. However, in such an injection mold, in order to take out the molded product from the mold, it is necessary to cool the resin filled in the mold until the temperature becomes lower than the heat deformation temperature, and the time required for the cooling is long. There was a problem that productivity was bad. In order to solve this problem, the cavity is formed in the process of heating the resin base material to a temperature higher than the glass transition temperature by using the PVT (pressure, specific volume, temperature) characteristics of the resin and then gradually cooling it to the heat deformation temperature or lower. An injection mold that is configured to be reduced from a state expanded to a final shape to a final shape is already known (see, for example, Patent Document 1).

特許文献1に開示された従来の射出成形金型によれば、キャビティを拡大することで樹脂母材の圧力と共にガラス転移温度を低下させ、これを加熱して内部圧力を均一化する所要時間を短縮し、樹脂母材が固化するまでにキャビティを最終形状に縮小し、形状精度が高く内部密度が均一な樹脂製品を最終形状に成形するが、その徐冷時間も樹脂母材の加熱温度が低いので短縮されるというものである。   According to the conventional injection mold disclosed in Patent Document 1, by enlarging the cavity, the glass transition temperature is lowered together with the pressure of the resin base material, and the time required to equalize the internal pressure by heating this is reduced. The cavity is reduced to the final shape until the resin base material is solidified, and a resin product with high shape accuracy and uniform internal density is formed into the final shape. Because it is low, it is shortened.

特開平9−38994号公報(第2頁、図1)JP-A-9-38994 (2nd page, FIG. 1)

従来の射出成形金型は以上のように構成されているので、予め略最終形状に成形されてキャビティ内部に投入された樹脂母材をガラス転移点以上に加熱してから熱変形温度以下に徐冷しなければならず、前記樹脂母材をガラス転移点以上に加熱しながら金型温度を樹脂母材の熱変形温度以下に冷却することができないため、成形品取り出しが可能な熱変形温度以下にまで冷却するのに時間がかかり、その結果、成形工程時間の短縮には限界があって生産性向上の点で問題が生じるという課題があった。   Since the conventional injection mold is configured as described above, the resin base material molded into a substantially final shape in advance and introduced into the cavity is heated above the glass transition point and then gradually lowered to the heat deformation temperature or lower. Since the mold temperature cannot be cooled below the thermal deformation temperature of the resin base material while heating the resin base material to the glass transition point or higher, it must be cooled. As a result, there is a problem in that it takes time to cool down to the point of time, and as a result, there is a limit in shortening the molding process time, which causes a problem in terms of productivity improvement.

この発明は上記のような課題を解決するためになされたもので、高精細形状のパターンを忠実に転写成形しながら、その成形動作過程で成形品取り出しが可能な熱変形温度以下に冷却することができ、成形工程時間を大幅に短縮することができて生産性を大幅に向上させることができる射出成形金型を得ることを目的とする。   The present invention has been made to solve the above-described problems. While faithfully transfer-molding a high-definition pattern, it is cooled to a temperature lower than the heat deformation temperature at which the molded product can be taken out during the molding operation. It is an object of the present invention to obtain an injection mold that can greatly reduce the molding process time and greatly improve the productivity.

この発明に係る射出成形金型は、凹部を有する金型本体と、その凹部に摺動自在に嵌合保持され当該凹部内にキャビティを形成する入れ子ブロックとを備え、前記入れ子ブロックを被成形樹脂のガラス転移点以上に加熱して前記キャビティ内に充填した樹脂を前記入れ子ブロックで圧縮成形する射出成形金型において、前記入れ子ブロックのキャビティ側と反対側の端面に接離可能に独立して配置された冷却ブロックと、この冷却ブロックを前記入れ子ブロックに対する接離方向に駆動する駆動手段とを備えたものである。   An injection mold according to the present invention includes a mold body having a recess, and a nested block that is slidably fitted and held in the recess and forms a cavity in the recess, and the insert block is a resin to be molded. In an injection mold in which the resin filled in the cavity is heated by the glass transition point of the insert block and compression-molded by the insert block, the resin is independently arranged so as to be able to come into contact with and separate from the end surface opposite to the cavity side of the insert block. And a driving means for driving the cooling block in the contact / separation direction with respect to the nesting block.

この発明によれば、樹脂のガラス転移点以上に加熱された入れ子ブロックを冷却ブロックで押圧移動させてキャビティ内の樹脂を圧縮成形するように構成したので、前記入れ子ブロックによるキャビティ内樹脂の圧縮成形と同時に、その圧縮成形時の前記入れ子ブロックを前記冷却ブロックとの熱交換によって効率よく急速冷却することが可能となり、このため、前記入れ子ブロックによる成形品表面への微細パターンの高精度転写と、前記冷却ブロックによる入れ子ブロックの急速冷却とを実現でき、成形工程時間を大幅に短縮できて生産性向上に大きく寄与できるという効果がある。   According to this invention, since the insert block heated above the glass transition point of the resin is pressed and moved by the cooling block to compress and mold the resin in the cavity, the resin in the cavity is compressed by the insert block. At the same time, the nested block at the time of compression molding can be quickly and efficiently cooled by heat exchange with the cooling block, and for this reason, high-precision transfer of a fine pattern to the surface of the molded product by the nested block, It is possible to realize rapid cooling of the nested block by the cooling block, and to greatly reduce the molding process time and greatly contribute to productivity improvement.

