JP2005224027A - Actuator element - Google Patents

Actuator element Download PDF

Info

Publication number
JP2005224027A
JP2005224027A JP2004030157A JP2004030157A JP2005224027A JP 2005224027 A JP2005224027 A JP 2005224027A JP 2004030157 A JP2004030157 A JP 2004030157A JP 2004030157 A JP2004030157 A JP 2004030157A JP 2005224027 A JP2005224027 A JP 2005224027A
Authority
JP
Japan
Prior art keywords
actuator element
voltage
response
air
displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004030157A
Other languages
Japanese (ja)
Other versions
JP4352128B2 (en
Inventor
Kinshi Azumi
欣志 安積
Soji Shiraishi
壮志 白石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2004030157A priority Critical patent/JP4352128B2/en
Publication of JP2005224027A publication Critical patent/JP2005224027A/en
Application granted granted Critical
Publication of JP4352128B2 publication Critical patent/JP4352128B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an actuator element that operates stably in air, can be driven at low voltage and is satisfactory in response and cycling durability. <P>SOLUTION: In this air actuator element, at least two electrodes 2 insulated from each other, are formed on the surface of a conductor 1, formed of a composite of carbon nanotubes, doped with metal ions and a solid polyelectrolyte; and the actuator element can be bent or deformed, by applying a potential difference between the electrodes. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、電気化学アクチュエータ素子に関する。ここで、電気化学アクチュエータ素子とは、電気化学反応や電気二重層の充放電などの電気化学プロセスを駆動力とするアクチュエータ素子である。   The present invention relates to an electrochemical actuator element. Here, the electrochemical actuator element is an actuator element that uses an electrochemical process such as an electrochemical reaction or charge / discharge of an electric double layer as a driving force.

医療機器や産業用、およびパーソナルロボット、マイクロマシンなどの分野において小型かつ軽量で柔軟性に富むアクチュエータの必要性が高まっている。   In the fields of medical equipment, industrial use, personal robots, and micromachines, there is an increasing need for actuators that are small, light, and flexible.

このようにアクチュエータを小型化すると、慣性力よりも摩擦や粘性力が支配的になるため、モーターやエンジンのような慣性力を利用してエネルギーを運動にかえる機構は、小型アクチュエータの動力として用いることは困難であった。このため、小型アクチュエータの作動原理としては、静電引力型、圧電型、超音波式、形状記憶合金式、高分子伸縮式が提案されている。   When the actuator is miniaturized in this way, friction and viscous force become more dominant than inertial force. Therefore, a mechanism that uses inertial force such as a motor or engine to change energy into motion is used as power for the small actuator. It was difficult. For this reason, electrostatic attractive force type, piezoelectric type, ultrasonic type, shape memory alloy type, and polymer expansion / contraction type have been proposed as operating principles of small actuators.

しかしながら、これらの小型アクチュエータには、それぞれ作動環境に制限があったり、応答性が不十分であったり、構造が複雑であったり、また柔軟性が欠如しているなどの問題点があり、そのため用途も制約されている。   However, these small actuators have problems such as limited operating environment, insufficient responsiveness, complicated structure, and lack of flexibility. Applications are also limited.

これらの問題点を克服し、また、小型アクチュエータの用途をより広範なものに拡張させるため、低電圧で駆動し、応答性が速く、柔軟性に富み、小型化および軽量化が容易で、しかも小電力で作動する高分子アクチュエータの開発が行われてきた。これらの中には、ポリピロール、ポリアニリン等の電子導電性ポリマーの電解質中におけるレドックス伸縮を利用したもの(電子導電性高分子アクチュエータ)、また、イオン交換膜と接合電極とからなり、イオン交換膜の含水状態において、イオン交換膜に電位差をかけてイオン交換膜に湾曲、変形を生じさせることにより、アクチュエータとして機能させることのできるもの(イオン導電性高分子アクチュエータ、特許文献1参照)の大きく分けると2種のものが知られている。   In order to overcome these problems and expand the application of small actuators to a wider range, it can be driven at low voltage, fast response, flexible, easy to downsize and light weight, Polymer actuators that operate with low power have been developed. Among these, those using redox expansion and contraction in the electrolyte of an electroconductive polymer such as polypyrrole and polyaniline (electroconductive polymer actuator), and consisting of an ion exchange membrane and a junction electrode, In a water-containing state, by dividing the ion exchange membrane by applying a potential difference to cause the ion exchange membrane to bend and deform, it can be roughly divided into those that can function as actuators (ion conductive polymer actuator, see Patent Document 1). Two types are known.

これらのなかで、電子導電性高分子アクチュエータは、低電圧駆動で、伸縮率が大きく、発生圧力も大きいなどの利点があるが、応答速度が遅く、最も性能の良いポリピロールの製造法が電解重合のみであること、また、応答がレドックス反応に基づいたイオンのドーピング、脱ドーピングによることから、原理として繰り返し耐久性に問題のあることが指摘されてきた。   Among these, the electroconductive polymer actuator has advantages such as low voltage drive, large expansion and contraction, and large generated pressure, but the response speed is slow and the most effective method for producing polypyrrole is electropolymerization. It has been pointed out that there is a problem in repeated durability in principle because the response is due to ion doping and dedoping based on the redox reaction.

