JP2005224093A - Pulse width modulation inverter and its control method - Google Patents

Pulse width modulation inverter and its control method Download PDF

Info

Publication number
JP2005224093A
JP2005224093A JP2004295844A JP2004295844A JP2005224093A JP 2005224093 A JP2005224093 A JP 2005224093A JP 2004295844 A JP2004295844 A JP 2004295844A JP 2004295844 A JP2004295844 A JP 2004295844A JP 2005224093 A JP2005224093 A JP 2005224093A
Authority
JP
Japan
Prior art keywords
carrier
signal
frequency signal
frequency
pulse width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004295844A
Other languages
Japanese (ja)
Other versions
JP4576970B2 (en
Inventor
Katsuyuki Watanabe
勝之 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2004295844A priority Critical patent/JP4576970B2/en
Publication of JP2005224093A publication Critical patent/JP2005224093A/en
Application granted granted Critical
Publication of JP4576970B2 publication Critical patent/JP4576970B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problems of a pulse width modulation inverter that switching of a carrier frequency signal, at a time when the number of pulses contained in the fundamental wave component of an output waveform is small, causes the current ripple to change suddenly; switching of the carrier frequency in a low frequency area becomes frequent, resulting in larger magnetic noise. <P>SOLUTION: When the number of pulses at intervals of a half cycle contained in the fundamental wave component of an output waveform is either less than or not more than a preset optional value, a reference carrier frequency signal fbb, a reference wave modulation frequency signal fs, and one or plural numbers of computing element signals for frequency correction are input, the carrier setting frequency signal fbc of asynchronous pulse width modulation for conducting appropriate frequency correction is output. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明はパルス幅変調インバータ装置に関し、基本波変調周波数信号fsとキャリア周波数信号fbとの振幅比較に基づくパルス幅変調により、直流電力から交流電力に電力変換することが出来るパルス幅変調インバータ装置及びその制御方法に関するものである。   The present invention relates to a pulse width modulation inverter device, and relates to a pulse width modulation inverter device capable of converting power from DC power to AC power by pulse width modulation based on amplitude comparison between a fundamental wave modulation frequency signal fs and a carrier frequency signal fb. It relates to the control method.

パルス幅変調インバータ装置の出力波形を制御する方法は、出力波形の基本波成分を構成する基本波変調周波数信号fsと出力波形のパルス幅を構成するキャリア周波数信号fbの振幅の大きさを比較した結果から、量子化されパルス幅が変調した出力波形を得る。このパルス幅変調による出力波形制御を行う時に、基本波変調周波数信号fsとキャリア周波数信号fbが同期する同期式パルス幅変調制御と同期しない非同期式パルス幅変調制御がある。   In the method of controlling the output waveform of the pulse width modulation inverter device, the amplitudes of the fundamental frequency modulation frequency signal fs constituting the fundamental wave component of the output waveform and the carrier frequency signal fb constituting the pulse width of the output waveform are compared. From the result, an output waveform quantized and modulated in pulse width is obtained. When performing output waveform control by this pulse width modulation, there is an asynchronous pulse width modulation control which is not synchronized with a synchronous pulse width modulation control in which the fundamental wave modulation frequency signal fs and the carrier frequency signal fb are synchronized.

図7は従来技術におけるパルス幅変調インバータ装置の回路構成図で、主回路構成と制御回路構成に分けて以下に説明する。   FIG. 7 is a circuit configuration diagram of a pulse width modulation inverter device in the prior art, which will be described below by dividing it into a main circuit configuration and a control circuit configuration.

主回路構成は交流電源(例えば図中に示す三相交流電源)1を順変換回路(例えば図中に示すダイオード整流による順変換回路)2に接続し直流電力を得て、この直流電力を逆変換回路(例えば図中に示すIGBTインバータによる逆変換回路)4により任意の電圧および周波数の交流電力を負荷設備(商用電源や電動機など)5に出力する。また、順変換回路2の出力波形に含まれる脈動分を少なくし平滑にするため、直流回路部分に直流コンデンサ3を回路と並列に接続している。なお、直流電力を得る方法は、上記に記載の交流電源1から順変換回路2を経て直流電力を得る方法に限らず、図示しない蓄電池及び大容量コンデンサなどの蓄電設備または、直流発電機や太陽光発電設備などの直流発電設備でも良い。   The main circuit configuration is that an AC power source (for example, a three-phase AC power source shown in the figure) 1 is connected to a forward converter circuit (eg, a forward converter circuit by diode rectification shown in the figure) 2 to obtain DC power and this DC power is reversed A conversion circuit (for example, an inverse conversion circuit using an IGBT inverter shown in the figure) 4 outputs AC power having an arbitrary voltage and frequency to a load facility (commercial power supply, electric motor, etc.) 5. In order to reduce and smooth the pulsation contained in the output waveform of the forward conversion circuit 2, a DC capacitor 3 is connected in parallel with the circuit in the DC circuit portion. The method for obtaining DC power is not limited to the method for obtaining DC power from the AC power source 1 described above via the forward conversion circuit 2, but also power storage equipment such as a storage battery and a large capacity capacitor (not shown), a DC generator, DC power generation equipment such as photovoltaic power generation equipment may be used.

一方、制御回路構成は任意の周波数のキャリア周波数信号fbをキャリア信号発生回路10に出力し、任意の波形形状となるキャリア波形信号fbdをコンパレータ回路12a、12b,12cに出力する。また、任意の周波数の基本波変調周波数信号fsを電圧−周波数出力特性設定器(以下V/F設定器)8と位相積分器9に出力する。V/F設定器8では入力した基本波変調周波数信号fsに応じるようにあらかじめ設定した出力電圧設定信号Vrefを出力し、位相積分器9では入力した基本波変調周波数信号fsを三相平衡となる位相設定信号ヨrefとして三相基本波発生部14に出力して、各相の基本波変調周波数信号fsu,fsv,fswを出力する。前記出力電圧設定信号Vrefと各相の基本波変調周波数信号fsu,fsv,fswの積信号を乗算器13a,13b,13cで求め、この積信号と前記キャリア波形信号fbdの振幅比較を各相のコンパレータ12a,12b,12cで行いパルス幅変調信号とする。このパルス幅変調信号をデッドタイム作成回路11でデッドタイムを加味した半導体素子ドライブ信号(Gu,Gx,Gv,Gy,Gw,Gz)として各半導体素子(15a,15b,15c,15d,15e,15f)に出力する。   On the other hand, the control circuit configuration outputs a carrier frequency signal fb having an arbitrary frequency to the carrier signal generation circuit 10, and outputs a carrier waveform signal fbd having an arbitrary waveform shape to the comparator circuits 12a, 12b, and 12c. Further, a fundamental wave modulation frequency signal fs having an arbitrary frequency is output to a voltage-frequency output characteristic setting device (hereinafter referred to as V / F setting device) 8 and a phase integrator 9. The V / F setting unit 8 outputs an output voltage setting signal Vref set in advance so as to correspond to the inputted fundamental wave modulation frequency signal fs, and the phase integrator 9 makes the inputted fundamental wave modulation frequency signal fs three-phase balanced. The phase setting signal yoref is output to the three-phase fundamental wave generator 14 to output the fundamental wave modulation frequency signals fsu, fsv, fsw of each phase. The product signals of the output voltage setting signal Vref and the fundamental wave modulation frequency signals fsu, fsv, fsw of each phase are obtained by multipliers 13a, 13b, 13c, and the amplitude comparison of this product signal and the carrier waveform signal fbd is performed for each phase. Performed by the comparators 12a, 12b, and 12c to obtain a pulse width modulation signal. Each of the semiconductor elements (15a, 15b, 15c, 15d, 15e, 15f) is obtained as a semiconductor element drive signal (Gu, Gx, Gv, Gy, Gw, Gz) in which the pulse width modulation signal is added to the dead time generation circuit 11 in consideration of the dead time. ).