実施の形態1.
図1はこの発明の実施の形態1による射出成形金型を示す断面図である。
図1に示す射出成形金型1は、断面凹形状をなし、その開放端側を下向きにして設置固定される金型本体2と、この金型本体2の開放端側に組み付け固定されたスカート状の型枠3と、前記金型本体2の凹部に摺動自在に嵌合され当該金型本体2内にキャビティ5を形成する入れ子ブロック4と、前記型枠3内に嵌め込まれ前記入れ子ブロック4のキャビティ5側と反対側の端面に接離可能に独立して配置された可動構成の冷却ブロック6と、この冷却ブロック6を前記入れ子ブロック4に対する接離方向に駆動する駆動手段(例えば、油圧シリンダであって、以下、油圧シリンダともいう)7とからなっている。
Embodiment 1 FIG.
FIG. 1 is a sectional view showing an injection mold according to Embodiment 1 of the present invention.
An injection mold 1 shown in FIG. 1 has a concave shape in cross section, a mold body 2 that is installed and fixed with the open end side facing down, and a skirt that is assembled and fixed to the open end side of the mold body 2 A mold 3, a nesting block 4 that is slidably fitted in a recess of the mold body 2 and forms a cavity 5 in the mold body 2, and a nesting block that is fitted in the mold 3 4 is a movable cooling block 6 that is arranged independently on the end surface opposite to the cavity 5 side so as to be able to contact and separate, and driving means for driving the cooling block 6 in the contact and separation direction with respect to the nesting block 4 (for example, This is a hydraulic cylinder (hereinafter also referred to as a hydraulic cylinder) 7.

さらに詳しく説明すると、前記金型本体2は、前記入れ子ブロック4との対向面に形成された連続円弧の凹凸面状をなすパターン成形面2aを有しており、前記入れ子ブロック4は、前記金型本体2のパターン成形面2aとの対向面に形成された連続V溝をなす凹凸面状のパターン成形面4aを有している。また、前記入れ子ブロック4の上端側周縁部には鍔部4bが一体形成され、この鍔部4bの外周面が前記金型本体2の内周面に摺接するようになっている。ここで、前記金型本体2の開放端部には、当該金型本体2に対する前記型枠3の組み付け端面によって内段部3aが形成され、この内段部3aに前記入れ子ブロック4の鍔部4bが係合することによって、その入れ子ブロック4が前記金型本体2内から抜け出さないようになっている。   More specifically, the mold body 2 has a pattern forming surface 2a having a concave and convex surface shape of a continuous arc formed on a surface facing the insert block 4, and the insert block 4 The mold body 2 has an uneven surface-shaped pattern forming surface 4a forming a continuous V-groove formed on the surface facing the pattern forming surface 2a. Further, a flange 4b is formed integrally with the peripheral edge on the upper end side of the insert block 4, and the outer peripheral surface of the flange 4b is in sliding contact with the inner peripheral surface of the mold body 2. Here, an inner step portion 3 a is formed at the open end portion of the mold body 2 by an end face of the mold 3 attached to the mold body 2, and the flange portion of the nested block 4 is formed on the inner step portion 3 a. By engaging 4b, the nesting block 4 is prevented from coming out of the mold body 2.

また、前記金型本体2および前記入れ子ブロック4のそれぞれは温度制御可能な加熱手段としてヒータ8,9が埋設された構造となっている。さらに、前記冷却ブロック6は、水等の冷却媒体を流す冷却通路として冷却配管10が埋設され、かつその冷却配管10よりも下方に複数の断熱層(断熱空間)11が並列状に設けられた構造となっている。ここで、前記ヒータ8,9のそれぞれは温度制御手段(図示せず)に接続されている。この温度制御手段は、入れ子ブロック4と冷却ブロック6とが離間した状態では入れ子ブロック4のヒータ9の電源をONし、前記冷却ブロック6による入れ子ブロック4の押圧移動時(油圧シリンダ7の伸長作動時)に前記ヒータ9の電源をOFFするように、そのヒータ電源をON・OFF制御するものである。   Each of the mold body 2 and the insert block 4 has a structure in which heaters 8 and 9 are embedded as heating means capable of temperature control. Further, the cooling block 6 includes a cooling pipe 10 embedded as a cooling passage for flowing a cooling medium such as water, and a plurality of heat insulating layers (heat insulating spaces) 11 provided in parallel below the cooling pipe 10. It has a structure. Here, each of the heaters 8 and 9 is connected to a temperature control means (not shown). This temperature control means turns on the power of the heater 9 of the nesting block 4 when the nesting block 4 and the cooling block 6 are separated from each other, and when the nesting block 4 is pushed and moved by the cooling block 6 (extension operation of the hydraulic cylinder 7). The heater power is turned on / off so that the power of the heater 9 is turned off.