一方、従来の電子導電性高分子アクチュエータ、あるいはイオン導電性高分子アクチュエータは、いずれも、その動作のために電解質が必要なことから、主に電解質水溶液中で使用されてきた。イオン導電性高分子アクチュエータは、イオン交換樹脂が水で膨潤した状態でないと十分なイオン伝導性を示さないため、基本的には水中で使用する。空中でこのアクチュエータを使用するためには、水の蒸発を防ぐ必要がある。そのため、樹脂コーティングの方法が報告されているが、この方法では、完全にコーティングするのが困難なこと、また、電極反応によるわずかな気体発生によってもコーティングが破れること、さらに、コーティング自身が変形応答の抵抗となることから、実用化されていない。また、水の代わりに、プロピレンカーボネートなどの高沸点有機溶媒なども使用されているが、これについても同様の問題があり、しかも、水ほどイオン導電性が大きくなく、応答性が劣る点でも問題がある。   On the other hand, both conventional electron conductive polymer actuators and ion conductive polymer actuators have been used mainly in aqueous electrolyte solutions because an electrolyte is required for their operation. Since the ion conductive polymer actuator does not exhibit sufficient ion conductivity unless the ion exchange resin is swollen with water, it is basically used in water. In order to use this actuator in the air, it is necessary to prevent water evaporation. For this reason, a resin coating method has been reported, but with this method, it is difficult to completely coat, the coating can be broken even by slight gas generation due to electrode reaction, and the coating itself has a deformation response. It has not been put into practical use because of its resistance. Also, instead of water, high-boiling organic solvents such as propylene carbonate are also used, but this also has the same problem, and the problem is that the ionic conductivity is not as great as water and the response is poor. There is.

かくして、従来型のアクチュエータは、主に電解質溶液中という限られた環境でのみ駆動するため、用途が極めて限られていた。従って、空中で駆動するアクチュエータ素子の開発は、小型アクチュエータの幅広い用途への実用化のために不可欠である。   Thus, since the conventional actuator is driven only in a limited environment mainly in the electrolyte solution, its application is extremely limited. Therefore, the development of actuator elements that are driven in the air is indispensable for the practical application of small actuators to a wide range of applications.

アクチュエータの空中作動への適用の目的で、イオン交換樹脂の両側に電子導電性高分子を貼付けた例、あるいはプロピレンカーボネートなどの高沸点有機溶媒を含んだゲル膜に導電性高分子を貼付け、両側の電極の伸縮を利用してアクチュエータの素子として利用した例がある。これらの例も、イオン導電性高分子アクチュエータの場合と同様、溶媒の乾燥の問題、イオン導電性の低さの問題があり、本質的な解決となっていない。
特開平4−275078号公報
For the purpose of applying the actuator to air operation, an example in which an electron conductive polymer is pasted on both sides of an ion exchange resin, or a conductive polymer is pasted on a gel film containing a high-boiling organic solvent such as propylene carbonate. There is an example in which the expansion and contraction of the electrode is used as an actuator element. These examples also have the problem of drying of the solvent and the problem of low ion conductivity, as in the case of the ion conductive polymer actuator, and are not an essential solution.
Japanese Patent Laid-Open No. 4-275078

本発明の課題は、空気中で安定に作動し、低電圧で駆動でき、応答性が速く、且つ繰り返し耐久性の良いアクチュエータ素子を提供することにある。   An object of the present invention is to provide an actuator element that operates stably in air, can be driven at a low voltage, has quick response, and has good repeated durability.

本発明者らは、鋭意検討した結果、金属イオンドーピングされたカーボンナノチューブと固体高分子電解質との複合体を、導電性と伸縮性のある活性層として用いることにより、空気中で作動可能な新規なアクチュエータ素子が得られることを見出し、本発明を完成するに至った。   As a result of intensive studies, the present inventors have found that a composite of a carbon ion-doped carbon nanotube and a solid polymer electrolyte is used as an active layer having electrical conductivity and stretchability, so that it can be operated in the air. The present inventors have found that an actuator element can be obtained and have completed the present invention.

すなわち、本発明は、下記に示す通りの空中アクチュエータ素子用導電体および空中アクチュエータ素子を提供するものである。
項1. 金属イオンドーピングされたカーボンナノチューブと固体高分子電解質との複合体からなる空中アクチュエータ素子用導電体。
項2. 項1に記載の導電体の表面に、相互に絶縁状態で電極が少なくとも2個形成され、該電極間に電位差を与えることにより湾曲および変形を生じさせ得る空中アクチュエータ素子。
That is, the present invention provides a conductor for an air actuator element and an air actuator element as shown below.
Item 1. A conductor for an aerial actuator element comprising a composite of a metal ion-doped carbon nanotube and a solid polymer electrolyte.
Item 2. An aerial actuator element in which at least two electrodes are formed in an insulated state on the surface of the conductor according to Item 1, and can be bent and deformed by applying a potential difference between the electrodes.