続いて上記の従来式パルス幅変調制御の動作について述べる。同期式パルス幅変調制御は基本波変調周波数信号fsとキャリア周波数信号fbが同期しているため、出力波形の基本波成分は半周期毎に波形対称となり、接続する負荷(商用電源または電動機など)が三相交流の場合は、出力波形を三相平衡とするために基本波変調周波数信号fsに対するキャリア周波数信号fbの比(以下fb/fsの比)を3の奇数倍整数比としている。このため、基本波変調周波数信号fsの周波数が高くなるに従いスイッチング周波数も高くなり、半導体素子が許容するスイッチング周波数、または回路設計上や接続する負荷の制限によりあらかじめ設定したスイッチング周波数(以下任意のスイッチング周波数)を超える場合は、キャリア周波数信号fbをfb/fsの比が3の奇数倍整数比となる周波数に下げて出力波形のパルス数を減らしている。   Next, the operation of the conventional pulse width modulation control will be described. In the synchronous pulse width modulation control, since the fundamental frequency modulation frequency signal fs and the carrier frequency signal fb are synchronized, the fundamental wave component of the output waveform is symmetrical every half cycle, and the load to be connected (such as a commercial power supply or an electric motor) Is a three-phase alternating current, the ratio of the carrier frequency signal fb to the fundamental wave modulation frequency signal fs (hereinafter referred to as the ratio of fb / fs) is set to an odd multiple integer ratio of 3 in order to make the output waveform three-phase balanced. For this reason, as the frequency of the fundamental wave modulation frequency signal fs increases, the switching frequency also increases. The switching frequency allowed by the semiconductor element, or the switching frequency set in advance by the circuit design and the limitation of the load to be connected (hereinafter referred to as arbitrary switching frequency). In the case of exceeding the frequency), the carrier frequency signal fb is lowered to a frequency at which the ratio of fb / fs becomes an odd multiple integer ratio of 3 to reduce the number of pulses of the output waveform.

一方、非同期式パルス幅変調制御は基本波変調周波数信号fsに関係なくキャリア周波数信号fbが一定であるため、制御回路の構成が簡単で回路規模が比較的小さくなること、及び出力波形の基本波成分が低周波領域の時に発生する磁気騒音の音色の変化が少ない。
特開平9−261966号公報 電気学会技術報告 第635号「PWMインバータ制御方式の最新技術動向」
On the other hand, in the asynchronous pulse width modulation control, since the carrier frequency signal fb is constant regardless of the fundamental wave modulation frequency signal fs, the configuration of the control circuit is simple and the circuit scale is relatively small, and the fundamental wave of the output waveform There is little change in the timbre of magnetic noise generated when the component is in the low frequency region.
JP-A-9-261966 IEEJ Technical Report No.635 “Latest Technical Trend of PWM Inverter Control System”

上記の従来技術において、同期式パルス幅変調制御は出力波形の基本波成分における波形対称性及び三相の平衡が保証され、非同期式パルス幅変調制御は出力波形の基本波成分が低周波領域時に発生する磁気騒音が低減出来るなど優れた利点を有するが次のような問題がある。   In the above prior art, synchronous pulse width modulation control guarantees waveform symmetry and three-phase balance in the fundamental component of the output waveform, and asynchronous pulse width modulation control ensures that the fundamental component of the output waveform is in the low frequency region. Although it has excellent advantages such as reduction of generated magnetic noise, it has the following problems.

パルス幅変調インバータ装置において、同期式パルス幅変調制御は基本波変調周波数信号fsの変化に伴い、fb/fsの比が3の奇数倍整数比となるキャリア周波数信号fbに適宜切り替えて、任意のスイッチング周波数を超えない周波数制御をしている。しかし、出力波形の基本波成分に含まれる半周期毎のパルス数が少ない時にキャリア周波数信号fbの切り替えを行うと、パルス幅の変化が大きく電流リップルが急変し、接続する負荷の状態によっては過電流保護継電器などの保護継電器類が不用意に動作して該装置が停止することがある。また、出力波形の基本波成分が低周波領域の時は、低次高調波の発生や制御精度の低下を抑制するためキャリア周波数信号fbを上げているがfb/fsの比が大きく、僅かな基本波変調周波数信号fsの上昇でキャリア周波数信号fbが大きく上昇するため、キャリア周波数信号fbの切り替えが頻繁になり周囲への磁気騒音が大きく非常に耳障りとなる。   In the pulse width modulation inverter device, the synchronous pulse width modulation control is appropriately switched to a carrier frequency signal fb having an odd multiple integer ratio of 3 with a ratio of fb / fs as the fundamental wave modulation frequency signal fs changes. The frequency is controlled so as not to exceed the switching frequency. However, when the carrier frequency signal fb is switched when the number of pulses per half cycle contained in the fundamental wave component of the output waveform is small, the change in pulse width is large and the current ripple changes suddenly, which may be excessive depending on the state of the connected load. Protective relays such as a current protective relay may inadvertently operate and the device may stop. Further, when the fundamental wave component of the output waveform is in the low frequency region, the carrier frequency signal fb is raised to suppress the generation of low-order harmonics and the decrease in control accuracy, but the ratio of fb / fs is large and slightly Since the carrier frequency signal fb greatly increases with the increase of the fundamental wave modulation frequency signal fs, the carrier frequency signal fb is frequently switched, and the magnetic noise to the surroundings is large, which is very disturbing.

一方、非同期式パルス幅変調制御は、fb/fsの比が整数比以外では半周期毎の波形対称性が保証されず、且つ接続する負荷が三相交流の場合はfb/fsの比が3の奇数倍整数比以外では三相の平衡が保証されない。このため、出力波形の基本波成分に含まれる半周期毎のパルス数が少ない時は、波形対称性や三相平衡度の悪化が顕著となり、出力波形に脈動分を多く含むことや出力波形の基本波成分が不平衡になる。これに伴い接続する負荷の特性低下または故障や破損、あるいは該装置の接地線を流れる漏れ電流が増加し、漏電検知器などの保護継電器類が動作して不用意に該装置が停止することがある。また、fb/fs<20程度で整数に近く、且つ出力波形の基本波成分が高周波領域での運転時には、遅い周期のうねり音となる磁気騒音が発生する。   On the other hand, in the asynchronous pulse width modulation control, the waveform symmetry for each half cycle is not guaranteed unless the ratio of fb / fs is an integer ratio, and the ratio of fb / fs is 3 when the connected load is a three-phase alternating current. Other than the odd multiple ratio, three-phase equilibrium is not guaranteed. For this reason, when the number of pulses per half cycle contained in the fundamental wave component of the output waveform is small, the waveform symmetry and the three-phase balance deteriorate significantly, and the output waveform contains a large amount of pulsation and the output waveform The fundamental wave component becomes unbalanced. As a result, the characteristics of the connected load may be degraded, failure or damage, or the leakage current flowing through the grounding wire of the device will increase, and protective relays such as a leakage detector will operate and the device will stop carelessly. is there. Also, when fb / fs <20 and close to an integer, and the fundamental wave component of the output waveform is operated in a high frequency region, magnetic noise is generated that becomes a swell sound with a slow cycle.

この発明は、上記の事情に鑑みなされたもので、パルス幅変調インバータ装置における出力波形の制御方法に優れ、キャリア周波数信号fbの切り替えに伴うパルス幅の変化や出力波形の脈動が少なく、且つ出力波形の基本波成分がほぼ平衡であることや高周波領域の時に発生する遅い周期のうねり音となる磁気騒音が抑制されることで、保護継電器類の動作による不用意な該装置の停止や磁気騒音を抑制することにより、接続した負荷に安定した電力供給が出来るパルス幅変調インバータ装置及びその制御方法を提供することを課題とする。   The present invention has been made in view of the above circumstances, and is excellent in an output waveform control method in a pulse width modulation inverter device, has little pulse width change and output waveform pulsation due to switching of the carrier frequency signal fb, and outputs. By suppressing the magnetic noise, which is a swell sound with a slow period, generated when the fundamental component of the waveform is almost balanced, and when the protective relays are inadvertently stopped, the magnetic noise It is an object of the present invention to provide a pulse width modulation inverter device that can stably supply power to a connected load and a control method thereof.