以上のように構成された射出成形金型1において、型枠3の内壁面と入れ子ブロック4の胴部周壁面との間、型枠3の内壁面と冷却ブロック6の周壁面との間には断熱層(断熱空間)12が設けられ、また、金型本体2開放端側の内段部3aに入れ子ブロック4の鍔部4bが当接支承された状態となる樹脂成形後には、入れ子ブロック4から冷却ブロック6が下降離間して両者の対向面間にも断熱層(断熱空間)12aが設けられるようになっている。   In the injection mold 1 configured as described above, between the inner wall surface of the mold 3 and the barrel peripheral wall surface of the nesting block 4, between the inner wall surface of the mold frame 3 and the peripheral wall surface of the cooling block 6. Is provided with a heat insulating layer (heat insulating space) 12, and after the resin molding in which the flange portion 4b of the nested block 4 is in contact with and supported by the inner step portion 3a on the mold body 2 open end side, the nested block The cooling block 6 descends and separates from 4, and a heat insulating layer (heat insulating space) 12a is also provided between the opposing surfaces.

次に動作について説明する。
樹脂成形前においては、図1に示すように、入れ子ブロック4は鍔部4bが射出成形金型1の内段部3a上に係合支承された下降位置に保持され、かつ冷却ブロック6は前記入れ子ブロック4から分離した下降位置に保持される。この状態において、金型本体2は、ガラス転移点以下に、入れ子ブロック4はヒータ8,9によって樹脂のガラス転移点以上の設定温度まで加熱され、かつ、冷却ブロック6の冷却配管10には冷却媒体を供給・循環させている。その状態において、射出成形機(図示せず)から金型本体2のキャビティ5内に樹脂を充填し、その充填後に油圧シリンダ7を稼働(伸長作動)させると、冷却ブロック6が入れ子ブロック4を押圧して当該入れ子ブロック4が上昇することにより前記キャビティ5内の樹脂が加圧成形される。その加圧と同時に入れ子ブロック4のヒータ9の電源が遮断することにより、入れ子ブロック4の昇温が抑止される。このときの入れ子ブロック4には冷却ブロック6が接触しているため、両者の熱交換が迅速に効率よく行われ、入れ子ブロック4が降温する。これにより、入れ子ブロック4が熱変形温度以下まで低下した段階で前記金型1を開き樹脂成型品を取り出す。その取り出し後に油圧シリンダ7を短縮作動させて冷却ブロック6と入れ子ブロック4を下降させることにより、図1に示すように、入れ子ブロック4と冷却ブロック6とを分離させる。その分離後に、入れ子ブロック4のヒータ9の電源が投入されることにより、入れ子ブロックを再びガラス転移点以上まで昇温させ、前述の樹脂成形を繰り返す。
Next, the operation will be described.
Prior to resin molding, as shown in FIG. 1, the insert block 4 is held in a lowered position in which the flange portion 4b is engaged and supported on the inner step portion 3a of the injection mold 1 and the cooling block 6 is It is held in a lowered position separated from the nesting block 4. In this state, the mold body 2 is heated below the glass transition point, the nested block 4 is heated to a set temperature above the glass transition point of the resin by the heaters 8 and 9, and the cooling pipe 10 of the cooling block 6 is cooled. The medium is supplied and circulated. In this state, when the resin is filled into the cavity 5 of the mold body 2 from an injection molding machine (not shown) and the hydraulic cylinder 7 is operated (extension operation) after the filling, the cooling block 6 causes the nesting block 4 to move. The resin in the cavity 5 is pressure-molded by pressing and raising the nesting block 4. Simultaneously with the pressurization, the power supply to the heater 9 of the nested block 4 is cut off, so that the temperature rise of the nested block 4 is suppressed. Since the cooling block 6 is in contact with the nesting block 4 at this time, heat exchange between the two is performed quickly and efficiently, and the temperature of the nesting block 4 is lowered. Thereby, the mold 1 is opened at the stage where the nesting block 4 is lowered to the heat deformation temperature or lower, and the resin molded product is taken out. After the removal, the hydraulic cylinder 7 is shortened to lower the cooling block 6 and the nesting block 4, thereby separating the nesting block 4 and the cooling block 6 as shown in FIG. After the separation, when the heater 9 of the nesting block 4 is turned on, the temperature of the nesting block is again raised to the glass transition point or more, and the above-described resin molding is repeated.