本発明における「空中アクチュエータ素子」とは、空気中で作動可能なアクチュエータ素子を意味する。   The “air actuator element” in the present invention means an actuator element operable in air.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明に用いられるカーボンナノチューブは、グラフェンシートが筒形に巻いた形状からなる炭素系材料であり、その周壁の構成数から単層ナノチューブ(SWNT)と多層ナノチューブ(MWNT)とに大別され、また、グラフェンシートの構造の違いからカイラル(らせん)型、ジグザグ型、およびアームチェア型に分けられるなど、各種のものが知られている。本発明には、このうち、単層ナノチューブを用いるのが好ましい。実用に供されるカーボンナノチューブの好適な例として、一酸化炭素を原料として比較的量産が可能なHiPco(カーボン・ナノテクノロジー・インコーポレーテッド社製)が挙げられるが、勿論、これに限定されるものではない。   The carbon nanotube used in the present invention is a carbon-based material having a shape in which a graphene sheet is wound into a cylindrical shape, and is roughly classified into a single-walled nanotube (SWNT) and a multi-walled nanotube (MWNT) from the number of components of the peripheral wall thereof. Also, various types are known, such as being divided into a chiral type, a zigzag type, and an armchair type due to the difference in the structure of the graphene sheet. Of these, single-walled nanotubes are preferably used in the present invention. A suitable example of carbon nanotubes for practical use is HiPco (manufactured by Carbon Nanotechnology Inc.), which can be relatively mass-produced using carbon monoxide as a raw material. Of course, it is limited to this. is not.

本発明に用いられるカーボンナノチューブは、金属イオンでドーピングされている。この金属イオンとしては、カーボンナノチューブの製造過程で含まれる鉄イオンなどの他に、電気化学プロセスや真空プロセスによりドーピングすることのできるリチウムイオン、セシウムイオン、カリウムイオン、ルビジウムイオンなどが挙げられる。これらの手法によって異なる種類のイオンをドーピングすることにより、アクチュエータ素子の応答性を変化させることができると考えられる。金属イオンのドーピング量は、5〜25重量%で
あるのが好ましい。
The carbon nanotube used in the present invention is doped with metal ions. Examples of the metal ions include lithium ions, cesium ions, potassium ions, rubidium ions, and the like that can be doped by an electrochemical process or a vacuum process, in addition to iron ions included in the manufacturing process of carbon nanotubes. It is considered that the responsiveness of the actuator element can be changed by doping different kinds of ions by these methods. The doping amount of metal ions is preferably 5 to 25% by weight.

本発明に用いられる固体高分子電解質としては、フッ素系イオン交換樹脂(例えば、ナフィオンなどのパーフルオロスルホン酸系樹脂)、あるいはポリアクリル酸等の高分子電解質ゲルが挙げられる。カーボンナノチューブとの複合体を形成するためには、カーボンナノチューブとの分散液を調製する必要がある。分散液を調製するのに用いる溶媒としては、メタノールなどの低分子量直鎖アルコール、あるいはTritonX−100などの活性剤水溶液が挙げられる。従って、これらの溶媒に溶解する固体高分子電解質ポリマー、あるいはその前駆体を用いることができる。   Examples of the solid polymer electrolyte used in the present invention include fluorine ion exchange resins (for example, perfluorosulfonic acid resins such as Nafion), and polymer electrolyte gels such as polyacrylic acid. In order to form a composite with carbon nanotubes, it is necessary to prepare a dispersion with carbon nanotubes. Examples of the solvent used for preparing the dispersion include a low molecular weight linear alcohol such as methanol, and an aqueous activator such as Triton X-100. Therefore, a solid polymer electrolyte polymer or a precursor thereof that can be dissolved in these solvents can be used.

複合体(導電体)の形成は、例えば、固体高分子電解質の溶液にカーボンナノチューブを、超音波を用いて分散させ、得られた分散液(キャスト液)を展延(キャスト)することにより行う。キャスト液における固体高分子電解質の濃度は、0.5〜5重量%であるのが好ましく、1〜3重量%であるのがより好ましい。キャスト液におけるカーボンナノチューブの量は、0.2〜1mg/mlであるのが好ましく、0.4〜0.6mg/mlであるのがより好ましい。キャストした後に溶媒を乾燥し、次いで、必要に応じて熱処理(アニール)を行ってもよい。熱処理は、固体高分子の結晶化を促進し、弾性を大きくするのに効果がある。熱処理温度は、100〜160℃が好ましく、150℃程度がより好ましい。このようにして得られたフィルム状の複合体(導電体)の厚さは、10〜300μmであるのが好ましく、20〜200μmであるのがより好ましい。また、複合体(導電体)におけるカーボンナノチューブと固体高分子電解質との割合(重量比)は、カーボンナノチューブ:固体高分子電解質=1:0.03〜0.07であるのが好ましく、カーボンナノチューブ:固体高分子電解質=1:0.04〜0.06であるのがより好ましい。   The formation of the composite (conductor) is performed, for example, by dispersing carbon nanotubes in a solid polymer electrolyte solution using ultrasonic waves, and spreading (casting) the obtained dispersion (cast solution). . The concentration of the solid polymer electrolyte in the casting solution is preferably 0.5 to 5% by weight, more preferably 1 to 3% by weight. The amount of carbon nanotubes in the casting solution is preferably 0.2 to 1 mg / ml, more preferably 0.4 to 0.6 mg / ml. After casting, the solvent may be dried, and then heat treatment (annealing) may be performed as necessary. The heat treatment is effective in promoting crystallization of the solid polymer and increasing elasticity. The heat treatment temperature is preferably 100 to 160 ° C, more preferably about 150 ° C. The thickness of the film-like composite (conductor) thus obtained is preferably 10 to 300 μm, and more preferably 20 to 200 μm. The ratio (weight ratio) between the carbon nanotube and the solid polymer electrolyte in the composite (conductor) is preferably carbon nanotube: solid polymer electrolyte = 1: 0.03-0.07. : Solid polymer electrolyte = 1: 0.04 to 0.06 is more preferable.