上記の課題を解決するための本発明の第1は、基本波変調周波数信号fsとキャリア周波数信号fbとの振幅比較に基づくパルス幅変調により直流電力から交流電力に電力変換することが出来るパルス幅変調インバータ装置において、
前記の基本波変調周波数信号fsと基準キャリア周波数信号fbb及び周波数補正のための1つまたは複数からなる演算要素信号とを入力して、周波数補正を行うキャリア周波数演算部を設け、パルス幅変調インバータ装置の出力波形の基本波成分に含まれる半周期毎のパルス数があらかじめ設定した任意の値未満または以下となる時に、適宜周波数補正を行う非同期式のパルス幅変調制御とすることを特徴としたものである。
本発明の第2は、前記パルス幅変調インバータ装置の出力波形の基本波成分に含まれる半周期毎のパルス数があらかじめ設定した任意の値未満または以下となる時に、キャリア周波数演算部に基準キャリア周波数信号fbb、基本波変調周波数信号fs、キャリア補正周波数信号fbo及び公約数補正値flgを入力して、適宜周波数補正を行う非同期式のパルス幅変調となるキャリア設定周波数信号fbcを次式により演算することを特徴としたものである。
A first aspect of the present invention for solving the above problems is a pulse width capable of converting power from DC power to AC power by pulse width modulation based on amplitude comparison between the fundamental wave modulation frequency signal fs and the carrier frequency signal fb. In the modulation inverter device,
The fundamental frequency modulation frequency signal fs, the reference carrier frequency signal fbb, and one or a plurality of calculation element signals for frequency correction are input, a carrier frequency calculation unit for performing frequency correction is provided, and a pulse width modulation inverter Asynchronous pulse width modulation control that appropriately performs frequency correction when the number of pulses per half cycle included in the fundamental wave component of the output waveform of the device is less than or less than a preset arbitrary value Is.
According to a second aspect of the present invention, when the number of pulses per half cycle included in the fundamental wave component of the output waveform of the pulse width modulation inverter device is less than or less than a preset arbitrary value, By inputting the frequency signal fbb, the fundamental wave modulation frequency signal fs, the carrier correction frequency signal fbo, and the common divisor correction value flg, the carrier setting frequency signal fbc for asynchronous pulse width modulation for performing frequency correction as appropriate is calculated by the following equation: It is characterized by doing.

fbc=INT(fbb/fs)・fs+fbo+flg ・・・(1)
INT(fs/fbo)・fbo=fsの時、flg=1 ・・・(2)
INT(fs/fbo)・fbo≠fsの時、flg=0 ・・・(3)
本発明の第3は、前記パルス幅変調インバータ装置の出力波形の基本波成分に含まれる半周期毎のパルス数があらかじめ設定した任意の値未満または以下となる時に、キャリア周波数演算部に基本波変調周波数信号fs、基準キャリア周波数信号fbb及び基本波変調周波数信号fsに対するキャリア補正周波数信号fboの比率(fbo/fs)を固定値としたキャリア補正周波数係数kosを入力して、適宜周波数補正を行う非同期式のパルス幅変調となるキャリア設定周波数信号fbcを次式により演算することを特徴としたものである。
fbc = INT (fbb / fs) .fs + fbo + flg (1)
INT (fs / fbo) · when fbo = fs, flg = 1 (2)
When INT (fs / fbo) · fbo ≠ fs, flg = 0 (3)
According to a third aspect of the present invention, when the number of pulses per half cycle included in the fundamental wave component of the output waveform of the pulse width modulation inverter device is less than or less than a predetermined value, the fundamental frequency is input to the carrier frequency calculation unit. A carrier correction frequency coefficient kos with a fixed value (fbo / fs) of the carrier correction frequency signal fbo to the modulation frequency signal fs, the reference carrier frequency signal fbb, and the fundamental wave modulation frequency signal fs is input and frequency correction is performed as appropriate. The carrier setting frequency signal fbc for asynchronous pulse width modulation is calculated by the following equation.

fbc=INT(fbb/fs)・fs+{INT(fs・kos)+1} ・・・(4)
fbo=INT(fs・kos) ・・・(5)
本発明の第4は、前記キャリア周波数演算部の出力側にキャリア平滑部を設け、このキャリア平滑部によって前記キャリア設定周波数信号fbcを滑らかにすることを特徴としたものである。
本発明の第5は、前記キャリア平滑部は、キャリア設定周波数信号fbcの単位ステップ入力に対する変化率制限処理を施すことを特徴としたものである。
本発明の第6は、前記キャリア平滑部は、キャリア設定周波数信号fbcに対して一次遅れフィルタ処理を施すことを特徴としたものである。
本発明の第7は、基本波変調周波数信号とキャリア周波数信号との振幅比較に基づくパルス幅変調により直流電力から交流電力に電力変換するパルス幅変調インバータ装置において、
前記基本波変調周波数信号と基準キャリア周波数信号及び補正のための1つまたは複数からなる演算要素であるキャリア補正周波数信号とを入力してキャリア設定周波数信号を生成するキャリア周波数演算部を設け、このキャリア周波数演算部の出力信号をキャリア信号発生部を介してキャリア波形信号とするよう構成したことを特徴としたものである。
本発明の第8は、前記キャリア周波数演算部は、基本波変調周波数信号と基準キャリア周波数信号との比信号を求める除算器と、この比信号の小数点以下を切り捨てて整数信号を求める整数出力部と、この整数出力部からの整数信号と前記基準キャリア周波数信号との積信号を得る乗算器と、前記キャリア補正周波数信号と判定演算値で定まる公約数補正値flgとを加算して和信号1を求める第1の加算器と、この和信号1と前記乗算器による積信号とを加算して和信号2を得る第2の加算器とで構成したことを特徴としたものである。
本発明の第9は、前記キャリア周波数演算部は、基本波変調周波数信号と基準キャリア周波数信号との比信号を求める除算器と、この比信号の小数点以下を切り捨てて整数信号を求める第1の整数出力部と、この整数出力部からの整数信号と前記基準キャリア周波数信号との積信号を得る第1の乗算器と、前記基本波変調周波数信号と予め決められたキャリア補正周波数係数との積信号を得る第2の乗算器と、この積信号の小数点以下を切り捨てて整数信号を求める第2の整数出力部と、この整数出力部からの出力信号と定数1を加算する第1の加算器と、この加算器の出力と前記第1の乗算器との出力信号とを加算する第2の加算器とで構成したことを特徴とした請求項8記載のパルス幅変調インバータ装置。
本発明の第10は、前記キャリア周波数演算器の出力側に、キャリア設定周波数信号の単位ステップ入力に対する変化率制限処理機能若しくは一次遅れフィルタ処理機能を有するキャリア平滑部を設け、この平滑部にて得られたキャリア平滑設定周波数信号をキャリア信号発生部に出力するよう構成したものである。
fbc = INT (fbb / fs) · fs + {INT (fs · kos) +1} (4)
fbo = INT (fs · kos) (5)
A fourth aspect of the present invention is characterized in that a carrier smoothing unit is provided on the output side of the carrier frequency calculation unit, and the carrier setting frequency signal fbc is smoothed by the carrier smoothing unit.
A fifth aspect of the present invention is characterized in that the carrier smoothing unit performs a change rate limiting process on the unit step input of the carrier set frequency signal fbc.
A sixth aspect of the present invention is characterized in that the carrier smoothing unit performs a first-order lag filter process on the carrier set frequency signal fbc.
A seventh aspect of the present invention is a pulse width modulation inverter device that converts power from DC power to AC power by pulse width modulation based on amplitude comparison between a fundamental frequency modulation frequency signal and a carrier frequency signal.
A carrier frequency calculation unit for generating a carrier setting frequency signal by inputting the fundamental wave modulation frequency signal, a reference carrier frequency signal, and a carrier correction frequency signal which is a calculation element consisting of one or more for correction, is provided. The output signal of the carrier frequency calculation unit is configured to be a carrier waveform signal via the carrier signal generation unit.
According to an eighth aspect of the present invention, the carrier frequency calculation unit includes a divider that obtains a ratio signal between the fundamental modulation frequency signal and the reference carrier frequency signal, and an integer output unit that obtains an integer signal by rounding off the decimal part of the ratio signal. And a multiplier for obtaining a product signal of the integer signal from the integer output unit and the reference carrier frequency signal, and a common signal 1 obtained by adding the carrier correction frequency signal and the common divisor correction value flg determined by the determination calculation value. And a second adder that obtains a sum signal 2 by adding the sum signal 1 and the product signal of the multiplier.
According to a ninth aspect of the present invention, the carrier frequency calculation unit includes a divider that obtains a ratio signal between the fundamental wave modulation frequency signal and the reference carrier frequency signal, and a first that obtains an integer signal by rounding off the decimal part of the ratio signal. An integer output unit; a first multiplier for obtaining a product signal of the integer signal from the integer output unit and the reference carrier frequency signal; and a product of the fundamental modulation frequency signal and a predetermined carrier correction frequency coefficient A second multiplier that obtains a signal; a second integer output unit that obtains an integer signal by truncating the fractional part of the product signal; and a first adder that adds an output signal from the integer output unit and a constant 1 And a second adder for adding the output of the adder and the output signal of the first multiplier.
According to a tenth aspect of the present invention, a carrier smoothing unit having a change rate limiting processing function or a first-order lag filter processing function for a unit step input of a carrier set frequency signal is provided on the output side of the carrier frequency calculator. The obtained carrier smoothing set frequency signal is output to the carrier signal generator.