以上説明した実施の形態1によれば、金型本体2と入れ子ブロック4のキャビティ5を挟む対向面にそれぞれ形状が異なる高精細なパターン成形面2a,4aを形成し、前記入れ子ブロック4を樹脂のガラス転移点以上に加熱して前記キャビティ5内に樹脂を充填した後、冷却ブロック6で入れ子ブロック4を押圧移動させて当該入れ子ブロック4で前記樹脂を圧縮成形するように構成したので、前記パターン成形面2a,4aによって高精細なパターンを成形品表面に忠実に転写させることができ、特に、その成形品素材である前記樹脂の圧縮成形と同時に、前記入れ子ブロック4を前記冷却ブロック6との熱交換によって成形品取り出しが可能な熱変形温度以下に急速冷却することができ、このため、成形品取り出しまでの成形工程時間を大幅に短縮できるという効果がある。しかも、前記入れ子ブロック4による樹脂圧縮開始時、すなわち、冷却ブロック6による入れ子ブロック4の押圧時には当該入れ子ブロック4のヒータ9の電源が遮断されるので、前記入れ子ブロック4と冷却ブロック6との熱交換効率がいっそう向上し、前記入れ子ブロック4の迅速な急冷を実現でき、成形品取り出しまでの成形工程時間をいっそう大幅に短縮できるという効果がある。   According to the first embodiment described above, high-definition pattern molding surfaces 2a and 4a having different shapes are formed on opposing surfaces sandwiching the cavity 5 of the mold body 2 and the nesting block 4, and the nesting block 4 is made of resin. Since the resin is filled in the cavity 5 by heating above the glass transition point, the nesting block 4 is pressed and moved by the cooling block 6, and the resin is compression molded by the nesting block 4. A high-definition pattern can be faithfully transferred to the surface of the molded product by the pattern molding surfaces 2a and 4a. In particular, simultaneously with the compression molding of the resin that is the molded product material, the nested block 4 and the cooling block 6 The heat can be rapidly cooled to below the heat distortion temperature at which the molded product can be removed by heat exchange. There is an effect that can be greatly reduced. In addition, when resin compression is started by the nesting block 4, that is, when the nesting block 4 is pressed by the cooling block 6, the power source of the heater 9 of the nesting block 4 is cut off. The exchange efficiency is further improved, the rapid cooling of the nesting block 4 can be realized, and the molding process time until the molded product is taken out can be further greatly shortened.

また、上記実施の形態1によれば、キャビティ5内への樹脂充填時には入れ子ブロック4から冷却ブロック6が離れ、その両者間に断熱層12aが形成されるので、前記入れ子ブロック6を樹脂のガラス転移点以上の加熱状態に維持できるという効果がある。さらには、前記入れ子ブロック4および冷却ブロック6の周囲と型枠3との間にも断熱層12を形成したので、高温に加熱される入れ子ブロック4と低温の冷却ブロック6とを同一の金型内に設置することができると共に、入れ子ブロック4による樹脂圧縮時には当該入れ子ブロック4と冷却ブロック6のみが接触することとなって両者の熱交換効率が向上し、前記入れ子ブロック4の迅速な急冷をいっそう確実に実現できるという効果がある。   Further, according to the first embodiment, the cooling block 6 is separated from the nesting block 4 when the resin is filled into the cavity 5, and the heat insulating layer 12a is formed between them, so that the nesting block 6 is made of resin glass. There is an effect that it can be maintained in a heated state above the transition point. Furthermore, since the heat insulating layer 12 is also formed between the periphery of the nesting block 4 and the cooling block 6 and the mold 3, the nesting block 4 heated to a high temperature and the low-temperature cooling block 6 are formed in the same mold. In addition, when the resin is compressed by the nesting block 4, only the nesting block 4 and the cooling block 6 are in contact with each other, so that the heat exchange efficiency between them is improved, and the nesting block 4 can be quickly and rapidly cooled. There is an effect that it can be realized more reliably.