以上のようにして得られたカーボンナノチューブと固体高分子電解質とからなる複合体(導電体)に、電極を接合することによりアクチュエータ素子を得る。電極の接合には、金属、カーボン等の蒸着法、スパッタ法、無電解メッキ法、塗布法、プレス法、印刷法等の方法を用いることが可能である。これらのうち、最も簡便で有効なのは、スパッタ法による貴金属の接合である。電極の厚さは、10〜50nmであるのが好ましい。   An actuator element is obtained by bonding an electrode to the composite (conductor) made of the carbon nanotube and the solid polymer electrolyte obtained as described above. For the joining of the electrodes, it is possible to use methods such as vapor deposition methods of metals and carbon, sputtering methods, electroless plating methods, coating methods, press methods, printing methods and the like. Of these, the simplest and most effective is the joining of noble metals by sputtering. The thickness of the electrode is preferably 10 to 50 nm.

このようにして得られたアクチュエータ素子は、電極間に3〜10Vの直流電圧を加えると、数秒以内に素子長の0.2〜0.5倍程度の変位を得ることができる。また、このアクチュエータ素子は、完全な乾燥状態(空気中)でも、水中の膨潤状態でも、柔軟に作動することができる。   The actuator element thus obtained can obtain a displacement of about 0.2 to 0.5 times the element length within a few seconds when a DC voltage of 3 to 10 V is applied between the electrodes. In addition, the actuator element can operate flexibly in a completely dry state (in the air) or in a swollen state in water.

本発明のアクチュエータ素子の完全な乾燥状態(空気中)における作動原理は、図1に示すように、導電体1の表面に相互に絶縁状態で形成された電極2,2に電位差がかかると、カーボンナノチューブ中の層間に含まれていた金属イオン(例えば、Fe++)が、電極2上で酸化還元反応をすることにより、応力が発生するためであると考えられる。 The operating principle of the actuator element of the present invention in a completely dry state (in the air) is that, as shown in FIG. 1, when a potential difference is applied to the electrodes 2 and 2 formed on the surface of the conductor 1 in a mutually insulated state, It is considered that this is because stress is generated when metal ions (for example, Fe ++ ) contained between the layers in the carbon nanotube undergo an oxidation-reduction reaction on the electrode 2.

本発明のアクチュエータ素子は、空気中で安定して作動し、低電圧で駆動可能である。また、製造が簡単で、小型化が容易であり、且つ応答が速く、柔軟に作動し、繰り返し耐久性も良い。   The actuator element of the present invention operates stably in air and can be driven at a low voltage. In addition, it is easy to manufacture, can be easily downsized, has a quick response, operates flexibly, and has good repeated durability.

次に、実施例によって本発明をより詳細に説明する。   Next, the present invention will be described in more detail with reference to examples.

実施例1
単層カーボンナノチューブ(カーボン・ナノテクノロジー・インコーポレーテッド社製「HiPco」、含有Fe量14重量%)(以下、SWNTともいう)25mg、5重量%ナフィオン溶液(アルドリッチ社製、低分子量直鎖アルコールと水(10%)混合溶媒)25ml、および試薬特級メタノール25mlを、ビーカーに秤量して混合した後、超音波洗浄器中で、超音波照射を10時間以上行い、SWNTとナフィオンの混合分散液を調製した。この分散液をガラス製のシャーレにキャストし、ドラフト中で一昼夜以上放置して溶媒を除去した。溶媒を除去した後、150℃で4時間、熱処理を行った。形成されたSWNTとナフィオンの複合体フィルムをシャーレから剥がした後、3cm×2cmの大きさに切り取り、走査電子顕微鏡の試料作成用スパッタマシンを用いて、複合体フィルムの両面に金をスパッタして接合した。条件は、片面当たり10mAで30分とした。
Example 1
Single-walled carbon nanotube (“HiPco” manufactured by Carbon Nanotechnology Inc., Fe content 14% by weight) (hereinafter also referred to as SWNT) 25 mg, 5% Nafion solution (manufactured by Aldrich, low molecular weight linear alcohol and 25 ml of water (10% mixed solvent) and 25 ml of reagent-grade methanol are weighed in a beaker and mixed, and then subjected to ultrasonic irradiation for 10 hours or more in an ultrasonic cleaner to prepare a mixed dispersion of SWNT and Nafion. Prepared. This dispersion was cast into a glass petri dish and left for more than one day in a draft to remove the solvent. After removing the solvent, heat treatment was performed at 150 ° C. for 4 hours. After the formed SWNT and Nafion composite film is peeled off from the petri dish, it is cut into a size of 3 cm × 2 cm, and gold is sputtered on both sides of the composite film using a sputtering machine for sample preparation of a scanning electron microscope. Joined. The conditions were 10 mA per side for 30 minutes.