以上述べたように、本発明のパルス幅変調インバータ装置及びその制御方法によれば、キャリア周波数fbの切り替えによる周波数制限が無く、適宜周波数補正をした非同期式のパルス幅変調制御となるキャリア設定周波数信号fbcにより、出力波形の基本波成分に含まれる半周期毎のパルス数が少ない時に、キャリア周波数信号fbを切り替えてもパルス幅の変化が少ないことにより、電流リップルの急変を抑制できるとともに、出力波形の基本波成分の波形対称性や三相平衡度は複数周期の平均で考えれば確保される。また、これらの効果により高周波領域の時に発生する遅い周期のうなり音による磁気騒音を抑制できることや接地線を流れる漏れ電流を抑制することも出来る。従って、上記に記載された複数の効果によって、該装置に接続した負荷に安定した電力供給を実現することが出来る。   As described above, according to the pulse width modulation inverter device and the control method thereof of the present invention, there is no frequency limitation due to switching of the carrier frequency fb, and the carrier set frequency that is the asynchronous pulse width modulation control with appropriate frequency correction. When the number of pulses per half cycle contained in the fundamental wave component of the output waveform is small due to the signal fbc, the change in pulse width is small even when the carrier frequency signal fb is switched, so that a sudden change in current ripple can be suppressed and output can be suppressed. The waveform symmetry and the three-phase balance of the fundamental wave component of the waveform can be ensured by considering the average of multiple periods. In addition, these effects can suppress magnetic noise caused by a low-frequency beat sound generated in the high frequency region, and can also suppress a leakage current flowing through the ground wire. Therefore, a stable power supply to the load connected to the apparatus can be realized by the above-described plurality of effects.

本発明は、負荷としての交流電動機を駆動するパルス幅変調インバータ装置において、その制御回路におけるキャリア周波数と正弦波変調信号の比が整数とならないようにキャリア周波数を調整するように制御するものである。以下、この発明の実施例を図面に基づいて説明する。 The present invention controls a carrier frequency in a pulse width modulation inverter device that drives an AC motor as a load so that the ratio of the carrier frequency and the sine wave modulation signal in the control circuit does not become an integer. . Embodiments of the present invention will be described below with reference to the drawings.

図1は本発明の実施例1に係るパルス幅変調インバータ装置の制御回路構成図で、主回路部分は図6で示す2〜4及び15a〜15fで構成される主回路部と同様であるため、以下の説明では省略をしている。また、この装置は出力波形の基本波成分に含まれるパルス数があらかじめ設定した値未満または以下の時に動作するもので、パルス数が前記に記載した設定値以外では、制御回路部も図6で示す8〜14と同様であるため省略をする。 FIG. 1 is a control circuit configuration diagram of the pulse width modulation inverter device according to the first embodiment of the present invention, and the main circuit portion is the same as the main circuit portion composed of 2 to 4 and 15a to 15f shown in FIG. In the following description, it is omitted. This apparatus operates when the number of pulses included in the fundamental wave component of the output waveform is less than or less than a preset value. When the number of pulses is other than the set value described above, the control circuit section is also shown in FIG. Since it is the same as 8-14 shown, it abbreviate | omits.

図1に示す制御回路構成図は、任意の周波数に設定された基本波変調周波数信号fsをキャリア周波数演算部107,V/F設定器108及び位相積分器109に出力する。また、キャリア周波数演算部107では基本波変調周波数信号fsと任意の周波数の基準キャリア周波数信号fbb及び周波数補正のための1つまたは複数からなる演算要素信号とを入力して、キャリア設定周波数信号fbcが生成される。このキャリア設定周波数信号fbcは、適宜周波数に補正された基本波変調周波数信号fsに同期しない非同期式のパルス幅変調を行うキャリア信号としてキャリア信号波形発生回路110に出力される。キャリア信号波形発生回路110では、キャリア設定周波数信号fbcを基本波変調周波数信号fsとの振幅比較を行う波形となるキャリア波形信号fbdとして、各相毎に設けられたコンパレータ112a,112b,112cに出力する。V/F設定器108では、入力した基本波変調周波数信号fsに応じるようにあらかじめ設定した出力電圧設定信号Vrefを出力し、位相積分器109では入力した基本波変調周波数信号fsを三相平衡となる位相設定信号ヨrefとして三相基本波発生部114に出力して、各相の基本波変調周波数信号fsu,fsv,fswを出力する。前記出力電圧設定信号Vrefと前記各相の基本波変調周波数信号fsu,fsv,fswとの積信号を乗算器113a,113b,113cから求め、この積信号と前記キャリア波形信号fbdをコンパレータ112a,112b,112cで振幅比較の演算処理を行い非同期式のパルス幅変調信号を得る。この非同期式のパルス幅変調信号をデッドタイム作成回路111でデッドタイムを加味した半導体素子ドライブ信号(Gu,Gx,Gv,Gy,Gw,Gz)として各半導体素子(115a,115b,115c,115d,115e,115f)に出力する。   The control circuit configuration diagram shown in FIG. 1 outputs the fundamental wave modulation frequency signal fs set to an arbitrary frequency to the carrier frequency calculation unit 107, the V / F setting unit 108, and the phase integrator 109. The carrier frequency calculation unit 107 inputs the fundamental wave modulation frequency signal fs, the reference carrier frequency signal fbb of an arbitrary frequency, and one or more calculation element signals for frequency correction, and the carrier setting frequency signal fbc. Is generated. This carrier setting frequency signal fbc is output to the carrier signal waveform generation circuit 110 as a carrier signal that performs asynchronous pulse width modulation that is not synchronized with the fundamental wave modulation frequency signal fs corrected to a frequency as appropriate. In the carrier signal waveform generation circuit 110, the carrier setting frequency signal fbc is output to the comparators 112a, 112b, and 112c provided for each phase as a carrier waveform signal fbd having a waveform for comparing the amplitude with the fundamental wave modulation frequency signal fs. To do. The V / F setting unit 108 outputs an output voltage setting signal Vref set in advance so as to correspond to the inputted fundamental wave modulation frequency signal fs, and the phase integrator 109 sets the inputted fundamental wave modulation frequency signal fs to a three-phase balance. Is output to the three-phase fundamental wave generation unit 114 as the phase setting signal Yoref, and the fundamental wave modulation frequency signals fsu, fsv, fsw of each phase are outputted. A product signal of the output voltage setting signal Vref and the fundamental wave modulation frequency signals fsu, fsv, and fsw of each phase is obtained from multipliers 113a, 113b, and 113c, and the product signal and the carrier waveform signal fbd are compared with the comparators 112a and 112b. 112c, an amplitude comparison calculation process is performed to obtain an asynchronous pulse width modulation signal. This asynchronous pulse width modulation signal is used as a semiconductor element drive signal (Gu, Gx, Gv, Gy, Gw, Gz) in which the dead time is added by the dead time generation circuit 111, so that each semiconductor element (115a, 115b, 115c, 115d, 115e, 115f).

図2は本発明に使用されるキャリア周波数演算部107の制御ブロック図で、出力波形の基本波成分に含まれるパルス数があらかじめ設定した値未満または以下の時に動作するものである。   FIG. 2 is a control block diagram of the carrier frequency calculation unit 107 used in the present invention, which operates when the number of pulses included in the fundamental wave component of the output waveform is less than or less than a preset value.