実施例1.
次に、上記実施の形態1による射出成形金型1によって、幅35mm、長さ43mm、厚さ0.25mmのシート状樹脂の両面に連続V溝と連続円弧の微細パターンを形成した実験結果について説明する。
この実施例1においては、金型本体2のパターン成形面(連続円弧面)2aを、R90μm、ピッチ90μmで長辺と平行に連続形成すると共に、入れ子ブロック4のパターン成形面(連続V溝)4aは、長辺と平行に高さ77μm、頂角60゜、ピッチ90μmで連続形成した。また、キャビティ5に充填する樹脂としては、環状ポリオレフィン系ポリマーの商品名TOPAS5013(ポリプラスチック株式会社)を用いた。そして、金型本体2は樹脂のガラス転移点よりも低い135℃に、かつ、入れ子ブロック4は樹脂のガラス転移点よりも高い150℃に、それぞれのヒータ8,9で加熱昇温させた。また、冷却ブロック6の冷却配管10には30℃の水を冷却媒体として供給・循環させた。この状態で射出成形機から金型本体2のキャビティ5に樹脂を充填した。このときの樹脂温度は300℃に設定した。樹脂充填後、図2に示すように冷却ブロック6を油圧シリンダ7で押圧し入れ子ブロック4に接触させて当該入れ子ブロック4を上昇させることにより、キャビティ5内の樹脂を加圧した。その加圧と同時に入れ子ブロック4のヒータ9の電源を遮断した。これにより、入れ子ブロック4の昇温が抑止され、かつ、当該入れ子ブロック4と冷却ブロック6との接触による両者の熱交換が行われ、入れ子ブロック4の温度を金型本体2と同じガラス転移点以下の135℃まで下げることができた。そこで、金型1を開いて樹脂成型品を取り出した。その取り出し後に冷却ブロック6と入れ子ブロック4を後退させて入れ子ブロック4と冷却ブロック6を離した。次いで、入れ子ブロック4のヒータ9の電源を入れ、入れ子ブロック4を150℃まで昇温させ、再びキャビティ5に樹脂を充填し前述と同じ工程の成形を行った。
Example 1.
Next, an experimental result in which a fine pattern of continuous V-grooves and continuous arcs is formed on both surfaces of a sheet-like resin having a width of 35 mm, a length of 43 mm, and a thickness of 0.25 mm by the injection mold 1 according to the first embodiment. explain.
In the first embodiment, the pattern forming surface (continuous arc surface) 2a of the mold body 2 is continuously formed in parallel with the long side at R90 μm and pitch 90 μm, and the pattern forming surface (continuous V groove) of the nesting block 4 is formed. 4a was continuously formed with a height of 77 μm, apex angle of 60 °, and a pitch of 90 μm parallel to the long side. Further, as the resin filled in the cavity 5, a product name TOPAS5013 (Polyplastic Co., Ltd.), a cyclic polyolefin polymer, was used. The mold body 2 was heated to 135 ° C. lower than the glass transition point of the resin, and the nested block 4 was heated to 150 ° C. higher than the glass transition point of the resin by the respective heaters 8 and 9. Further, water at 30 ° C. was supplied and circulated as a cooling medium to the cooling pipe 10 of the cooling block 6. In this state, the resin was filled into the cavity 5 of the mold body 2 from the injection molding machine. The resin temperature at this time was set to 300 ° C. After filling the resin, the resin in the cavity 5 was pressurized by pressing the cooling block 6 with the hydraulic cylinder 7 and bringing it into contact with the nesting block 4 as shown in FIG. Simultaneously with the pressurization, the power source of the heater 9 of the nesting block 4 was shut off. As a result, the temperature rise of the nested block 4 is suppressed, and heat exchange between the nested block 4 and the cooling block 6 is performed, so that the temperature of the nested block 4 is the same as the glass transition point of the mold body 2. The temperature could be lowered to the following 135 ° C. Therefore, the mold 1 was opened and the resin molded product was taken out. After the removal, the cooling block 6 and the nesting block 4 were moved backward to separate the nesting block 4 and the cooling block 6. Subsequently, the heater 9 of the nesting block 4 was turned on, the temperature of the nesting block 4 was raised to 150 ° C., the resin was filled in the cavity 5 again, and the same process as described above was performed.

以上説明した実施例1によれば、冷却ブロック6を介して入れ子ブロック4でキャビティ5内の樹脂が圧縮されて、厚さ0.25mmの超薄肉成形品の両面に連続V溝と連続円弧が忠実に転写され、さらには入れ子ブロック4が冷却ブロック6との接触によって迅速に急冷され、高精度の成形品を短時間で得ることができた。   According to the first embodiment described above, the resin in the cavity 5 is compressed by the nesting block 4 through the cooling block 6, and the continuous V groove and the continuous arc are formed on both surfaces of the ultrathin molded product having a thickness of 0.25mm. Was transferred faithfully, and further, the nested block 4 was rapidly quenched by contact with the cooling block 6, and a highly accurate molded product could be obtained in a short time.

実施の形態2.
図3はこの発明の実施の形態2による射出成形金型を示す断面図、図4は図3の動作状態を示す断面図であり、図1および図2と同一部分には同一符号を付して重複説明を省略する。
この実施の形態2では、上記実施の形態1による金型本体2のパターン成形面(連続円弧面)2aをなくして入れ子ブロック4のパターン成形面(連続V溝)4aとの対向面を平坦面としたものである。したがって、この実施の形態2によれば、上記実施の形態1の金型本体2のパターン成形面2aによる効果を除いて上記実施の形態1と同様の作用効果を得ることができる。
Embodiment 2. FIG.
3 is a cross-sectional view showing an injection mold according to Embodiment 2 of the present invention, and FIG. 4 is a cross-sectional view showing the operation state of FIG. 3. The same parts as those in FIGS. Therefore, duplicate explanation is omitted.
In the second embodiment, the pattern forming surface (continuous arc surface) 2a of the mold body 2 according to the first embodiment is eliminated, and the surface facing the pattern forming surface (continuous V groove) 4a of the nesting block 4 is a flat surface. It is what. Therefore, according to the second embodiment, the same effects as those of the first embodiment can be obtained except for the effect of the pattern forming surface 2a of the mold body 2 of the first embodiment.

実施例2.
次に、上記実施の形態2による射出成形金型1によって、幅35mm、長さ43mm、厚さ0.4mmのシート状樹脂の片面に連続V溝状の微細パターンを形成した実験結果について説明する。
この実施例2においては、入れ子ブロック4のパターン成形面4aの連続V溝は、長辺と平行に高さ130μm、頂角60゜、ピッチ150μmで連続形成した。また、キャビティ5に充填する樹脂としては、環状ポリオレフィン系ポリマー樹脂の商品名ゼオノア(日本ゼオン株式会社)を用いた。そして、金型本体2は樹脂のガラス転移点よりも低い135℃に、かつ、入れ子ブロック4は樹脂のガラス転移点よりも高い145℃まで、それぞれのヒータ8,9で加熱昇温させた。また、冷却ブロック6の冷却配管10には30℃の水を冷却媒体として供給・循環させた。
Example 2
Next, an experimental result in which a continuous V-groove fine pattern is formed on one side of a sheet-like resin having a width of 35 mm, a length of 43 mm, and a thickness of 0.4 mm by the injection mold 1 according to the second embodiment will be described. .
In Example 2, the continuous V groove on the pattern forming surface 4a of the nesting block 4 was continuously formed parallel to the long side at a height of 130 μm, an apex angle of 60 °, and a pitch of 150 μm. Moreover, as resin filled in the cavity 5, the product name ZEONOR (Nippon Zeon Co., Ltd.) of cyclic polyolefin-type polymer resin was used. The mold body 2 was heated to 135 ° C. lower than the glass transition point of the resin, and the nested block 4 was heated to 145 ° C. higher than the glass transition point of the resin by the respective heaters 8 and 9. Further, water at 30 ° C. was supplied and circulated as a cooling medium to the cooling pipe 10 of the cooling block 6.