以上のようにして作製した接合体フィルムを1mm×15mmの短冊状に切り取り、変形応答を評価した(実施例2〜6)。また、接合体フィルムを直径10mmの円盤状に切り取り、電圧−電流特性を評価した(実施例7)。   The joined body film produced as described above was cut into a 1 mm × 15 mm strip and the deformation response was evaluated (Examples 2 to 6). Moreover, the joined body film was cut into a disk shape having a diameter of 10 mm, and the voltage-current characteristics were evaluated (Example 7).

実施例2
図2は、変位測定装置の概略を示す図である。応答性の評価は、1mm×15mmの短冊状に切り取った接合体試料片の端3mmの部分を電極付きホルダーでつかんで、空気中で電圧を加え、レーザー変位計を用いて、固定端から10mmの位置の変位を測定して行った。
Example 2
FIG. 2 is a diagram showing an outline of the displacement measuring apparatus. Evaluation of responsiveness was performed by grasping a 3 mm end portion of a joined sample piece cut into a 1 mm × 15 mm strip with a holder with an electrode, applying a voltage in the air, and using a laser displacement meter, 10 mm from the fixed end. The displacement of the position of was measured.

図3は、実施例1の方法で作製した厚さ35μmの接合体試料片を1時間真空乾燥した後、0.1Hz、7Vp.−p.の方形波電圧を加えて変位の応答を測定した図である。縦軸の「Displacement」は「変位」を意味し、横軸の「Time」は「時間」を意味し、「sec」は「秒」を意味する。完全に乾燥した状態でも、空気中で、大きく(変位量2mm以上)、速い(0.5秒以内)応答が観測された。   FIG. 3 shows a case where a bonded sample piece having a thickness of 35 μm manufactured by the method of Example 1 was vacuum-dried for 1 hour, and then 0.1 Hz, 7 Vp. -P. It is the figure which applied the square wave voltage and measured the response of displacement. “Displacement” on the vertical axis means “displacement”, “Time” on the horizontal axis means “time”, and “sec” means “second”. Even in a completely dry state, a large (displacement amount of 2 mm or more) and fast (within 0.5 second) response was observed in air.

実施例3
実施例2と同様の接合体試料片に、1Hz、6Vp.−p.の方形波電圧を加えて変位の応答を測定した図が、図4である。実施例2と同様に、完全に乾燥した状態でも、空気中で、大きく(変位量2mm以上)、速い(0.5秒以内)応答が観測された。
Example 3
A bonded sample piece similar to that in Example 2 was applied to 1 Hz, 6 Vp. -P. FIG. 4 shows the displacement response measured by applying the square wave voltage. Similar to Example 2, even in a completely dry state, a large (displacement amount of 2 mm or more) and fast (within 0.5 second) response was observed in the air.

実施例4
実施例1と同様の方法で作製した厚さ27μmの接合体試料片を1時間真空乾燥した後、実施例2と同様の方法で変位測定を行った。図5は、12Vp.−p.の方形波電圧を加え、周波数を変化させた時の変位の強度(ピーク・ツー・ピーク、peak to peak)をプロットした図である。横軸の「Frequency」は「周波数」を意味する。19Hzで共振のピークが観測された。応答は30Hzまで観測された。
Example 4
After a 27 μm-thick bonded body sample piece produced by the same method as in Example 1 was vacuum-dried for 1 hour, displacement measurement was performed in the same manner as in Example 2. FIG. 5 shows that 12 Vp. -P. It is the figure which plotted the intensity | strength (peak to peak, peak to peak) of the displacement when the square wave voltage of (2) was added and the frequency was changed. “Frequency” on the horizontal axis means “frequency”. A resonance peak was observed at 19 Hz. The response was observed up to 30 Hz.