すなわち、キャリア周波数演算部207に基本波変調周波数信号fs,基準キャリア周波数信号fbb、キャリア補正周波数信号fbo及び公約数補正値flgを入力し、除算器216により基準キャリア周波数信号fbbと基本波変調周波数信号fsとの比信号を求め、整数出力器(INT)217で小数点以下切り捨てた整数信号を求め、乗算器218によって前記整数信号と前記基本波変調周波数信号fsとの積信号を得る。また、前記キャリア補正周波数信号fboが前記基本波変調周波数信号fsの公約数になるか否かの判定演算を行い、公約数の時に公約数補正値flgは「1」を、公約数以外の時に「0」を入力して、加算器219でキャリア補正周波数信号fboに公約数補正値flgを加えた和信号1を得る。さらに乗算器218で求められた積信号と加算器219で求められた和信号1とを前記とは別の加算器220で加えたキャリア設定周波数信号fbcによって、適宜周波数補正する非同期式のパルス幅変調による出力波形の制御を行うことが出来る。これら一連の制御演算を演算式(1)に示す。なお、図2では図1の演算要素信号1〜nをキャリア補正周波数信号fboと公約数補正値flgとして、前記公約数補正値flgの判定演算は演算式(2)及び(3)で示される。   That is, the fundamental frequency modulation frequency signal fs, the reference carrier frequency signal fbb, the carrier correction frequency signal fbo, and the common divisor correction value flg are input to the carrier frequency calculation unit 207, and the reference carrier frequency signal fbb and the fundamental wave modulation frequency are input by the divider 216. A ratio signal with respect to the signal fs is obtained, an integer signal rounded down by an integer output unit (INT) 217 is obtained, and a product signal of the integer signal and the fundamental modulation frequency signal fs is obtained by a multiplier 218. In addition, it is determined whether or not the carrier correction frequency signal fbo is a common divisor of the fundamental wave modulation frequency signal fs. When the carrier correction frequency signal fbo is a common divisor, the common divisor correction value flg is “1”, and when it is not a common divisor. By inputting “0”, the adder 219 obtains a sum signal 1 obtained by adding the common divisor correction value flg to the carrier correction frequency signal fbo. Further, an asynchronous pulse width for which frequency correction is appropriately performed by a carrier setting frequency signal fbc obtained by adding the product signal obtained by the multiplier 218 and the sum signal 1 obtained by the adder 219 by an adder 220 different from the above. The output waveform can be controlled by modulation. A series of these control calculations is shown in the calculation formula (1). In FIG. 2, the calculation element signals 1 to n in FIG. 1 are set as the carrier correction frequency signal fbo and the common divisor correction value flg, and the determination calculation of the common divisor correction value flg is represented by calculation expressions (2) and (3). .

fbc=INT(fbb/fs)・fs+fbo+flg ・・・(1)
INT(fs/fbo)・fbo=fsの時、flg=1 ・・・(2)
INT(fs/fbo)・fbo≠fsの時、flg=0 ・・・(3)
上記の演算式に含まれる"INT"は、コンピュータ言語における算術関数で、INTが指すカッコ内の数式に対して、小数点以下の値を切り捨て整数のみ出力する。
fbc = INT (fbb / fs) .fs + fbo + flg (1)
INT (fs / fbo) · when fbo = fs, flg = 1 (2)
When INT (fs / fbo) · fbo ≠ fs, flg = 0 (3)
“INT” included in the above arithmetic expression is an arithmetic function in a computer language, and a value after the decimal point is rounded down and only an integer is output with respect to an expression in parentheses indicated by INT.

従って、本実施例1のパルス幅変調インバータ装置によれば、キャリア周波数の切り替えによる周波数制限が無く、キャリア設定周波数信号fbcを適宜周波数補正する非同期式パルス幅変調制御であるため、パルス数が少ない時の電流リップルの急変を抑制出来るとともに、各相の出力波形の基本波成分がほぼ平衡で脈動が少なく、高周波領域で発生する遅い周期の磁気騒音を抑制できることや接地線を流れる漏れ電流を抑制することが実現出来る。また、補正周波数信号fboが基本波変調周波数信号fsの公約数である時も周波数補正を実現することが出来る。   Therefore, according to the pulse width modulation inverter device of the first embodiment, the number of pulses is small because there is no frequency limitation by switching the carrier frequency and the asynchronous pulse width modulation control appropriately corrects the frequency of the carrier setting frequency signal fbc. In addition to suppressing sudden changes in current ripple at the same time, the fundamental wave component of the output waveform of each phase is almost balanced and has little pulsation, so it is possible to suppress slow-period magnetic noise that occurs in the high-frequency region and to suppress leakage current flowing through the ground wire Can be realized. Also, frequency correction can be realized when the correction frequency signal fbo is a common divisor of the fundamental wave modulation frequency signal fs.

図3は本発明の実施例2に係るキャリア周波数演算部の制御ブロック図で、出力波形の基本波成分に含まれるパルス数があらかじめ設定した
値未満または以下の時に動作するものである。
図3に示すキャリア周波数演算部307には、基本波変調周波数信号fs,基準キャリア周波数信号fbb、基本波変調周波数信号fsに対するキャリア補正周波数信号fboの比率(fbo/fs)を固定値としたキャリア補正周波数係数kos及び定数1が入力される。除算器316により基準キャリア周波数信号fbbと基本波変調周波数信号fsとの比信号を求め、この比信号を整数出力器(INT)317により小数点以下切り捨てた整数信号1を求め、この整数信号1と前記キャリア周波数信号fbbとの積信号1を乗算器318から求める。また、前記とは別の乗算器321により基本波変調周波数信号fsとキャリア補正周波数係数kosとの積信号2を求め、この積信号2を前記とは別の整数出力器(INT)322により小数点以下切り捨てた整数信号2を求め、整数信号2に定数1を加えた和信号1を加算器319から求める。さらに乗算器318によって求められた和信号1と加算器319によって求められた和信号1とを前記とは別の加算器320で加えた和信号2がキャリア設定周波数信号fbcになり、適宜周波数補正する非同期式のパルス幅変調による出力波形の制御を行うことが出来る。これら一連の制御演算を演算式(4)で示し、キャリア補正周波数係数kosの定義式を演算式(5)に示す。
FIG. 3 is a control block diagram of the carrier frequency calculation unit according to the second embodiment of the present invention, in which the number of pulses included in the fundamental wave component of the output waveform is preset.
Operates when below or below the value.
The carrier frequency calculation unit 307 shown in FIG. 3 includes a carrier having a fixed value of the ratio (fbo / fs) of the carrier correction frequency signal fbo to the fundamental wave modulation frequency signal fs, the reference carrier frequency signal fbb, and the fundamental wave modulation frequency signal fs. A correction frequency coefficient kos and a constant 1 are input. A divider 316 obtains a ratio signal between the reference carrier frequency signal fbb and the fundamental wave modulation frequency signal fs, and an integer output unit (INT) 317 obtains an integer signal 1 obtained by rounding down the decimal point. A product signal 1 with the carrier frequency signal fbb is obtained from a multiplier 318. Further, a product signal 2 of the fundamental wave modulation frequency signal fs and the carrier correction frequency coefficient kos is obtained by a multiplier 321 different from the above, and this product signal 2 is converted into a decimal point by an integer output device (INT) 322 different from the above. Thereafter, the rounded-down integer signal 2 is obtained, and the sum signal 1 obtained by adding the constant 1 to the integer signal 2 is obtained from the adder 319. Further, the sum signal 2 obtained by adding the sum signal 1 obtained by the multiplier 318 and the sum signal 1 obtained by the adder 319 by the adder 320 different from the above becomes the carrier setting frequency signal fbc, and frequency correction is appropriately performed. The output waveform can be controlled by asynchronous pulse width modulation. A series of these control calculations is shown by an arithmetic expression (4), and a definition expression of the carrier correction frequency coefficient kos is shown by an arithmetic expression (5).

fbc=INT(fbb/fs)・fs+{INT(fs・kos)+1} ・・・(4)
fbo=INT(fs・kos) ・・・(5)
なお、本実施の形態2でキャリア設定周波数信号fbcを求めるための制御演算以外は、実施形態1と同様な回路構成や制御方法により発明形態の実施が可能であるとともに、主回路構成及びパルス数が前記に記載した設定値以外の制御回路構成は、図6に示す従来技術の回路構成と同じである。
fbc = INT (fbb / fs) · fs + {INT (fs · kos) +1} (4)
fbo = INT (fs · kos) (5)
Except for the control calculation for obtaining the carrier set frequency signal fbc in the second embodiment, the invention can be implemented by the same circuit configuration and control method as in the first embodiment, and the main circuit configuration and the number of pulses However, the control circuit configuration other than the set values described above is the same as the conventional circuit configuration shown in FIG.

従って、本実施形態2の出力波形の制御方法によれば、実施形態1と同様な効果を有する他にfbo/fsの比をキャリア補正周波数係数kosとして公約数の判定演算を行わないことによって、実施形態1と比べて高応答な制御を実現することが出来る。   Therefore, according to the output waveform control method of the second embodiment, in addition to having the same effect as that of the first embodiment, the common divisor determination operation is not performed with the fbo / fs ratio as the carrier correction frequency coefficient kos. Compared with the first embodiment, it is possible to realize control with higher response.