その状態で射出成形機から金型本体2のキャビティ5に樹脂を充填した。このときの樹脂温度は300℃に設定した。樹脂充填後、図4に示すように冷却ブロック6を油圧シリンダ7で押圧し入れ子ブロック4に接触させて当該入れ子ブロック4を上昇させることにより、キャビティ5内の樹脂を加圧した。その加圧と同時に入れ子ブロック4のヒータ9の電源を遮断した。これにより、入れ子ブロック4の昇温が抑止され、かつ、当該入れ子ブロック4と冷却ブロック6との接触による両者の熱交換が行われ、入れ子ブロック4の温度を金型本体2と同じガラス転移点以下の135℃まで下げることができた。そこで、金型1を開いて樹脂成型品を取り出した。その取り出し後に冷却ブロック6と入れ子ブロック4を後退させて入れ子ブロック4と冷却ブロック6を離した。次いで、入れ子ブロック4のヒータ9の電源を入れ、入れ子ブロック4を145℃まで昇温させ、再びキャビティ5に樹脂を充填し前述と同じ工程の成形を行った。   In this state, the resin was filled into the cavity 5 of the mold body 2 from the injection molding machine. The resin temperature at this time was set to 300 ° C. After filling the resin, the resin in the cavity 5 was pressurized by pressing the cooling block 6 with the hydraulic cylinder 7 to contact the nesting block 4 and raising the nesting block 4 as shown in FIG. Simultaneously with the pressurization, the power source of the heater 9 of the nesting block 4 was shut off. As a result, the temperature rise of the nested block 4 is suppressed, and heat exchange between the nested block 4 and the cooling block 6 is performed, so that the temperature of the nested block 4 is the same as the glass transition point of the mold body 2. The temperature could be lowered to the following 135 ° C. Therefore, the mold 1 was opened and the resin molded product was taken out. After the removal, the cooling block 6 and the nesting block 4 were moved backward to separate the nesting block 4 and the cooling block 6. Next, the heater 9 of the nesting block 4 was turned on, the temperature of the nesting block 4 was raised to 145 ° C., the cavity 5 was filled again with resin, and the same process as described above was performed.

以上説明した実施例2によれば、冷却ブロック6を介して入れ子ブロック4でキャビティ5内の樹脂が圧縮されて、厚さ0.4mmの超薄肉成形品の片面に連続V溝が忠実に転写され、さらには入れ子ブロック4が冷却ブロック6との接触によって迅速に急冷され、高精度の成形品を短時間で得ることができた。   According to the second embodiment described above, the resin in the cavity 5 is compressed by the nesting block 4 through the cooling block 6, and the continuous V-groove is faithfully formed on one surface of the ultra-thin molded product having a thickness of 0.4 mm. Then, the nest block 4 was rapidly cooled by contact with the cooling block 6, and a highly accurate molded product could be obtained in a short time.

実施例3.
次に、上記実施の形態2による射出成形金型1によって、直径26mm、厚さ1.3mmの円板状をなしたシート状樹脂の片面に連続V溝状の微細パターンを形成した実験結果について説明する。
この実施例2において、入れ子ブロック4のパターン成形面4aは、径方向に高さ1〜20μm、頂角90゜でピッチ2〜40μmのV溝を周方向に形成した。また、キャビティ5に充填する樹脂としては、ポリカーボネート樹脂の商品名ユーピロンH4000(三菱エンジニアリングプラスチック株式会社)を用いた。そして、金型本体2は樹脂のガラス転移点よりも低い145℃に、かつ、入れ子ブロック4は樹脂のガラス転移点よりも高い155℃まで、それぞれのヒータ8,9で加熱昇温させた。また、冷却ブロック6の冷却配管10には30℃の水を冷却媒体として供給・循環させた。
Example 3
Next, an experimental result of forming a continuous V-groove fine pattern on one side of a sheet-like resin having a diameter of 26 mm and a thickness of 1.3 mm by the injection mold 1 according to the second embodiment. explain.
In Example 2, the pattern forming surface 4a of the nesting block 4 was formed with V grooves having a height of 1 to 20 μm in the radial direction, a vertex angle of 90 ° and a pitch of 2 to 40 μm in the circumferential direction. Further, as the resin filled in the cavity 5, polycarbonate resin product name Iupilon H4000 (Mitsubishi Engineering Plastics) was used. The mold body 2 was heated by the heaters 8 and 9 to 145 ° C. lower than the glass transition point of the resin, and the nested block 4 was heated to 155 ° C. higher than the glass transition point of the resin. Further, water at 30 ° C. was supplied and circulated as a cooling medium to the cooling pipe 10 of the cooling block 6.