実施例5
実施例1と同様の方法で作製した厚さ110μmの接合体試料片を1時間真空乾燥した後、実施例2と同様の方法で変位測定を行った。図6は、0.1Hzの方形波電圧を加え、加える電圧の強度を変えたときの、電圧値(ピーク・ツー・ピーク)に対する変位の強度(ピーク・ツー・ピーク)の依存性を示す図である。横軸の「Voltage」は「電圧」を意味する。応答は6Vp.−p.から安定に発生し始め、8Vp.−p.から10Vp.−p.までは応答が電圧に応じて大きくなったが、10V以上では飽和した。
Example 5
A bonded sample piece having a thickness of 110 μm produced by the same method as in Example 1 was vacuum-dried for 1 hour, and then the displacement was measured by the same method as in Example 2. FIG. 6 is a graph showing the dependence of the displacement intensity (peak-to-peak) on the voltage value (peak-to-peak) when a 0.1 Hz square wave voltage is applied and the applied voltage intensity is changed. It is. “Voltage” on the horizontal axis means “voltage”. Response is 6 Vp. -P. From 8Vp. -P. To 10 Vp. -P. Until then, the response increased according to the voltage, but was saturated at 10 V or higher.

実施例6
実施例1と同様の方法で作製した厚さ27μmの接合体試料片を1時間真空乾燥した後、実施例2と同様の方法で変位測定を行った(Nafion−SWNT)。図7は、0.
1Hz、12Vp.−p.の方形波電圧を1時間印加し続けて、変位量の時間変化をプロットした図である。図7には、比較のために、特開平11−235064号公報に記載の方法で作製した、ナフィオン117(パーフルオロスルホン酸系樹脂)膜に金(Au)を接合した接合体試料片(Nafion117/Au)を、空気中で同様に測定した変位量の時間変化も示す(4Vp.−p.および12Vp.−p.印加)。ナフィオン117/Au膜の場合は、測定開始後10分以内に急速に変位量が低下し、1時間後にはほとんど応答しなくなった。一方、本実施例の素子(Nafion−SWNT)は、わずかに応答が小さくなったが、1時間後でも初期変位の50%以上の応答を示した。このことより、本発明の素子が乾燥状態における空気中で安定した変形応答を示すことがわかる。
Example 6
A bonded sample piece having a thickness of 27 μm produced by the same method as in Example 1 was vacuum-dried for 1 hour, and then displacement measurement was performed in the same manner as in Example 2 (Nafion-SWNT). FIG.
1 Hz, 12 Vp. -P. It is the figure which continued applying the square wave voltage of 1 hour, and plotted the time change of the amount of displacement. For comparison, FIG. 7 shows, for comparison, a joined sample piece (Nafion 117) in which gold (Au) is joined to a Nafion 117 (perfluorosulfonic acid resin) film produced by the method described in Japanese Patent Laid-Open No. 11-233504. / Au) also shows the time variation of the displacement measured in the same manner in air (4 Vp.-p. and 12 Vp.-p. applied). In the case of the Nafion 117 / Au film, the amount of displacement decreased rapidly within 10 minutes after the start of measurement, and hardly responded after 1 hour. On the other hand, the device of the present example (Nafion-SWNT) slightly decreased in response, but showed a response of 50% or more of the initial displacement even after 1 hour. This shows that the element of the present invention exhibits a stable deformation response in the air in a dry state.

実施例7
実施例1と同様の方法で作製した厚さ110μmの接合体を1時間乾燥した後、直径10mmの円盤状に切り取り、同様の大きさの白金板を備えたホルダーで挟んでリード線をとり、電圧−電流特性(ボルタンメトリー)を測定した。電圧−電流特性は、周波数0.1Hzの三角波電圧を加えることにより測定した。図8の(A)は、−2.5Vから2.5Vまで電圧を変化させたときの電圧−電流特性(ボルタモグラム)を示し、図8の(B)は、−7Vから7Vまで変化させたときの電圧−電流特性(ボルタモグラム)を示す。縦軸の「Current」は「電流」を意味する。図8(A)からわかるように、0.6V付近に酸化還元のピーク電流が観測され、2Vから2.5Vにかけて電流が指数関数的に大きくなる。この電流が指数関数的に大きくなる様子は、図8(B)からもよくわかる。以上の結果から、この系においては、完全な乾燥状態で酸化還元過程の電流があり、それにより、2.5V付近から指数関数的に大きな電流が流れることがわかる。変形応答が生じ始めるのが2.5V付近からであり、安定に生じるのが3Vからであることを考慮すると、この酸化還元過程が原因となって乾燥状態の応答が生じていると考えられる。
Example 7
After drying the joined body having a thickness of 110 μm produced by the same method as in Example 1 for 1 hour, it was cut into a disk shape having a diameter of 10 mm, and was sandwiched between holders having a platinum plate of the same size, and a lead wire was taken. Voltage-current characteristics (voltammetry) were measured. The voltage-current characteristic was measured by applying a triangular wave voltage with a frequency of 0.1 Hz. FIG. 8A shows the voltage-current characteristics (voltammogram) when the voltage is changed from −2.5 V to 2.5 V, and FIG. 8B shows that the voltage is changed from −7 V to 7 V. The voltage-current characteristic (voltammogram) is shown. “Current” on the vertical axis means “current”. As can be seen from FIG. 8A, a redox peak current is observed around 0.6V, and the current increases exponentially from 2V to 2.5V. It can be clearly seen from FIG. 8B that the current increases exponentially. From the above results, it can be seen that in this system, there is a current in the redox process in a completely dry state, and thereby a large current flows exponentially from around 2.5V. Considering that the deformation response starts to occur from around 2.5 V and that it occurs stably from 3 V, it is considered that a dry-state response occurs due to this redox process.