図4は本発明の実施例3に係るパルス幅変調インバータ装置の制御回路構成図である。 実施例1、2の場合、fsの増加や減少によってINT(fbb/fs)の演算結果が従来の同期変調方式ほどではないが、パルス幅の変化による電流リップルの発生が僅かに予想される。そこで、この実施例3は演算結果を直接fbとするのではなく、キャリア周波数演算部407の出力側に変化率制限処理回路や一次遅れフィルタ回路など、入力信号を時間関数による処理機能を持つキャリア平滑部423を設け、実施形態1または2と同様な制御方法で得たキャリア設定周波数信号fbcをこのキャリア平滑部423に入力して出力fch(キャリア周波数信号fb)を得るよう構成したものである。
図5は、図4に使用されるキャリア平滑部423の一例を示したもので、図5(a)は変化率制限処理を施した場合の制御ブロック図、図5(b)は一次遅れフィルタ処理を施した場合の制御ブロック図である。図5(a)において、423aは減算部で、入力された信号fbcメモリ部423cによって記憶された前回の出力値との減算を実施し、その偏差信号をリミッタ部423bに出力する。リミッタ部おいては単位ステップ入力(大きさ1.0)に対して±1.0/(Tf/Ts)で変化率が制限されて加算部423dに出力される。この加算部においては前回の出力値と加算され、キャリア平滑設定周波数信号fhcとしてキャリア信号発生回路410に出力される。図5(b)では、図5(a)のリミッタ部423bに代えて一次遅れのフィルタ部423eを設けてTs/Ts+Tfの演算を行うもので、他は図5(a)と同様に構成される。
FIG. 4 is a control circuit configuration diagram of the pulse width modulation inverter device according to the third embodiment of the present invention. In the case of the first and second embodiments, the calculation result of INT (fbb / fs) is not as high as that of the conventional synchronous modulation system due to the increase or decrease of fs, but the occurrence of current ripple due to the change of the pulse width is slightly expected. Therefore, in this third embodiment, the calculation result is not directly set to fb, but a carrier having a function of processing an input signal by a time function such as a change rate limiting processing circuit or a first-order lag filter circuit on the output side of the carrier frequency calculation unit 407. A smoothing unit 423 is provided, and a carrier set frequency signal fbc obtained by the same control method as in the first or second embodiment is input to the carrier smoothing unit 423 to obtain an output fch (carrier frequency signal fb). .
FIG. 5 shows an example of the carrier smoothing unit 423 used in FIG. 4, FIG. 5 (a) is a control block diagram when the change rate limiting process is performed, and FIG. 5 (b) is a first-order lag filter. It is a control block diagram at the time of performing a process. In FIG. 5A, reference numeral 423a denotes a subtraction unit that performs subtraction with the previous output value stored in the input signal fbc memory unit 423c, and outputs the deviation signal to the limiter unit 423b. In the limiter unit, the rate of change is limited to ± 1.0 / (Tf / Ts) with respect to the unit step input (size 1.0) and output to the adding unit 423d. This adding unit adds the previous output value and outputs the result to the carrier signal generation circuit 410 as the carrier smoothing set frequency signal fhc. In FIG. 5B, a first-order-lag filter unit 423e is provided in place of the limiter unit 423b in FIG. 5A to perform the calculation of Ts / Ts + Tf, and the rest is configured in the same manner as in FIG. The

図6はキャリア平滑部423の入出力特性を示したものである。同図において、縦軸は出力、横軸に時間をとったもので、線イは入力信号、線ロは図5(a)による変化率処理を実施したときの出力特性、線ハは図5(b)による一次遅れフィルタ処理による出力特性を示したものである。なお、変化率制限処理は、10回の制御周期で単位ステップ幅分を許容する設定とし、一次遅れフィルタ処理は時定数を制御周期の10倍に設定している。いずれの場合においても、最終的なキャリア周波数の変化が滑らかになるため、電流リップルの急変を更に抑制することが可能となる。   FIG. 6 shows the input / output characteristics of the carrier smoothing unit 423. In the same figure, the vertical axis is output and the horizontal axis is time, line i is the input signal, line b is the output characteristic when the change rate processing according to FIG. 5A is performed, and line c is FIG. The output characteristic by the first order lag filter process by (b) is shown. The change rate limiting process is set to allow a unit step width in 10 control cycles, and the first-order lag filter process is set to have a time constant 10 times the control cycle. In any case, since the final change in the carrier frequency becomes smooth, it is possible to further suppress the sudden change in the current ripple.

従って、本実施の形態3のパルス幅変調インバータ装置及びその制御方法によれば、実施例1または2と同様にパルス幅の変化や電流リップルが小さくなる効果を有する他に、キャリア平滑部423を設けることにより、更にパルス幅の変化が小さい時に起こる微少な電流リップルの発生も抑制することが可能とる。   Therefore, according to the pulse width modulation inverter device of the third embodiment and the control method thereof, the carrier smoothing unit 423 is provided in addition to the effect of reducing the pulse width change and the current ripple as in the first or second embodiment. By providing, it is possible to further suppress the occurrence of minute current ripple that occurs when the change in pulse width is small.

本発明の実施の形態1に係わるパルス幅変調インバータ装置の制御回路構成図。The control circuit block diagram of the pulse width modulation inverter apparatus concerning Embodiment 1 of this invention. 本発明の実施の形態1に係わるキャリア周波数演算部の制御ブロック図。The control block diagram of the carrier frequency calculating part concerning Embodiment 1 of this invention. 本発明の実施の形態2に係わるキャリア周波数演算部の制御ブロック図。The control block diagram of the carrier frequency calculating part concerning Embodiment 2 of this invention. 本発明の実施の形態3に係わるパルス幅変調インバータ装置の制御回路構成図。The control circuit block diagram of the pulse width modulation inverter apparatus concerning Embodiment 3 of this invention. (a)はキャリア平滑部の一例となる変化率制限処理の制御ブロック図、(b)は同様に一次遅れフィルタ処理の制御ブロック図。(A) is a control block diagram of the rate-of-change restriction process as an example of the carrier smoothing unit, and (b) is a control block diagram of the first-order lag filter process in the same manner. キャリア平滑部の入出力特性図。Input / output characteristic diagram of the carrier smoothing section. 従来技術のパルス幅変調インバータ装置の主回路構成図及び制御回路構成図。The main circuit block diagram and control circuit block diagram of the pulse width modulation inverter apparatus of a prior art.

符号の説明Explanation of symbols

1・・・交流電源
2・・・順変換回路
3・・・直流コンデンサ
4・・・逆変換回路
5・・・負荷設備
8・・・電圧−周波数出力特性設定器(V/F設定器)
9・・・位相積分器
10・・・キャリア信号発生回路
11・・・デッドタイム作成回路
12a・・・コンパレータ(U相)
12b・・・コンパレータ(V相)
12c・・・コンパレータ(W相)
13a・・・乗算器(U相)
13b・・・乗算器(V相)
13c・・・乗算器(W相)
14・・・三相基本波発生器
15a・・・半導体素子(U相)
15b・・・半導体素子(X相)
15c・・・半導体素子(V相)
15d・・・半導体素子(Y相)
15e・・・半導体素子(W相)
15f・・・半導体素子(Z相)
107・・・キャリア周波数演算部
108・・・電圧−周波数出力特性設定器(V/F設定器)
109・・・位相積分器
110・・・キャリア信号発生回路
111・・・デッドタイム作成回路
112a・・・コンパレータ(U相)
112b・・・コンパレータ(V相)
112c・・・コンパレータ(W相)
113a・・・乗算器(U相)
113b・・・乗算器(V相)
113c・・・乗算器(W相)
114・・・三相基本波発生器
207・・・キャリア周波数演算部
216・・・除算器
217・・・整数出力器(INT)
218・・・乗算器
219・・・加算器
220・・・加算器
307・・・キャリア周波数演算部
316・・・除算器
317・・・整数出力器(INT)
318・・・乗算器
319・・・加算器
320・・・加算器
321・・・乗算器
322・・・整数出力器(INT)
407・・・キャリア周波数演算部
408・・・電圧−周波数出力特性設定器
409・・・位相積分器
410・・・キャリア信号発生回路
411・・・デッドタイム作成回路
412a・・・コンパレータ(U相)
412b・・・コンパレータ(V相)
412c・・・コンパレータ(W相)
413a・・・乗算器(U相)
413b・・・乗算器(V相)
413c・・・乗算器(W相)
414・・・三相基本波発生器
423・・・キャリア平滑部
DESCRIPTION OF SYMBOLS 1 ... AC power source 2 ... Forward conversion circuit 3 ... DC capacitor 4 ... Inverse conversion circuit 5 ... Load equipment 8 ... Voltage-frequency output characteristic setting device (V / F setting device)
DESCRIPTION OF SYMBOLS 9 ... Phase integrator 10 ... Carrier signal generation circuit 11 ... Dead time creation circuit 12a ... Comparator (U phase)
12b: Comparator (V phase)
12c: Comparator (W phase)
13a: Multiplier (U phase)
13b: Multiplier (V phase)
13c: Multiplier (W phase)
14: Three-phase fundamental wave generator 15a: Semiconductor element (U phase)
15b ... Semiconductor element (X phase)
15c: Semiconductor element (phase V)
15d: Semiconductor element (Y phase)
15e: Semiconductor element (W phase)
15f ... Semiconductor element (Z phase)
107: Carrier frequency calculation unit 108: Voltage-frequency output characteristic setting device (V / F setting device)
DESCRIPTION OF SYMBOLS 109 ... Phase integrator 110 ... Carrier signal generation circuit 111 ... Dead time creation circuit 112a ... Comparator (U phase)
112b... Comparator (V phase)
112c: Comparator (W phase)
113a ... Multiplier (U phase)
113b ... Multiplier (V phase)
113c ... Multiplier (W phase)
114 ... Three-phase fundamental wave generator 207 ... Carrier frequency calculation unit 216 ... Divider 217 ... Integer output device (INT)
218 ... multiplier 219 ... adder 220 ... adder 307 ... carrier frequency calculation unit 316 ... divider 317 ... integer output unit (INT)
318 ... multiplier 319 ... adder 320 ... adder 321 ... multiplier 322 ... integer output device (INT)
407: Carrier frequency calculation unit 408: Voltage-frequency output characteristic setting unit 409 ... Phase integrator 410 ... Carrier signal generation circuit 411 ... Dead time generation circuit 412a ... Comparator (U phase) )
412b: Comparator (phase V)
412c: Comparator (W phase)
413a: Multiplier (U phase)
413b... Multiplier (V phase)
413c: Multiplier (W phase)
414 ... Three-phase fundamental wave generator 423 ... Carrier smoothing unit