その状態で射出成形機から金型本体2のキャビティ5に樹脂を充填した。このときの樹脂温度は300℃に設定した。樹脂充填後、上記実施例1の場合と同様に冷却ブロック6を油圧シリンダ7で押圧し入れ子ブロック4に接触させて当該入れ子ブロック4を上昇させることにより、キャビティ5内の樹脂を加圧した。その加圧と同時に入れ子ブロック4のヒータ9の電源を遮断した。これにより、入れ子ブロック4の昇温が抑止され、かつ、当該入れ子ブロック4と冷却ブロック6との接触による両者の熱交換が行われ、入れ子ブロック4の温度を金型本体2と同じガラス転移点以下の145℃まで下げることができた。そこで、金型1を開いて樹脂成型品を取り出した。その取り出し後に冷却ブロック6と入れ子ブロック4を後退させて入れ子ブロック4と冷却ブロック6を離した。次いで、入れ子ブロック4のヒータ9の電源を入れ、入れ子ブロック4を155℃まで昇温させ、再びキャビティ5に樹脂を充填し前述と同じ工程の成形を行った。   In this state, the resin was filled into the cavity 5 of the mold body 2 from the injection molding machine. The resin temperature at this time was set to 300 ° C. After filling the resin, the resin in the cavity 5 was pressurized by pressing the cooling block 6 with the hydraulic cylinder 7 and bringing it into contact with the nesting block 4 and raising the nesting block 4 in the same manner as in Example 1 above. Simultaneously with the pressurization, the power source of the heater 9 of the nesting block 4 was shut off. As a result, the temperature rise of the nested block 4 is suppressed, and heat exchange between the nested block 4 and the cooling block 6 is performed, so that the temperature of the nested block 4 is the same as the glass transition point of the mold body 2. The temperature could be lowered to the following 145 ° C. Therefore, the mold 1 was opened and the resin molded product was taken out. After the removal, the cooling block 6 and the nesting block 4 were moved backward to separate the nesting block 4 and the cooling block 6. Next, the heater 9 of the nesting block 4 was turned on, the temperature of the nesting block 4 was raised to 155 ° C., the cavity 5 was filled with resin again, and the same process as described above was performed.

以上説明した実施例3によれば、冷却ブロック6を介して入れ子ブロック4でキャビティ5内の樹脂が圧縮されて、厚さ0.4mmの超薄肉成形品の片面に連続V溝が忠実に転写され、さらには入れ子ブロック4が冷却ブロック6との接触によって迅速に急冷され、高精度の成形品を短時間で得ることができた。   According to the third embodiment described above, the resin in the cavity 5 is compressed by the nesting block 4 through the cooling block 6, and the continuous V-groove is faithfully formed on one surface of the ultra-thin molded product having a thickness of 0.4 mm. Then, the nest block 4 was rapidly cooled by contact with the cooling block 6, and a highly accurate molded product could be obtained in a short time.

この発明の実施の形態1による射出成形金型を示す断面図である。It is sectional drawing which shows the injection mold by Embodiment 1 of this invention. 図1の動作状態を示す断面図である。It is sectional drawing which shows the operation state of FIG. この発明の実施の形態2による射出成形金型を示す断面図である。It is sectional drawing which shows the injection mold by Embodiment 2 of this invention. 図3の動作状態を示す断面図である。It is sectional drawing which shows the operation state of FIG.

符号の説明Explanation of symbols

1 射出成形金型、2 金型本体、2a パターン成形面、3 型枠、3a 内段部、4 入れ子ブロック、4a パターン成形面、4b 鍔部、5 キャビティ、6 冷却ブロック、7 駆動手段、8,9 ヒータ(加熱手段)、10 冷却配管(冷却手段)、11,12,12a 断熱層。   DESCRIPTION OF SYMBOLS 1 Injection mold 2 Mold body 2a Pattern molding surface 3 Mold frame 3a Inner step part 4 Nest block 4a Pattern molding surface 4b Eaves part 5 Cavity 6 Cooling block 7 Driving means 8 , 9 Heater (heating means), 10 Cooling pipe (cooling means), 11, 12, 12a Heat insulation layer.