本発明のアクチュエータ素子の作動原理を示す図である。It is a figure which shows the operating principle of the actuator element of this invention. 変位測定装置の概略を示す図である。It is a figure which shows the outline of a displacement measuring device. 実施例2の接合体試料片の応答性を示す図である。It is a figure which shows the responsiveness of the conjugate | zygote sample piece of Example 2. FIG. 実施例2の接合体試料片の応答性を示す図である。It is a figure which shows the responsiveness of the conjugate | zygote sample piece of Example 2. FIG. 実施例4の接合体試料片の応答性を示す図である。It is a figure which shows the responsiveness of the conjugate | zygote sample piece of Example 4. FIG. 実施例5の接合体試料片の応答性を示す図である。It is a figure which shows the responsiveness of the conjugate | zygote sample piece of Example 5. FIG. 実施例6の接合体試料片における応答性の時間変化を示す図である。It is a figure which shows the time change of the responsiveness in the conjugate | zygote sample piece of Example 6. FIG. 図8(A)は、実施例7の接合体に加える電圧を−2.5Vから2.5Vまで変化させたときの電圧−電流特性を示す図であり、図8(B)は、実施例7の接合体に加える電圧を−7Vから7Vまで変化させたときの電圧−電流特性を示す図である。FIG. 8A is a diagram showing voltage-current characteristics when the voltage applied to the joined body of Example 7 is changed from −2.5 V to 2.5 V, and FIG. It is a figure which shows the voltage-current characteristic when the voltage applied to the junction body of 7 is changed from -7V to 7V.

符号の説明Explanation of symbols

1 導電体
2 電極
1 Conductor 2 Electrode

Claims (2)

金属イオンドーピングされたカーボンナノチューブと固体高分子電解質との複合体からなる空中アクチュエータ素子用導電体。   A conductor for an aerial actuator element comprising a composite of a metal ion-doped carbon nanotube and a solid polymer electrolyte. 請求項1に記載の導電体の表面に、相互に絶縁状態で電極が少なくとも2個形成され、該電極間に電位差を与えることにより湾曲および変形を生じさせ得る空中アクチュエータ素子。   An aerial actuator element, wherein at least two electrodes are formed in an insulated state on the surface of the conductor according to claim 1 and can be bent and deformed by applying a potential difference between the electrodes.
JP2004030157A 2004-02-06 2004-02-06 Actuator element Expired - Lifetime JP4352128B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004030157A JP4352128B2 (en) 2004-02-06 2004-02-06 Actuator element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004030157A JP4352128B2 (en) 2004-02-06 2004-02-06 Actuator element

Publications (2)

Publication Number Publication Date
JP2005224027A true JP2005224027A (en) 2005-08-18
JP4352128B2 JP4352128B2 (en) 2009-10-28

Family

ID=34999235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004030157A Expired - Lifetime JP4352128B2 (en) 2004-02-06 2004-02-06 Actuator element

Country Status (1)

Country Link
JP (1) JP4352128B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009033856A (en) * 2007-07-26 2009-02-12 Sony Corp Actuator system
JP2009186297A (en) * 2008-02-06 2009-08-20 National Institute Of Advanced Industrial & Technology Method for measuring expansion/contraction of each layer in three-layered actuator
JP2010016969A (en) * 2008-07-03 2010-01-21 Alps Electric Co Ltd Polymeric actuator and manufacturing method therefor
JP2011162473A (en) * 2010-02-09 2011-08-25 Seiko Epson Corp Stimulation-responsive compound, actuator and manufacturing method of stimulation-responsive compound
JP2011162447A (en) * 2010-02-05 2011-08-25 Seiko Epson Corp Stimulation-responsive compound, stimulation-responsive compound polymer, actuator and manufacturing method of stimulation-responsive compound
KR101094331B1 (en) * 2010-06-21 2011-12-19 부산대학교 산학협력단 Microactuator based on polyelectrolyte
JP2012036133A (en) * 2010-08-09 2012-02-23 Seiko Epson Corp Stimulation-responsive compound, actuator, and method for producing the stimulation-responsive compound
JP2012036134A (en) * 2010-08-09 2012-02-23 Seiko Epson Corp Stimulation-responsive compound and actuator
US8123983B2 (en) * 2006-02-03 2012-02-28 Daikin Industries, Ltd. Actuator element
JP2012125140A (en) * 2010-12-07 2012-06-28 Industry-Academic Cooperation Foundation Yonsei Univ Multilayer electroactive polymer device and manufacturing method thereof
JP4999031B1 (en) * 2011-12-08 2012-08-15 美紀夫 和氣 Dielectric elastomer transducer with improved conversion efficiency
US8440773B2 (en) 2010-08-17 2013-05-14 Seiko Epson Corporation Stimulus-responsive compound, actuator, and stimulus-responsive compound producing process
JP2014033560A (en) * 2012-08-03 2014-02-20 Seiko Epson Corp Actuator
US9234099B2 (en) 2012-08-09 2016-01-12 Seiko Epson Corporation Stimulus-responsive compound, deformable material, and actuator