Claims (10)

基本波変調周波数信号fsとキャリア周波数信号fbとの振幅比較に基づくパルス幅変調により直流電力から交流電力に電力変換することが出来るパルス幅変調インバータ装置において、
前記の基本波変調周波数信号fsと基準キャリア周波数信号fbb及び周波数補正のための1つまたは複数からなる演算要素信号とを入力して、周波数補正を行うキャリア周波数演算部を設け、パルス幅変調インバータ装置の出力波形の基本波成分に含まれる半周期毎のパルス数があらかじめ設定した任意の値未満または以下となる時に、適宜周波数補正を行う非同期式のパルス幅変調制御とすることを特徴としたパルス幅変調インバータ装置の制御方法
In a pulse width modulation inverter device capable of converting power from DC power to AC power by pulse width modulation based on amplitude comparison between the fundamental wave modulation frequency signal fs and the carrier frequency signal fb,
The fundamental frequency modulation frequency signal fs, the reference carrier frequency signal fbb, and one or a plurality of calculation element signals for frequency correction are input, a carrier frequency calculation unit for performing frequency correction is provided, and a pulse width modulation inverter Asynchronous pulse width modulation control that appropriately performs frequency correction when the number of pulses per half cycle included in the fundamental wave component of the output waveform of the device is less than or less than a preset arbitrary value Control method of pulse width modulation inverter device
前記パルス幅変調インバータ装置の出力波形の基本波成分に含まれる半周期毎のパルス数があらかじめ設定した任意の値未満または以下となる時に、キャリア周波数演算部に基準キャリア周波数信号fbb、基本波変調周波数信号fs、キャリア補正周波数信号fbo及び公約数補正値flgを入力して、適宜周波数補正を行う非同期式のパルス幅変調となるキャリア設定周波数信号fbcを次式により演算することを特徴とした請求項1に記載のパルス幅変調インバータ装置の制御方法。
fbc=INT(fbb/fs)・fs+fbo+flg ・・・(1)
INT(fs/fbo)・fbo=fsの時、flg=1 ・・・(2)
INT(fs/fbo)・fbo≠fsの時、flg=0 ・・・(3)
When the number of pulses per half cycle included in the fundamental wave component of the output waveform of the pulse width modulation inverter device is less than or less than a predetermined value, a reference carrier frequency signal fbb, fundamental wave modulation is sent to the carrier frequency calculation unit. The carrier set frequency signal fbc, which is an asynchronous pulse width modulation that performs frequency correction as appropriate, is input by inputting the frequency signal fs, the carrier correction frequency signal fbo, and the common divisor correction value flg, and is calculated by the following equation: Item 8. A method for controlling a pulse width modulation inverter device according to Item 1.
fbc = INT (fbb / fs) .fs + fbo + flg (1)
INT (fs / fbo) · when fbo = fs, flg = 1 (2)
When INT (fs / fbo) · fbo ≠ fs, flg = 0 (3)
前記パルス幅変調インバータ装置の出力波形の基本波成分に含まれる半周期毎のパルス数があらかじめ設定した任意の値未満または以下となる時に、キャリア周波数演算部に基本波変調周波数信号fs、基準キャリア周波数信号fbb及び基本波変調周波数信号fsに対するキャリア補正周波数信号fboの比率(fbo/fs)を固定値としたキャリア補正周波数係数kosを入力して、適宜周波数補正を行う非同期式のパルス幅変調となるキャリア設定周波数信号fbcを次式により演算することを特徴とした請求項1に記載のパルス幅変調インバータ装置の制御方法。
fbc=INT(fbb/fs)・fs+{INT(fs・kos)+1} ・・・(4)
fbo=INT(fs・kos) ・・・(5)
When the number of pulses per half cycle contained in the fundamental wave component of the output waveform of the pulse width modulation inverter device is less than or less than a preset arbitrary value, the carrier frequency calculation unit receives the fundamental wave modulation frequency signal fs and the reference carrier Asynchronous pulse width modulation for appropriately performing frequency correction by inputting a carrier correction frequency coefficient kos with a fixed value (fbo / fs) of the carrier correction frequency signal fbo to the frequency signal fbb and the fundamental modulation frequency signal fs The control method of the pulse width modulation inverter device according to claim 1, wherein the carrier setting frequency signal fbc is calculated by the following equation.
fbc = INT (fbb / fs) · fs + {INT (fs · kos) +1} (4)
fbo = INT (fs · kos) (5)
前記キャリア周波数演算部の出力側にキャリア平滑部を設け、このキャリア平滑部によって前記キャリア設定周波数信号fbcを滑らかにすることを特徴とした請求項1乃至3記載のパルス幅変調インバータ装置の制御方法。 4. The method of controlling a pulse width modulation inverter apparatus according to claim 1, wherein a carrier smoothing unit is provided on an output side of the carrier frequency calculation unit, and the carrier smoothing unit smoothes the carrier set frequency signal fbc. . 前記キャリア平滑部は、キャリア設定周波数信号fbcの単位ステップ入力に対する変化率制限処理を施すことを特徴とした請求項1乃至4記載のパルス幅変調インバータ装置の制御方法。 5. The method of controlling a pulse width modulation inverter according to claim 1, wherein the carrier smoothing unit performs a rate-of-change limiting process on a unit step input of a carrier setting frequency signal fbc. 前記キャリア平滑部は、キャリア設定周波数信号fbcに対して一次遅れフィルタ処理を施すことを特徴とした請求項1乃至4記載のパルス幅変調インバータ装置の制御方法。 5. The method of controlling a pulse width modulation inverter device according to claim 1, wherein the carrier smoothing unit performs a first-order lag filtering process on a carrier set frequency signal fbc. 基本波変調周波数信号とキャリア周波数信号との振幅比較に基づくパルス幅変調により直流電力から交流電力に電力変換するパルス幅変調インバータ装置において、
前記基本波変調周波数信号と基準キャリア周波数信号及び補正のための1つまたは複数からなる演算要素であるキャリア補正周波数信号とを入力してキャリア設定周波数信号を生成するキャリア周波数演算部を設け、このキャリア周波数演算部の出力信号をキャリア信号発生部を介してキャリア波形信号とするよう構成したことを特徴としたパルス幅変調インバータ装置。
In a pulse width modulation inverter device that converts power from DC power to AC power by pulse width modulation based on amplitude comparison between a fundamental frequency modulation frequency signal and a carrier frequency signal,
A carrier frequency calculation unit for generating a carrier setting frequency signal by inputting the fundamental wave modulation frequency signal, a reference carrier frequency signal, and a carrier correction frequency signal which is a calculation element consisting of one or more for correction, is provided. A pulse width modulation inverter device characterized in that an output signal of a carrier frequency calculation unit is configured to be a carrier waveform signal via a carrier signal generation unit.
前記キャリア周波数演算部は、基本波変調周波数信号と基準キャリア周波数信号との比信号を求める除算器と、この比信号の小数点以下を切り捨てて整数信号を求める整数出力部と、この整数出力部からの整数信号と前記基準キャリア周波数信号との積信号を得る乗算器と、前記キャリア補正周波数信号と判定演算値で定まる公約数補正値flgとを加算して和信号1を求める第1の加算器と、この和信号1と前記乗算器による積信号とを加算して和信号2を得る第2の加算器とで構成したことを特徴とした請求項7記載のパルス幅変調インバータ装置。 The carrier frequency calculation unit includes a divider that obtains a ratio signal between the fundamental wave modulation frequency signal and the reference carrier frequency signal, an integer output unit that obtains an integer signal by rounding off the decimal part of the ratio signal, and an integer output unit. A first multiplier that obtains a sum signal 1 by adding the carrier correction frequency signal and a common divisor correction value flg determined by a determination calculation value. 8. A pulse width modulation inverter apparatus according to claim 7, wherein the sum signal 1 and a product signal obtained by the multiplier are added to obtain a sum signal 2. 前記キャリア周波数演算部は、基本波変調周波数信号と基準キャリア周波数信号との比信号を求める除算器と、この比信号の小数点以下を切り捨てて整数信号を求める第1の整数出力部と、この整数出力部からの整数信号と前記基準キャリア周波数信号との積信号を得る第1の乗算器と、前記基本波変調周波数信号と予め決められたキャリア補正周波数係数との積信号を得る第2の乗算器と、この積信号の小数点以下を切り捨てて整数信号を求める第2の整数出力部と、この整数出力部からの出力信号と定数1を加算する第1の加算器と、この加算器の出力と前記第1の乗算器との出力信号とを加算する第2の加算器とで構成したことを特徴とした請求項7記載のパルス幅変調インバータ装置。 The carrier frequency calculation unit includes a divider for obtaining a ratio signal between the fundamental modulation frequency signal and the reference carrier frequency signal, a first integer output unit for obtaining an integer signal by rounding off the decimal point of the ratio signal, and the integer A first multiplier for obtaining a product signal of the integer signal from the output unit and the reference carrier frequency signal; and a second multiplication for obtaining a product signal of the fundamental modulation frequency signal and a predetermined carrier correction frequency coefficient. A second integer output unit for obtaining an integer signal by rounding off the decimal part of the product signal, a first adder for adding an output signal from the integer output unit and a constant 1, and an output of the adder And a second adder for adding the output signal of the first multiplier and the output signal from the first multiplier. 前記キャリア周波数演算器の出力側に、キャリア設定周波数信号の単位ステップ入力に対する変化率制限処理機能若しくは一次遅れフィルタ処理機能を有するキャリア平滑部を設け、この平滑部にて得られたキャリア平滑設定周波数信号をキャリア信号発生部に出力するよう構成したことを特徴とした請求項7乃至9記載のパルス幅変調インバータ装置。 Provided on the output side of the carrier frequency calculator is a carrier smoothing unit having a rate-of-change limiting function or a first-order lag filter processing function for a unit step input of a carrier setting frequency signal, and the carrier smoothing setting frequency obtained by this smoothing unit 10. The pulse width modulation inverter apparatus according to claim 7, wherein the signal is output to a carrier signal generator.
JP2004295844A 2004-01-06 2004-10-08 Pulse width modulation inverter device and control method thereof Expired - Fee Related JP4576970B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004295844A JP4576970B2 (en) 2004-01-06 2004-10-08 Pulse width modulation inverter device and control method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004000805 2004-01-06
JP2004295844A JP4576970B2 (en) 2004-01-06 2004-10-08 Pulse width modulation inverter device and control method thereof