Claims (4)

凹部を有する金型本体と、その凹部に摺動自在に嵌合保持され当該凹部内にキャビティを形成する入れ子ブロックとを備え、前記入れ子ブロックを被成形樹脂のガラス転移点以上に加熱して前記キャビティ内に充填した樹脂を前記入れ子ブロックで圧縮成形する射出成形金型において、前記入れ子ブロックのキャビティ側と反対側の端面に接離可能に独立して配置された冷却ブロックと、この冷却ブロックを前記入れ子ブロックに対する接離方向に駆動する駆動手段とを備えたことを特徴とする射出成形金型。   A mold body having a recess, and a nesting block that is slidably fitted and held in the recess to form a cavity in the recess, and the nesting block is heated to a temperature above the glass transition point of the molding resin, In an injection mold for compressing and molding a resin filled in a cavity with the insert block, a cooling block that is arranged independently on and away from the end surface of the insert block opposite to the cavity side, and this cooling block An injection mold characterized by comprising a driving means for driving in the direction of contact with and away from the insert block. キャビティを挟んで対向する金型本体と入れ子ブロックとの対向面における少なくとも一方の面が連続凹凸面状のパターン形成面として形成されていることを特徴とする請求項1記載の射出成形金型。   2. The injection mold according to claim 1, wherein at least one of the opposing surfaces of the mold body and the insert block facing each other with the cavity interposed therebetween is formed as a pattern forming surface having a continuous uneven surface shape. 金型本体の開放端部にはスカート状の型枠が取り付けられ、その型枠の内周壁面と入れ子ブロックおよび冷却ブロックとの間には断熱層が設けられていることを特徴とする請求項1または請求項2記載の射出成形金型。   A skirt-shaped mold is attached to the open end of the mold body, and a heat insulating layer is provided between the inner peripheral wall surface of the mold and the nesting block and the cooling block. 3. An injection mold according to claim 1 or claim 2. 入れ子ブロックには加熱手段が埋設され、この加熱手段は、冷却ブロックによる前記入れ子ブロックの押圧移動時に当該入れ子ブロックの加熱を停止する温度制御手段に接続されていることを特徴とする請求項1から請求項3のうちのいずれか1項記載の射出成形金型。   The heating means is embedded in the nesting block, and the heating means is connected to temperature control means for stopping heating of the nesting block when the nesting block is pressed and moved by the cooling block. The injection mold according to claim 3.
JP2004035264A 2004-02-12 2004-02-12 Injection molding mold Pending JP2005225048A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004035264A JP2005225048A (en) 2004-02-12 2004-02-12 Injection molding mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004035264A JP2005225048A (en) 2004-02-12 2004-02-12 Injection molding mold

Publications (1)

Publication Number Publication Date
JP2005225048A true JP2005225048A (en) 2005-08-25

Family

ID=35000135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004035264A Pending JP2005225048A (en) 2004-02-12 2004-02-12 Injection molding mold

Country Status (1)

Country Link
JP (1) JP2005225048A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008001045A (en) * 2006-06-26 2008-01-10 Sumitomo Heavy Ind Ltd Resin sealing device and resin sealing method
US8142706B2 (en) 2008-07-25 2012-03-27 Lg Electronics Inc. Device and method for injection molding product having hydrophobic pattern
CN109159353A (en) * 2018-08-06 2019-01-08 华东交通大学 A kind of bioengineering gene culture dish processing cooling and demolding device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008001045A (en) * 2006-06-26 2008-01-10 Sumitomo Heavy Ind Ltd Resin sealing device and resin sealing method
US8142706B2 (en) 2008-07-25 2012-03-27 Lg Electronics Inc. Device and method for injection molding product having hydrophobic pattern
CN109159353A (en) * 2018-08-06 2019-01-08 华东交通大学 A kind of bioengineering gene culture dish processing cooling and demolding device

Similar Documents

Publication Publication Date Title
EP1946903B1 (en) Injection molding apparatus
JP2006256078A (en) Press molding apparatus, press molding method using the apparatus, and resin molding formed by the apparatus
CN102744813A (en) Production method for composite type diffractive optical element, and composite type diffractive optical element
JP2005225048A (en) Injection molding mold
JP4563092B2 (en) Thermoplastic press forming apparatus and press forming method
JP2009255468A (en) Two-color molding die and two-color molding method
JP2006255900A (en) Heat press molding method and hot press molding apparatus
JPWO2015151690A1 (en) Optical element molding die set and optical element manufacturing method
CN1704367A (en) Model forming device and method for optical glass lens
JP5479704B2 (en) Two-color molded product and its manufacturing method
TWI222925B (en) Hot-embossing forming method featuring fast heating/cooling and uniform pressurization
JP3578725B2 (en) Method for manufacturing wedge-shaped light guide plate whose thickness gradually decreases from one end to the other end
US20140264983A1 (en) Systems And Methods For Light Lens Hot Stamping
JP2008260295A (en) Press molding machine of thermoplastic resin and press molding method
US20090261489A1 (en) Method for making lenses
JP2005074700A (en) Method and apparatus for molding resin molded product
JP6016523B2 (en) Plastic optical component press mold and plastic optical component manufacturing method
JPH06271323A (en) Optical element forming mold
JP2001047456A (en) Device and method for manufacturing fresnel lens
JP6535470B2 (en) Injection mold
JP2017015818A (en) Method and apparatus for molding optical member
JP2017217781A (en) Container for vulcanizing tire
JP2008156177A (en) Method for manufacturing optical element
JP2008247644A (en) Optical element molding apparatus and heating method using the apparatus
JP2006103106A (en) Tire vulcanizing mold

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061012

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071016

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080714

A977 Report on retrieval

Effective date: 20090126

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20090203

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20090602

Free format text: JAPANESE INTERMEDIATE CODE: A02