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8123983B2 (en) * 2006-02-03 2012-02-28 Daikin Industries, Ltd. Actuator element
JP2009033856A (en) * 2007-07-26 2009-02-12 Sony Corp Actuator system
JP2009186297A (en) * 2008-02-06 2009-08-20 National Institute Of Advanced Industrial & Technology Method for measuring expansion/contraction of each layer in three-layered actuator
JP2010016969A (en) * 2008-07-03 2010-01-21 Alps Electric Co Ltd Polymeric actuator and manufacturing method therefor
JP2011162447A (en) * 2010-02-05 2011-08-25 Seiko Epson Corp Stimulation-responsive compound, stimulation-responsive compound polymer, actuator and manufacturing method of stimulation-responsive compound
US8436117B2 (en) 2010-02-05 2013-05-07 Seiko Epson Corporation Stimuli responsive compound, stimuli responsive compound polymer, actuator and method for manufacturing stimuli responsive compound
JP2011162473A (en) * 2010-02-09 2011-08-25 Seiko Epson Corp Stimulation-responsive compound, actuator and manufacturing method of stimulation-responsive compound
KR101094331B1 (en) * 2010-06-21 2011-12-19 부산대학교 산학협력단 Microactuator based on polyelectrolyte
JP2012036133A (en) * 2010-08-09 2012-02-23 Seiko Epson Corp Stimulation-responsive compound, actuator, and method for producing the stimulation-responsive compound
JP2012036134A (en) * 2010-08-09 2012-02-23 Seiko Epson Corp Stimulation-responsive compound and actuator
US8440773B2 (en) 2010-08-17 2013-05-14 Seiko Epson Corporation Stimulus-responsive compound, actuator, and stimulus-responsive compound producing process
JP2012125140A (en) * 2010-12-07 2012-06-28 Industry-Academic Cooperation Foundation Yonsei Univ Multilayer electroactive polymer device and manufacturing method thereof
JP4999031B1 (en) * 2011-12-08 2012-08-15 美紀夫 和氣 Dielectric elastomer transducer with improved conversion efficiency
JP2014033560A (en) * 2012-08-03 2014-02-20 Seiko Epson Corp Actuator
US9608546B2 (en) 2012-08-03 2017-03-28 Seiko Epson Corporation Actuator
US9234099B2 (en) 2012-08-09 2016-01-12 Seiko Epson Corporation Stimulus-responsive compound, deformable material, and actuator

Also Published As

Publication number Publication date
JP4352128B2 (en) 2009-10-28

Similar Documents

Publication Publication Date Title
JP4038685B2 (en) Actuator element
JP4352128B2 (en) Actuator element
Zhang et al. Electrostatic layer-by-layer assembled carbon nanotube multilayer film and its electrocatalytic activity for O2 reduction
Pandey et al. Performance of solid-state supercapacitors with ionic liquid 1-ethyl-3-methylimidazolium tris (pentafluoroethyl) trifluorophosphate based gel polymer electrolyte and modified MWCNT electrodes
JP2018139301A (en) Capacitor having electrode formed from mutually connected waveform carbon-based mesh body
JP5473483B2 (en) Actuator
Nakanishi et al. Supercapacitors based on metal electrodes prepared from nanoparticle mixtures at room temperature
JP5733938B2 (en) Actuator
JP2012095520A (en) Actuator
JP4691703B2 (en) Actuator element and manufacturing method thereof
JP2009033944A (en) Carbon nanotube having high aspect ratio, conductive thin film composed of ionic liquid, and actuator element
JP2009046649A (en) Polymer actuator element
WO2017143273A1 (en) Thermally self-chargeable flexible energy storage device and method of forming and operating the same
US8946971B2 (en) Actuator
JP2008266532A (en) Actuator element with highly orienting electrode using carbon nano-tube having high aspect ratio
Khalid et al. Asymmetric and symmetric solid-state supercapacitors based on 3D interconnected polyaniline–carbon nanotube framework
Gholami laelabadi et al. Facile method of fabricating interdigitated and sandwich electrodes for high-performance and flexible reduced graphene oxide@ polyaniline nanocomposite supercapacitors
JP2010093954A (en) Polymer transducer
JP2017130276A (en) Conductive thin film, laminate, actuator element and method for manufacturing the same
Che et al. An electrochemically driven actuator based on a nanostructured carbon material
Terasawa et al. Performance enhancement of PEDOT: poly (4-styrenesulfonate) actuators by using ethylene glycol
JP2010158103A (en) Actuator
JP2010158104A (en) Actuator
WO2014024497A1 (en) Stimulus-responsive compound, deformable material and actuator
JP2014034658A (en) Stimuli responsive compound, deformable material and actuator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090630

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350