Publications (2)

Publication Number Publication Date
JP2005224093A true JP2005224093A (en) 2005-08-18
JP4576970B2 JP4576970B2 (en) 2010-11-10

Family

ID=34999290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004295844A Expired - Fee Related JP4576970B2 (en) 2004-01-06 2004-10-08 Pulse width modulation inverter device and control method thereof

Country Status (1)

Country Link
JP (1) JP4576970B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007144959A1 (en) * 2006-06-16 2007-12-21 Mitsubishi Electric Corporation Power converter control device
EP2437392A1 (en) * 2009-05-29 2012-04-04 Toyota Jidosha Kabushiki Kaisha Control device and control method for alternating current motor
JP2012135160A (en) * 2010-12-24 2012-07-12 Meidensha Corp Device and method for compensating dead time of pwm inverter
CN110429853A (en) * 2019-08-12 2019-11-08 田云 Multi-path synchronous PWM current controller
CN113810030A (en) * 2020-06-11 2021-12-17 瑞鼎科技股份有限公司 Pulse width modulation detection circuit and method for power saving and noise resistance
CN115664237A (en) * 2022-12-13 2023-01-31 麦田能源有限公司 Single-phase inverter system and single-phase inverter control method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10220895A (en) * 1997-02-11 1998-08-21 Samsung Electron Co Ltd Multi-room type air conditioner
JP2001025258A (en) * 1999-07-05 2001-01-26 Meidensha Corp Pwm inverter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10220895A (en) * 1997-02-11 1998-08-21 Samsung Electron Co Ltd Multi-room type air conditioner
JP2001025258A (en) * 1999-07-05 2001-01-26 Meidensha Corp Pwm inverter

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007144959A1 (en) * 2006-06-16 2007-12-21 Mitsubishi Electric Corporation Power converter control device
DE112006003912T5 (en) 2006-06-16 2009-04-16 Mitsubishi Electric Corp. Control device for energy converters
US7768803B2 (en) 2006-06-16 2010-08-03 Mitsubishi Electric Corporation Control device for power converter
JP4717114B2 (en) * 2006-06-16 2011-07-06 三菱電機株式会社 Control device for power converter
DE112006003912B4 (en) * 2006-06-16 2014-05-22 Mitsubishi Electric Corp. Control device for energy converters
EP2437392A1 (en) * 2009-05-29 2012-04-04 Toyota Jidosha Kabushiki Kaisha Control device and control method for alternating current motor
EP2437392A4 (en) * 2009-05-29 2013-10-23 Toyota Motor Co Ltd Control device and control method for alternating current motor
JP2012135160A (en) * 2010-12-24 2012-07-12 Meidensha Corp Device and method for compensating dead time of pwm inverter
CN110429853A (en) * 2019-08-12 2019-11-08 田云 Multi-path synchronous PWM current controller
CN113810030A (en) * 2020-06-11 2021-12-17 瑞鼎科技股份有限公司 Pulse width modulation detection circuit and method for power saving and noise resistance
CN115664237A (en) * 2022-12-13 2023-01-31 麦田能源有限公司 Single-phase inverter system and single-phase inverter control method
CN115664237B (en) * 2022-12-13 2023-03-10 麦田能源有限公司 Single-phase inverter system and single-phase inverter control method

Also Published As

Publication number Publication date
JP4576970B2 (en) 2010-11-10

Similar Documents

Publication Publication Date Title
US10020724B2 (en) Duty-ratio controller
JP5626435B2 (en) Direct AC power converter
JP5939342B2 (en) Direct AC power converter
JP5304891B2 (en) Power converter control method
JP6520336B2 (en) Power converter control device
EP2763301B1 (en) Power converter control method
CN105940597A (en) Power conversion device and control device
Zavala et al. Predictive control of a current source rectifier with imposed sinusoidal input currents
JP4576970B2 (en) Pulse width modulation inverter device and control method thereof
JP4701770B2 (en) Multiphase series multiple power converter
JP5516107B2 (en) Three-phase power converter
JP6394401B2 (en) 5-level power converter and control method
TWI544302B (en) Voltage converter and voltage converting method
JPH03230759A (en) Power supply device and improving method for power factor
JP2007325365A (en) Grid-connected inverter device
JP5673168B2 (en) Power converter
Hakeem et al. A modified capacitor voltage control algorithm for suppressing the effect of measurement noise on grid-connected z-source inverters controllers
JP2022091189A (en) Power conversion device and method for controlling the same
Espinoza et al. DSP implementation of output voltage reconstruction in CSI-based converters
JP2020171135A (en) Power converter
Rafal et al. Component minimized AC/DC/AC converter with DC-link capacitors voltages balancing
JP2000270559A (en) Variable speed device
JP2011259530A (en) Noise reduction method of power conversion system
JP6764670B2 (en) Power converter
KR101860576B1 (en) Method for controlling inverter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100727

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100809

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4576970

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees